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INTRODUCTION

Uncovering the strength of interspecific relation-
ships is a main thrust of ecological research, particu-
larly when it is necessary to predict the ecosystem-
wide ramifications of changes in the abundance or
distribution of a given species (Krebs 1972). For exam-
ple, the often-surprising trophic cascades caused by
the removal or addition of one species illustrate the
importance of tight ecological relationships to ecosys-
tem structure (e.g. Estes et al. 2004, Myers et al. 2007).
While predators in tropical pelagic systems have gen-
erally been found to be highly catholic in their diets
(e.g. Harrison et al. 1983, Kitchell et al. 1999, Potier
et al. 2007), there is mounting evidence of tight inter-

specific associations involving oceanic birds and sub-
surface predators (cetaceans, large predatory fishes,
sea turtles) (e.g. Au 1991, Pitman & Ballance 1992, Pit-
man 1993). These subsurface predators make prey
available to the birds by driving and concentrating
prey close to the ocean’s surface, thus enhancing the
foraging opportunities of surface-feeding and shallow-
diving birds (Ashmole 1971). Because tuna, in particu-
lar, are harvested at such high global levels (5.1 million
tons in 2005; FAO 2007), changes in their abundance
and distribution may affect the foraging success of the
associated seabirds.

If foraging opportunities were to become more
sparse, that may further impair foraging success of the
associated seabirds because of the tendency of sea-
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birds to use each other to find prey patches, a process
termed local enhancement (Grünbaum & Veit 2003). A
critical first step to assess these potential impacts is to
quantify the degree of reliance of seabirds on tuna and
other subsurface predators.

Previous research has shown that the composition of
the seabird assemblages associated with subsurface
predators varies geographically, and that even within a
given region, these associations may vary depending
on the ecological setting and the species involved. In
Hawaii, Harrison & Seki (1987) found that most (75%)
foraging seabird flocks occurred over schools of skip-
jack tuna Katsuwonus pelamis. In the eastern tropical
Pacific (ETP), Au & Pitman (1986, 1988) documented
tight associations between several seabird species
(terns, shearwaters, boobies, frigatebirds, petrels) and
yellowfin tuna Thunnus albacares and spotted Stenella
attenuata and spinner Stenella longirostris dolphins.
Yet, while frigatebirds and sooty terns Sterna fuscata
were obligate commensals with these subsurface pre-
dators, other species were more facultative. For in-
stance, the shearwaters and petrels were often ob-
served feeding on free-floating organisms away from
subsurface predators (Au & Pitman 1988).

Ballance et al. (1997) expanded this analysis by doc-
umenting the influence of ocean productivity structur-
ing the composition of seabird flocks associated with
subsurface-predator schools in the ETP. Booby flocks
predominated in high-productivity waters, flocks of
wedge-tailed shearwater Puffinus pacificus and Juan
Fernández petrel Pterodroma externa occurred in
intermediate-productivity waters, and sooty tern flocks
inhabited low-productivity waters. Several recent
studies in other ocean basins have underscored the
widespread incidence and regional variability in sea-
bird–subsurface-predator associations. Off the Azores
Islands (eastern Atlantic Ocean), Clua & Grosvalet
(2001) documented that several species of dolphin, and
occasionally large tuna, provide foraging opportunities
for shearwaters. In contrast, off Reunion Island (West-
ern Indian Ocean), Jaquemet et al. (2004) reported that
tuna were the primary mediators for foraging shear-
waters, terns and noddies; however, dolphins were
the subsurface predators most commonly associated
with tropicbirds. These results highlight the value of
comparative regional and local studies of seabird and
subsurface-predator assemblages within distinct geo-
graphic and oceanographic settings.

Documenting whether these foraging associations
happen more often than would be expected by chance
alone, if these seabirds and subsurface predator
were randomly distributed across all schools, uncovers
subtle but critical aspects of this ecological pheno-
menon (Au & Pitman 1986, Pitman & Ballance 1992,
Jaquemet et al. 2004). Characterizing such preferences

is an important component in assessing the strength of
these ecological relationships and predicting whether
cascading effects, as opposed to behavioral switching,
would be likely in response to changes in the abun-
dance of the dominant subsurface predator(s).

