MEPS 288:45-57 (2005)  -  doi:10.3354/meps288045

Freshwater control of onset and species composition of Greenland shelf spring bloom

Joanna J. Waniek*, N. P. Holliday, R. Davidson, L. Brown, S. A. Henson

Southampton Oceanography Centre, European Way/Empress Dock, Southampton SO14 3ZH, UK

ABSTRACT: The relationship between physical properties of the water column and spatial patchiness of phytoplankton spring bloom development on the Greenland shelf edge and in the Irminger Sea was investigated using data collected during a spring cruise (April and May 2002). The observations confirm a strong relationship between the onset and stage of bloom development and the stratification induced by freshwater input to the surface layer in the shelf region. Interestingly, at the shelf, in the region influenced by melting of the seasonal ice-cover, the vertical distribution of chlorophyll a showed a subsurface maximum at ca. 25 m depth at several stations. Since nutrients were not exhausted at these stations, such a pattern does not conform to the general picture of a spring bloom. In contrast, in the open ocean part of the Irminger Sea pre-bloom conditions and a retarded development of the phytoplankton population were observed with low, more uniform distribution of chlorophyll a. The nitrate drawdown was estimated at between 16.5 and 270 µm m–2 (mean 108.6 ± 82.2 µm m–2) and the new primary production was estimated to be between 1.3 and 21.4 g C m–2 (8.6 ± 6.5 g C m–2), corresponding to 0.42 g C m–2 d–1. The phytoplankton community in the melting ice zone consisted of Phaeocystis sp., small flagellates (< 4 µm) and picoplankton, while diatoms were less abundant. Phaeocystis sp. contributed up to 15 g C m–2 to the carbon biomass (70% of total carbon measured), whereas the contribution of diatoms and flagellates to carbon biomass was relatively low, with up to 1.2 g C m–2 (5.7%) and up to 2.5 g C m–2 (11.7%), respectively. On the shelf the bloom starts at the very beginning of stabilisation (elevated N2 values) which results solely from the release of meltwater. The locally restricted water stability leads to a patchy phytoplankton distribution in the Irminger Sea.


KEY WORDS: Hydrography · Brunt-Väisälä frequency · Stratification · Phytoplankton · Plankton blooms · North Atlantic · Irminger Sea · East Greenland shelf


Full text in pdf format