Inter-Research > MEPS > v200 > p59-76  
MEPS
Marine Ecology Progress Series

via Mailchimp

MEPS 200:59-76 (2000)  -  doi:10.3354/meps200059

Nitrogen fluxes, denitrification and the role of microphytobenthos in microtidal shallow-water sediments: an annual study

Kristina Sundbäck*, Alison Miles, Eva Göransson

Department of Marine Botany, Göteborg University, PO Box 461, 405 30 Göteborg, Sweden

ABSTRACT: The annual cycle of oxygen and nitrogen flux, denitrification and microphytobenthic variables (primary production, biomass, composition and calculated N demand) were studied for 2 shallow-water microtidal sediment sites in NE Kattegat, 1 sandy and 1 silty, by incubating undisturbed sediment in the laboratory in light and darkness. Both sites (2 stations within each) were characterised by low concentrations of inorganic nitrogen (IN) in the overlying water during summer (NO3 generally <1 µM), with winter concentrations of 5 and 30 µM for the sandy and silty site, respectively. Through the activity of microphytobenthos, the sediment systems appeared to be net autotrophic during most of the year. Net oxygen production varied between -400 and 6600 µmol m-2 h-1, being highest during the warmest season. Although the composition of the microphytobenthos depended on the sediment type, it did not have a crucial effect on the magnitude of the microphytobenthic biomass or function. The temporal pattern of the function of the microalgal community, on the other hand, was significantly influenced by the sediment type; sandy sediment exhibited a smooth seasonality, controlled mainly by temperature and light, while the silty microtidal sediment was also controlled by stochastic events, such as sediment resuspension. Microphytobenthos had a significant effect on the IN flux, the clearest effect being found for NH4. Total denitrification (isotope-pairing technique) generally varied between <1 and 40 µmol m-2 h-1, being dominated by nitrification-coupled denitrification (Dn), and being 1 order of magnitude higher at the silty site. Microphytobenthic activity generally inhibited denitrification in the low-N areas in this study. The results suggest that the microphytobenthos functions as a major control throughout the annual cycle, by forming communities that are net photoautotrophic throughout the year, and by significantly influencing both the IN flux and denitrification rates. Sandy sediment appeared to function as an IN sink during winter and early spring, while no clear seasonal pattern was found for silty sediment. Calculated N demand of the microphytobenthos far exceeded the measured sediment net uptake of N, supporting the idea that sandy systems in low-nitrogen areas can be highly productive through a closed recycling of N. The ratio between calculated microphytobenthic N demand and measured denitrification rates suggests that denitrification has a minor role as a N sink, particularly in sandy, cold-climate microtidal sediments.


KEY WORDS: Sediment · Nitrogen · Primary production · Denitrification · Microphytobenthos


Full text in pdf format
 Previous article Next article