The present study expands the research of Harri-
son & Seki (1987), who characterized the seabird–
subsurface-predator associations during the 1980s in
Hawaii, but did not address these patterns statistically.
Furthermore, a regime shift in the pelagic ecosystem of
the Central Pacific Gyre (characterized by increased
salinity, decreased sea-surface temperature and pri-
mary productivity, a shift in the composition of phyto-
plankton, and decreased reproductive successes of
seabirds and monk seals) occurred after their study
was conducted (Polovina & Haight 1999, Karl et al.
2001). To explore whether the subsurface predator
community has changed since this regime shift took
place, we compare the structure of this assemblage
determined from our study (2000s) and during the
1950s and 1960s using the data of Harrison & Seki
(1987).

MATERIALS AND METHODS

Surveys. At-sea surveys were conducted in summer
and fall, June to November of 2000, 2001, and 2003,
opportunistically aboard commercial and recreational
fishing vessels around the island of Oahu, Hawaii.
Eighteen trips were conducted (Fig. 1) for a total of
168 daytime survey hours. Most (14/18 or 77.8%) trips
were conducted aboard a commercial vessel targeting
skipjack tuna. Surveys were non-random; they tar-
geted specific fishing areas known for higher densities
of fish and seabirds, and deliberately sought out fish–
seabird aggregations. Fishing effort occasionally tar-
geted fish aggregation devices (FADs) but predomi-
nantly focused on free-ranging schools located by the
presence of associated seabirds. When individuals or
flocks (defined as 2 or more individuals) of foraging
seabirds were observed either by A. J. Hebshi or the
fishers, the vessel was directed towards the individual
or flock. All foraging seabirds were counted and iden-
tified to species, and the identity of the subsurface
predators, if present, was determined either through
their capture or visual observations at the surface when
no catches were made. The number and estimated
mass of the fish harvested per school were determined
when the fish were brought on deck, and the number
of odontocetes per pod was estimated from surface
observations.

Occasionally, schools were in close proximity with
each other in time and space. If these schools consisted
of different species or size classes of subsurface preda-
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tors (size class was nearly uniform within all schools),
they were considered to be distinct sightings. When no
such determination could be made, the observations
were pooled and the largest number of individuals
recorded for each seabird species was used for any
subsequent analyses.

Species-specific patterns. There were sufficient
numbers of observations (n > 30 feeding flocks per
event) for 3 seabird species—wedge-tailed shearwater,
brown noddy Anous stolidus, and red-footed booby
Sula sula—to perform univariate statistical tests to
investigate whether these species associated with par-
ticular types of subsurface predators beyond what
would be expected if the birds were distributed
randomly across all schools. Because there were few
observations of non-tuna subsurface predators, mahi-
mahi and odontocete schools were lumped into a
single functional group and compared with the obser-
vations of tuna schools. This dichotomous comparison
is biologically justifiable due to the substantial differ-
ence in prey size (a key variable in seabird niche parti-
tioning; Harrison et al. 1983) between tuna and the
other predators (Roger 1994, Robertson & Chivers 1997,
Santos & Haimovici 2001, Olson & Galván-Magaña
2002, Ménard et al. 2006). For each of the 3 species of
birds, means and medians tests were used to deter-
mine whether the average number of individuals per

flock was significantly different between the 2 subsur-
face predator groups. Contingency tests (χ2) were used
to detect if the bird species were associated with either
group of subsurface predator disproportionately from
what would be expected by chance.

Seabird assemblages. A multivariate test (non-metric
multidimensional scaling, NMDS) was used to com-
pare seabird assemblages among different subsurface-
predator types (PC-ORD; McCune & Mefford 1999).
NMDS is ideal for characterizing the distributions of
patchy organisms because it does not impose any
assumptions on the shape of the underlying habitat–
wildlife relationships. Furthermore, NMDS does not
assemble discrete groupings of species or samples, but
plots them along a multidimensional continuum repre-
senting combinations of the explanatory variables. The
species and samples from similar habitats are thus
plotted closer together in multivariate space (Kenkel &
Orloci 1986). This analytical technique has been used
previously to characterize the structure of seabird
assemblages and their habitat associations (Smith
& Hyrenbach 2003, Hyrenbach et al. 2007).

The NMDS analysis relied on a similarity matrix
created using the Sorensen (Bray-Curtis) index from
the raw seabird counts and 13 explanatory variables
describing the type of fishing (commercial vs. sport),
the type of subsurface predators (skipjack tuna, mahi-
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mahi, spotted dolphin, false killer whale, yellowfin
tuna, unknown), and the geographic location around
Oahu (Waianae, Penguin Bank, Kaena Point, other).
Only those locations contributing at least 10% (7 or
more) observations were considered in the analysis.

