Inter-Research > DAO > v121 > n2 > p97-104  
DAO
Diseases of Aquatic Organisms

via Mailchimp

DAO 121:97-104 (2016)  -  DOI: https://doi.org/10.3354/dao03046

Seasonal infection rates of Batrachochytrium dendrobatidis in populations of northern green frog Lithobates clamitans melanota tadpoles

James T. Julian1,*, Victoria A. Gould1, Gavin W. Glenney2, Robert P. Brooks

1Division of Mathematics and Natural Science, Penn State University-Altoona College, 3000 Ivyside Park, Altoona, PA 16601,USA
2Northeast Fishery Center-Fish Health Center, US Fish and Wildlife Service, Lamar, PA 16848, USA
3Department of Geography, Penn State University-University Park, University Park, PA 16802, USA
*Corresponding author:

ABSTRACT: Few studies have documented seasonal variation of Batrachochytrium dendrobatidis (Bd) infection rates in larval amphibians. We identified 4 natural populations of northern green frogs Lithobates clamitans melanota in Pennsylvania (USA) that contained Bd-infected tadpoles during post-wintering collections in May and June, after hibernating tadpoles had overwintered in wetlands. However, we failed to detect infected tadpoles at those wetlands when pre-wintering collections were made in late July through early September. We observed 2 cohorts of tadpoles that appeared to lack Bd-infected individuals in pre-wintering collections, yet contained Bd-infected individuals the following spring. We also observed 4 cohorts of pre-wintering tadpoles that were Bd-free, even though post-wintering tadpoles collected earlier in the year were infected with Bd. Our results suggest that tadpoles either reduce Bd infections during the summer months, and/or infections proliferate sometime prior to (or shortly after) tadpoles emerge from hibernation. It is unlikely that pre-wintering tadpoles were too small to detect Bd zoospores because (1) there was no correlation between Bd zoospore levels and tadpole size or stage, and (2) size was not a significant predictor of infection status. These results suggest that, while sampling larvae can be an effective means of collecting large sample sizes, investigators in our Mid-Atlantic region should conduct sampling by early summer to maximize the chances of detecting Bd. Further research is warranted to determine whether wetland topography and warm, shallow microhabitats within wetlands contribute to a population’s ability to drastically reduce Bd prevalence prior to overwintering at ponds.


KEY WORDS: Batrachochytrium dendrobatidis · Chytrid fungus · Temporal · Amphibian · Disease prevalence


Full text in pdf format
Cite this article as: Julian JT, Gould VA, Glenney GW, Brooks RP (2016) Seasonal infection rates of Batrachochytrium dendrobatidis in populations of northern green frog Lithobates clamitans melanota tadpoles. Dis Aquat Org 121:97-104. https://doi.org/10.3354/dao03046

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article