MEPS 411:1-15 (2010)  -  doi:10.3354/meps08665

Benthic ecology from space: optics and net primary production in seagrass and benthic algae across the Great Bahama Bank

Heidi M. Dierssen1,*, Richard C. Zimmerman2, Lisa A. Drake2,3, David Burdige2

1Department of Marine Sciences/Geography, University of Connecticut, Groton, Connecticut 06340, USA
2Department of Ocean, Earth and Atmospheric Sciences, Old Dominion University, 4600 Elkhorn Avenue, Norfolk, Virginia 23529, USA
3Present address: Science Applications International Corporation, c/o Naval Research Laboratory, Key West, Florida 33041, USA

ABSTRACT: Development of repeatable and quantitative tools are necessary for determining the abundance and distribution of different types of benthic habitats, detecting changes to these ecosystems, and determining their role in the global carbon cycle. Here we used ocean color remote sensing techniques to map different major groups of primary producers and estimate net primary productivity (NPP) across Great Bahama Bank (GBB). Field investigations on the northern portion of the GBB in 2004 revealed 3 dominant types of benthic primary producers: seagrass, benthic macroalgae, and microalgae attached to sediment. Laboratory measurements of NPP ranged from barely net autotrophic for grapestone sediment with thin microalgal biofilm to highly productive for dense accumulations of brown macroalgae. A logarithmic relationship between NPP and green seafloor reflectance described the general trend in NPP across various benthic constituents. Using a radiative transfer-based approach, satellite-derived estimates of NPP for the region totaled ~2 × 1013 gC yr–1 across the GBB. The prevailing benthic habitat was mapped as sediment with little to no microalgal biofilm. Moderate to dense seagrass meadows of Thalassia testudinum were the dominant primary producers and contributed over 80% of NPP in the region. If the vast majority of seagrass leaves decompose in the primarily carbonate sediments, carbonate dissolution processes associated with this decomposition may result in sequestration of seagrass above- and below-ground carbon into the bicarbonate pool (2.4 × 1013 gC yr–1), where it has a residence time on the order of tens of thousands of years.

KEY WORDS: Primary productivity · Remote sensing · Ocean color · Inherent optical properties · Benthic reflectance · Bahamas · Grapestone sediment

Full text in pdf format 
Information about this Feature Article  
Cite this article as: Dierssen HM, Zimmerman RC, Drake LA, Burdige D (2010) Benthic ecology from space: optics and net primary production in seagrass and benthic algae across the Great Bahama Bank. Mar Ecol Prog Ser 411:1-15

Export citation: Endnote - Reference Manager
Mail this link - Contents Mailing Lists - RSS
- -