RESULTS

Surveys

A total of 69 independent seabird foraging observa-
tions were recorded. The presence and identity of sub-
surface predators were not ascertained in 7 (10.5%) of
the schools. In two of the remaining 62 observations
(2.9% of total), no subsurface predators appeared to be
present. These were short-lived (<10 s) feeding events,
after which the birds quickly dispersed from the site,
suggesting an absence of subsurface predators. Thus,
for the subsequent analyses we considered a sample
size of 62 seabird foraging observations, 60 of which
involved subsurface predators.

While skipjack tuna were the predominant associ-
ated subsurface predator, 4 other species were in-
volved in feeding associations with seabirds: mahimahi
Coryphaena hippurus, false killer whale Pseudorca
crassidens, spotted dolphin, and yellowfin tuna (Fig. 2).
These 5 species of subsurface predators were widely
distributed across the study area (Fig. 3), even though
only skipjack were captured north of the island. There
was a significant difference in the occurrence (pres-
ence or absence) of skipjack as a function of fishing trip
type (commercial vs. recreational) (χ2 = 17.2, df = 1, p <
0.0005) (Fig. 4) because recreational boats targeted

92

Unknown
(7) Spotted

dolphin
(4)

Mahimahi
(4)

Yellowfin
(1)

No
predator

(2)

False
killer
whale

(1)Skipjack
(50)

Fig. 2. Relative abundances of subsurface predators asso-
ciated with foraging seabirds (n = 69 schools). See Table 1 

for scientific names

Fig. 3. Geographic locations of seabird flocks associated with subsurface-predator schools
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logs and buoys where mahimahi were more likely to
be found. Schools were typically larger for the tuna
than for the odontocetes and the mahimahi. In those
instances when nearly the entire tuna school was
harvested (n = 13), thus allowing for a minimum
school-size estimation, 204 ± 182 tuna (mean ± SD)
were harvested. In contrast, the mahimahi schools
(x = 4.75, n = 4, maximum = 11) and odontocete pods
(x = 13.8, n = 5, maximum = 22) encountered were sub-
stantially smaller. In the 13 harvested tuna schools,
only 2 contained mixed species. Skipjack comprised
>99% of these 2 schools, with yellowfin tuna and rain-
bow runners Elagatis bipinnulata present in very small
numbers.

Twelve species of foraging seabirds (5508 indi-
viduals) were observed (Fig. 5), of which 75% were
wedge-tailed shearwaters, the most abundant breed-

ing seabird in the Hawaiian Archipelago during sum-
mer and fall (Harrison et al. 1984, Spear et al. 1999).
When we considered the 62 observations where the
presence or absence of subsurface predators was
ascertained, almost all (99.8%) of the foraging birds
were associated with subsurface predators. In par-
ticular, the vast majority (96.0%) of these birds were
associated with skipjack tuna (Table 1).
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Table 1. Numbers of observed individuals of each seabird species as a function of subsurface-predator type. Values in parentheses indi-
cate the number of schools of subsurface predator in which at least 1 individual of a given seabird species was observed. Skipjack = Katsu-
wonus pelamis; yellowfin = Thunnus albacares; spotted dolphin = Stenella attenuata; mahimahi = Coryphaena hippurus; false killer 

whale = Pseudorca crassidens

Skipjack Yellowfin Spotted Mahimahi Unknown False No 
(50) (1) dolphin (4) (7) killer whale predator 

(4) (1) (2)

Puffinus pacificus Wedge-tailed shearwater 3918 (49) 60 (1) 71 (4) 4 (3) 80 (7) 5 (1) 12 (2)
Anous stolidus Brown noddy 730 (27) 0 0 0 58 (5) 0 0
Sula sula Red-footed booby 189 (32) 4 (1) 22 (4) 12 (2) 12 (6) 5 (1) 0
Anous minutus Black noddy 50 (11) 0 0 0 2 (1) 0 0
Sula leucogaster Brown booby 23 (11) 0 6 (2) 1 (1) 0 0 0
Gygis alba White tern 28 (11) 0 1 (1) 2 (1) 3 (1) 0 0
Sterna fuscata Sooty tern 166 (9) 0 0 0 19 (3) 0 0
Puffinus auricularis Newell’s shearwater 6 (4) 0 0 0 0 0 0
Fregata minor Great frigatebird 6 (6) 0 1 (1) 4 (2) 0 0 0
Catharacta maccormicki South polar skua 4 (4) 0 0 0 0 0 0
Stercorarius pomarinus Pomarine jaeger 3 (3) 0 0 0 0 0 0
Puffinus griseus or Sooty or short-tailed 1 (1) 0 0 0 0 0 0
P. tenuirostris shearwaters
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Species-specific patterns

