Inter-Research > MEPS > v408 > p19-32  
MEPS
Marine Ecology Progress Series

via Mailchimp

MEPS 408:19-32 (2010)  -  DOI: https://doi.org/10.3354/meps08599

Thresholds for tracing ships’ ballast water: an Australian case study

Martina A. Doblin1,*, Kathleen R. Murphy2,3, Gregory M. Ruiz2

1Plant Functional Biology and Climate Change Cluster, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, New South Wales 2007, Australia
2Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, Maryland 21037, USA
3UNSW Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia

ABSTRACT: To limit the spread of non-indigenous marine species, ships can be legally required to conduct ballast water exchange (BWE) prior to discharging ballast water. It has been proposed to verify BWE by measuring concentrations of coastal tracers in ballast tanks, which should track their removal. Using 3 Australian ports as case studies (Port Botany, Port Curtis and Port Phillip Bay), each representing a different BWE verification difficulty level, the spatial and temporal variability of chromophoric dissolved organic matter (CDOM) and 3 trace elements (manganese [Mn], barium [Ba] and phosphorus [P]), were measured to assess their utility as tracers of coastal (unexchanged) ballast water. CDOM fluorescence at λexem = 320/414 nm (C2*) and 370/494 nm (C3*) and Mn concentrations were significantly higher in ports than in the adjacent Tasman Sea, except near port entrances and at a few sites in Port Botany. Ba concentrations demonstrated the least power to discriminate coastal sources, but P easily discriminated water from mesotrophic Port Phillip Bay. In general, tracers showed greater variation between and within ports, rather than between seasons. Conservative BWE thresholds were calculated to be 1.6 quinine sulphate equivalents for C2*, 0.9 quinine sulphate equivalents for C3*, 1.4 µg l–1 for Mn and 6.9 µg l–1 for Ba. Overall, these thresholds would allow water sourced from eastern Australian ports to be identified as coastal at 92%, 69% and 74% of sites examined using C3*, Mn and Ba, respectively, requiring 71 ± 26%, 54 ± 40% and 59 ± 38% replacement with mid-ocean water to be within ocean baseline concentration ranges.


KEY WORDS: Ballast water · CDOM · Trace elements · Biological invasions · Ballast management


Full text in pdf format
Cite this article as: Doblin MA, Murphy KR, Ruiz GM (2010) Thresholds for tracing ships’ ballast water: an Australian case study. Mar Ecol Prog Ser 408:19-32. https://doi.org/10.3354/meps08599

Export citation
Share:    Facebook - - linkedIn

 Previous article Next article