MEPS 578:73-85 (2017)  -  DOI:

Influences of geothermal sulfur bacteria on a tropical coastal food web

Pierre-Yves Pascal1,*, Stanislas F. Dubois2, Anaïs Goffette1, Gilles Lepoint

1UMR 7138 Evolution Paris-Seine, Equipe biologie de la mangrove, Université des Antilles, BP 592, 97159 Pointe-à-Pitre, Guadeloupe, France
2IFREMER - DYNECO LEBCO, Centre de Bretagne, CS 10070, 29280 Plouzané, France
3Laboratoire d’Océanologie, Centre MARE, Université de Liège, 15 Allée du 6 Août, quartier Agora, Bât. B6C, 4000 Liège, Belgium
*Corresponding author:

ABSTRACT: The activity of the geothermal plant at Bouillante in Guadeloupe (French West Indies) releases thioautotrophic bacteria into the coastal environment. Fish counts reveal that fish abundance increases with higher availability of this bacterial resource. In order to evaluate the trophic role of these bacteria, isotopic compositions (C, N, S) of potential consumers were evaluated on transects at increasing distance from the source of bacteria. The 3 mobile fish species examined (Abudefduf saxatilis, Acanthurus bahianus, and Stegastes partitus) ingested and assimilated chemosynthetic bacteria. Similarly, the isotopic composition of the mobile sea urchin Diadema antillarum was different close to the discharge channel, suggesting a diet mainly composed of sulfur bacteria. In contrast, endofauna sampled from the nematode community did not show a diet influence by chemosynthetic bacteria. A broad variety of epifaunal organisms with passive and active suspension-feeding activities were also investigated, including sponges (Aplysina fistularis and Iotrochota birotulata), barnacles (Balanus sp.), bivalve molluscs (Spondylus tenuis) and cnidarians (Pseudopterogorgia sp.), but no strong evidence for sulfur bacteria contributions were determined in the diets of any of these organisms. This was also true for the omnivorous predator annelid Hermodice carunculata. In this coastal oligotrophic environment, only certain opportunistic species seem to benefit from the emergence of a new food item such as chemosynthetic bacteria.

KEY WORDS: Shallow vent · Food web · Sulfur bacteria · Stable isotope

Full text in pdf format 
Cite this article as: Pascal PY, Dubois SF, Goffette A, Lepoint G (2017) Influences of geothermal sulfur bacteria on a tropical coastal food web. Mar Ecol Prog Ser 578:73-85.

Export citation
Mail this link - Contents Mailing Lists - RSS
- -