For 3 seabird species (wedge-tailed shearwater,
brown noddy, red-footed booby), numbers of feeding
events were large enough to conduct univariate tests.
Non-parametric tests were used to test differences in
the median number of birds per school as a function
of subsurface-predator type for the first 2 species,
because they did not meet the required assumption
of equal variances. A Mann-Whitney test was per-
formed for the wedge-tailed shearwater, and a sign
test was performed for the brown noddy due to the
large number of null values. A parametric t-test was
used to detect differences in the mean number of red-
footed boobies across different subsurface-predator
schools.

There was a significant difference in the median
number of foraging wedge-tailed shearwaters as a
function of subsurface-predator type. Higher numbers

of shearwaters foraged over tuna (skipjack and yellow-
fin) than over the other predators combined (Mann-
Whitney U = 1543.5, df = 1, p = 0.0009) (Fig. 6).
However, the presence/absence data revealed a non-
significant result (χ2 = 1.988, df = 1, 0.25 > p > 0.10),
with no difference in the proportion of tuna schools
and non-tuna schools attended by wedge-tailed shear-
waters, suggesting that members of this species are not
limited to foraging over tuna despite their larger num-
ber of individuals associated with these predators.

All the foraging brown noddies recorded during the
present study were observed over tuna schools. Thus,
there was a significant difference in the median num-
ber of individuals over tuna schools versus non-tuna
schools (sign test: χ2 = 10.16, df = 1; p = 0.001) (Fig. 6).
The proportion of tuna schools attended by brown
noddies was higher than would be expected if these
birds had foraged randomly across subsurface predator
types (χ2 = 8.663, df = 1, p = 0.013, 0.01 < p < 0.025).

There was no significant difference in the mean
number of red-footed boobies as a function of subsur-
face predator type (tuna vs. non-tuna) (t = 0.77, df = 11,
p = 0.455) (Fig. 6). Moreover, there was no signifi-
cant difference among the proportions of subsurface-
predator schools associated with boobies (χ2 = 3.088,
df = 1, p = 0.214, 0.10 < p < 0.25).

Seabird assemblages

The multivariate NMDS analysis identified 2 axes
with high (99.3%) orthogonality (r = –0.082), which
best described the seabird community structure and
explained 67.9% of the cumulative observed variance
(axis 1: R2 = 0.502; axis 2: R2 = 0.178) (Fig. 7). The stress
of the best-fit NMDS was 17.873, suggesting that the
performance of the test was fair (McCune & Grace
2002).

The non-parametric (Kendall) cross-correlations be-
tween the explanatory variables and the 2 significant
axes revealed that the seabird community structure
was influenced primarily by the presence of wedge-
tailed shearwaters and brown noddies, the 2 most
abundant seabird species, with significant correlations
with both axes (Table 2). These results suggest that the
first axis captured the differences between commercial
and sport fishing vessels, while the second axis cap-
tured the variability across geographic locations. This
analysis also revealed significant Kendall correlations
with the first axis for 2 subsurface predators: mahimahi
(n = 67, tau = +0.281, 0.05 < p < 0.005) and skipjack (n =
67, tau = –0.452, 0.001 < p < 0.005). These results rein-
forced the observation from the univariate analyses
that wedge-tailed shearwaters and brown noddies
tend to forage in greater proportion over skipjack tuna
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schools. The sooty tern was the only species signifi-
cantly correlated with the second axis (n = 67, tau =
–0.329, 0.05 < p < 0.005).

Long-term changes in the subsurface-predator
community

In the present study, we found no evidence of quali-
tative changes in the seabird–subsurface-predator
associations as a result of a regime shift in the Central
North Pacific Gyre in the 1980s. Harrison & Seki (1987)
concluded that skipjack were the dominant predators
over which seabirds feed in waters around the main
Hawaiian Islands, with 75% of the 681 bird flocks
observed on cruises in the 1950s and 1960s being asso-
ciated with schools of this predator. This historical
result is comparable with the proportion of 81%
(50/62) documented in the present study.

