AME 35:115-129 (2004)  -  doi:10.3354/ame035115

Algorithms and practical fluorescence models of the photosynthetic apparatus of red cyanobacteria and Cryptophyta designed for the fluorescence detection of red cyanobacteria and cryptophytes

M. Beutler1,2,*, K. H. Wiltshire3, C. Reineke2, U.-P. Hansen4

1Max-Planck-Institut (MPI) für biophysikalische Chemie, Abteilung molekulare Biologie, Am Fassberg 11, 37077 Göttingen, Germany
2Max-Planck-Institut (MPI) für Limnologie, August-Thienemann-Straße 2, 24302 Plön, Germany
3Biologische Anstalt Helgoland, In der Stiftung Alfred-Wegner-Institut, Postfach 180, 27483 Helgoland, Germany
4Zentrum für Biochemie und Molekularbiologie (ZBM), Universität Kiel, Leibnizstr. 11, 24098 Kiel, Germany

ABSTRACT: In fluorometric phytoplankton analysis, the detection of red cyanobacteria is hampered by acclimation processes of the cyanobacterial photosynthetic apparatus and spectral interferences with Cryptophyta. In order to overcome these problems, a simplified energy distribution model accounting for energy pathways in the red cyanobacterial photosynthetic apparatus and the apparatus of Cryptophyta was developed. Mathematical equations were derived that enabled calculation of the pigment content of Cryptophyta and red cyanobacteria in the same sample. Phytoplankton samples were excited with 7 excitation wavelengths and measured at 4 detection wavelengths (600, 620, 650 and 685 nm) in vivo. A non-linear fit procedure accounted for variations in the fluorescence excitation spectra of red cyanobacteria and Cryptophyta in the presence of other phytoplankton fluorescence signals. Comparison with chemical pigment estimations verified that the fluorometric pigment estimation yielded reasonable results, even in the presence of energy-state transitions.

KEY WORDS: Phycobilisome · Energy distribution model · Phycoerythrin · Phycocyanin · Cyanobacteria · Fluorescence · Cryptophyta

Full article in pdf format