DISCUSSION

Our research corroborates previous assessments of
the importance of subsurface predators to the foraging
ecology of many species of tropical seabirds (Au &
Pitman 1986, Harrison & Seki 1987, Jaquemet et al.
2004), and provides new information about seabird
associations with specific subsurface predators within
the commercial and sport fishing grounds surrounding
the island of Oahu. In this area, at least 2 species of
seabirds forage in association with tuna schools (pri-
marily skipjack) disproportionately more frequently
than would be expected if the birds were randomly
distributed across all types of predator schools. We
hypothesize that tuna schools are the most profitable
for seabirds, particularly for the smaller species, for
2 reasons: (1) the larger size and greater persistence
of tuna schools increases the duration of the foraging
opportunity, and (2) these schools provide prey of
greater suitability (i.e. size class, species, quantity).

Although we were unable to determine whether
these larger foraging schools of subsurface predators
were more visible and long-lasting, Au & Pitman
(1986) found that the number of seabirds in a flock was
positively correlated with the size of the subsurface
predator school. We hypothesize that larger schools
are indicative of larger prey concentrations and pro-
vide a larger surface area for a greater number of
seabirds to access these prey resources.

Differences in prey types may also be driving the
observed segregation of seabird species across subsur-
face-predator schools. Because mahimahi and odonto-
cetes generally feed on larger prey than do the tuna
(Roger 1994, Robertson & Chivers 1997, Santos & Hai-
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names of seabird species and predator type

Axis 1 Axis 2
tau tau

Seabird species
Wedge-tailed sheawater –0.779 0.427
Brown noddy –0.242 –0.537
Black noddy –0.168 –0.103
Brown booby –0.037 –0.144
Red-footed booby –0.093 –0.017
Sooty tern –0.106 –0.329
White tern –0.007 0.119
Sooty or short-tailed –0.089 –0.147
shearwaters

Pomarine jaeger –0.104 –0.098
South polar skua –0.163 0.201
Newell’s shearwater –0.237 0.237
Great frigatebird 0.059 0.091

Vessel type
Sport 0.351 –0.011
Commercial –0.351 0.011

Location
Waianae –0.078 0.315
Penguin Banks 0.050 0.017
Kaena –0.006 –0.125
Windward –0.008 –0.288
Other 0.080 –0.125

Predator type
Spotted dolphin 0.185 0.040
Mahimahi 0.281 –0.070
False killer whale 0.141 –0.016
Skipjack –0.452 0.134
Yellowfin –0.037 0.094
Unknown 0.241 –0.199
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movici 2001, Olson & Galván-Magaña 2002, Ménard
et al. 2006), these larger prey may be outside of the
size range suitable for the smaller birds, particularly
the terns and to a lesser extent the shearwaters. For
example, mahimahi stomach contents from the ETP
revealed an average prey length of 160.0 mm (Olson &
Galván-Magaña 2002), whereas yellowfin tuna stom-
ach contents from the same geographic area contained
an average prey length of 38.2 mm (Ménard et al.
2006). A comprehensive diet study of Hawaiian sea-
birds revealed that different species feed on distinct
prey size ranges: up to 145 mm for wedge-tailed shear-
waters, 93 mm for brown noddies, and 200 mm for red-
footed boobies (Harrison et al. 1983). Therefore, the
shearwaters and noddies—but not the boobies—
appear to be morphologically constrained from con-
suming even the average prey size of mahimahi.
Because tropical seabirds are fairly diverse in their
prey taken within their preferred size class (Harrison
et al. 1983), prey taxonomy by itself probably has no
bearing on seabird–subsurface-predator associations.
Rather, any apparent taxonomic preferences are prob-
ably residual effects from feeding behaviors of the
associated subsurface predators (Spear et al. 2007).

Potential biases and limitations of this study

The majority of the seabird interactions with subsur-
face predators observed in the present study involved
skipjack tuna. Due to the low densities of seabird
flocks in tropical waters, we resorted to using fishing
vessels to locate subsurface predators rather than
using random survey tracks. This approach has been
used previously in other regions to facilitate otherwise
logistically difficult and expensive surveys (Jaquemet
et al. 2004). Because the sampling was not random,
however, these data may not accurately reflect the
actual relative proportions of subsurface predator
schools in the waters around Oahu. In fact, the differ-
ent proportions of school types from commercial versus
sport vessels highlights this lack of randomness. Nev-
ertheless, it is likely that the observations from com-
mercial vessels, which were dominated by skipjack
tuna, were more akin to a random sampling. Con-
versely, the sport-fishing vessels yielded a somewhat
biased perspective by targeting FADs and other float-
ing objects where mahimahi aggregate (Kojima 1956).

Our observations may also have been biased towards
sampling seabirds associated with subsurface preda-
tors, while other foraging methods may have been
underrepresented. First, night feeding (which may or
may not involve the participation of subsurface preda-
tors) is supported by direct observations in wedge-
tailed shearwaters and sooty terns (Gould 1967), and

by evidence that wedge-tailed shearwater colony
attendance during full moon nights is lower than dur-
ing new moon nights (Shallenberger 1973). However,
the greater numbers of birds attending the colonies at
night versus during the day underscores the notion
that nocturnal foraging is probably a minor contributor
to overall feeding in tropical ‘tuna birds’ (Whittow
1997, Gauger 1999, Schreiber et al. 2002).

Second, the present study likely underestimated the
overall incidence of solo or small-flock feeding in the
absence of subsurface predators on surface-dwelling
prey. This behavior is more transient and therefore less
conspicuous and harder to detect at sea. For instance,
only two out of the 62 feeding events characterized
during the present study were of this type. However,
previous research has shown the rarity of solo or small-
flock feeding for some of these species. In central
Pacific cruises performed in the 1960s, King (1974) and
Gould (1974) reported that 93% of all wedge-tailed
shearwaters and 77% of all sooty terns were observed
feeding in mixed-species flocks. These data were col-
lected along transect lines and limited to a distance of
no greater than 0.75 miles (1.2 km), a range explicitly
chosen by the researchers to exclude birds whose
behavior could not be determined (Gould 1974).

Finally, because these data have a seasonal bias
(summer and fall) and a limited geographic scope
(waters around Oahu), they do not represent the entire
Hawaiian seabird community. In particular, sooty terns,
which breed in spring and early summer, were not
recorded in large numbers despite their large breeding
densities around Oahu (Harrison et al. 1984).

Implications for fishery management and seabird
population health

Despite the limitations and potential biases of the
present study, it appears that skipjack tuna are impor-
tant mediators of food availability for several species of
seabirds around Oahu. Skipjack comprise the bulk of
the subsurface predators involved in foraging associa-
tions with seabirds, and at least 2 seabird species forage
in association with tuna schools in greater numbers
than would be expected by chance alone. These obser-
vations are in line with previous observations on the
relative importance of skipjack to seabirds in Hawaiian
waters (Harrison & Seki 1987). The qualitative nature of
this relationship appears stable despite an oceano-
graphic regime shift and long-term climate change. De-
spite evidence that skipjack biomass is increasing on a
global scale (Sibert et al. 2006), localized depletion due
to heavy fishing and redistribution or declines in abun-
dance due to large-scale inter-annual and longer-term
oceanographic fluctuations (e.g. Lehodey et al. 1997,
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Karl et al. 2001, Polovina 2005) could reduce skipjack
abundance within the foraging range of seabirds, espe-
cially during the breeding season when these central-
place foragers are constrained to return to their
colonies. For instance, Boggs & Kikkawa (1993) docu-
mented a decline in the catch per unit effort of skipjack
tuna around Hawaii through the 1970s. Moreover,
ecosystem-level modeling has shown that substantial
increases in fishing pressure on yellowfin tuna could,
through a complex community-level response, lead to
a decline in skipjack abundance and an increase in
mahimahi (Hinke et al. 2004).

Our empirical observations and the modeling results
from Hinke et al. (2004) have important implications
for the development of ecosystem-level fishery prac-
tices that incorporate an understanding of the eco-
logical relationships and the consequences of oceano-
graphic variability and management actions. In par-
ticular, our research suggests that seabirds may not
readily switch to using other subsurface predators such
as mahimahi, in the event of redistributions or popula-
tion declines in skipjack tuna. Therefore, the heavy
reliance of seabirds on tuna may affect their ability to
successfully find prey and maintain healthy popula-
tions. Based on the particular characteristics of the
tuna schools and their prey, we anticipate that the
smaller-sized seabirds—shearwaters, terns, and nod-
dies—would experience reduced foraging opportuni-
ties. For this reason, we concur with the warning of
other authors (e.g. University of Alaska Sea Grant
College 1999, Yaffee 1999, Link 2002, Hinke et al.
2004, Worm et al. 2006) against the reliance on stock-
viability management as the sole driver of our fishery-
management policies. Instead, we advocate the adop-
tion of broader ecosystem-based management consid-
erations, including the ecological interactions between
the target and non-target species.
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