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INTRODUCTION

Aquaculture net cages for Pacific bluefin tuna
Thunnus orientalis are currently designed to with-
stand rough conditions from ocean currents and
waves (Suzuki et al. 2009) but do not meet the biolog-
ical requirements of this species. Because cultivated
tuna swim faster than other fishes, the shape, vol-
ume, and dimensions of these cages need to be ade-
quate to allow tuna to swim and turn, as it is likely
that the need to make sharp turns would stimulate

stress, reducing the quality of cultivated fish. There-
fore, scientific information is required to determine
the most suitable cage radius to allow circling fish to
turn along cage walls and to determine how tuna
swim in all 3 dimensions within the cages, particu-
larly since net cages are altered into various 3-
dimensional (3D) shapes by the tidal current (Suzuki
et al. 2009). Visualization of the 3D behavior of fish
provides data on their turning angle, the radius of the
swimming circle, and the space used by individuals
within the cage. However, to complete such an

© The authors 2013. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un -
restricted. Authors and original publication must be credited. 

Publisher: Inter-Research · www.int-res.com

*These authors contributed equally to this work
**Corresponding author. Email: tutakagi@nara.kindai.ac.jp

Three-dimensional trajectories of cultivated
Pacific bluefin tuna Thunnus orientalis in an

 aquaculture net cage

Kazuyoshi Komeyama1,*, Minoru Kadota2,3,*, Shinsuke Torisawa2, 
Tsutomu Takagi2,**

1Faculty of Fishery, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan
2Department of Fisheries, Faculty of Agriculture, Kinki University, 3327-204 Naka-machi, Nara 631-8505, Japan

3Temple University, 4-1-27 Mita, Minato-ku, Tokyo 109-0073, Japan

ABSTRACT: Swimming trajectories of aquatic animals that are estimated using the dead-
 reckoning technique below the sea surface tend to have very large associated observational
errors. Therefore, the aim of the present study was to develop a technique for removing accumu-
lated errors from such trajectories for Pacific bluefin tuna Thunnus orientalis. Horizontal and ver-
tical speeds and heading angle were measured in an aquaculture net cage using 2 types of data
loggers, and current velocity was recorded at a depth of 12 m to measure the tidal current speed
around the net cage. Fourier analysis indicated that the primary source of error in trajectory esti-
mates was the effect of ocean currents, which resulted in drift, and further analysis revealed that
the frequency contributing to drift was consistent with the low-frequency signal in a spectrum
analysis of horizontal speed. Therefore, a high-pass filter was applied to horizontal speed data to
remove any frequencies lower than the cut-off frequency (0.0015 Hz), following which these data
were back-transformed into a time domain that no longer included the drift effect caused by the
current. The reconstructed trajectories fit within the inner diameters of the net cage, indicating
that they were realistic. To confirm the validity of the resultant swimming trajectories, a flume
tank experiment was conducted, which demonstrated that the high-pass filter effectively removed
current drift from the estimated trajectory. Furthermore, since the method was estimated to have
a precision of approximately 0.20 m, it not only allows the 3-dimensional trajectories of circling
tuna to be estimated but can also be applied to the behavior of fish in the wild.
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analysis, new methods are needed to allow accurate
measurement of the 3D trajectories of bluefin tuna.

A complete understanding of fish behavior below
the sea surface remains elusive due to limitations of
the available technology for making indirect under-
water observations in both natural and enclosed
areas. Although some studies have described the be -
haviors of cultivated tuna in aquaculture net cages
(Kubo et al. 2004, Okano et al. 2006, Kadota et al.
2011), these have relied on measurements of 1D
swimming behavior, swimming depth, acceleration,
and/or feeding behavior.

Two techniques are currently available for examin-
ing the movements of aquatic animals below the sea
surface: acoustic telemetry (e.g. Hindell et al. 2002)
and dead reckoning (Wilson & Wilson 1988, Shiomi et
al. 2008, Komeyama et al. 2011). Acoustic telemetry
estimates the position of fish using acoustic transmit-
ters that measure the difference in time the emitted
sound takes to arrive at hydrophones (e.g. Harcourt
et al. 2000, Hindell et al. 2002, Bégout Anras & La-
gardère 2004). This method has several drawbacks,
including that a receiver must be located within a few
hundred meters of the target fish, making it difficult
to obtain data for species with extensive ranges (Wil-
son et al. 2007); it is difficult to affix acoustic receivers
in offshore areas; ocean waves and oscillations of
the hydro phones by waves generate acoustic noise;
changes in water temperature in the thermocline
strongly affect the acoustic velocity; also, it is difficult
to continuously detect the signal at a fine scale (i.e. a
few seconds) to estimate high-resolution fish trajecto-
ries. Thus, although acoustic telemetry has the ad-
vantage of directly measuring the position of fish, it
may be difficult to measure fish behavior with a high
accuracy and over a fine time scale in offshore areas.

The dead-reckoning technique overcomes these
problems by using a very simple principle. Specifi-
cally, it requires data on a target’s speed, heading
angle, and depth change per given interval; velocity
vectors are then calculated and estimated indirectly
based on an observational dataset, following which
3D trajectories can be constructed. Thus, dead reck-
oning produces temporally resolved, regular, se -
quen tial positional data with no gaps (Wilson et al.
2002). However, this method also has drawbacks in
that the trajectories include cumulative error from
multiple sources. Some of this error is associated with
the lack of underwater reference points, but the
greatest source of inaccuracy originates from drift
resulting from factors such as ocean currents and
winds (Bramanti et al. 1988, Mitani et al. 2003,
Shiomi et al. 2008, Komeyama et al. 2011), and since

a trajectory is estimated by integrating velocity vec-
tors, this inaccuracy increases with time.

Komeyama et al. (2011) measured the 3D trajecto-
ries of bluefin tuna in a submerged aquaculture net
cage and used linear detrending to remove accumu-
lated error from the reconstructed trajectories. How-
ever, the details of the trajectories were inadequate,
and so only limited information could be estimated
because almost all of the reconstructed trajectories
drifted nonlinearly. In addition, there were no clear
grounds for detrending the linear component from
the nonlinear drift, leaving room for improvement.

In the present study, we assessed the potential
sources of drift error due to ocean currents and
developed a new technique for removing this error to
allow for a more accurate visualization of the trajec-
tories of circling cultivated bluefin tuna in an aqua-
culture net cage. To do this, we reanalyzed the be -
havioral data described by Komeyama et al. (2011),
to allow direct comparison with their results. We
attempted to reconstruct the 3D trajectories of tuna,
which were calculated using a high-pass filter me -
thod, and then confirmed the validity of the method
by conducting an experiment in a large flume tank.

MATERIALS AND METHODS

In the present study, we carefully analyzed the
time series of ocean current data that were collected
in an experimental net cage by Komeyama et al.
(2011), using a high-pass filter to remove the drift sig-
nal (which decreases slowly). To test the validity of
using this high-pass filter method within the dead-
reckoning technique, we confirmed the calculated
trajectories using both a field and laboratory experi-
ment.

Formulation of the dead-reckoning technique

The dead-reckoning technique was used to visual-
ize the swimming paths of a single tuna in an aqua-
culture net cage. Velocity vectors were estimated
based on speed (v), heading angle (θ), and change in
depth (d) per measurement interval (t) using the fol-
lowing formulae:

(1)

(2)

(3)

v v vx t z tt t
= − ⋅ θcos2 2

v v vx t z tt t
= − ⋅ θsin2 2

v d dz t tt
= − −1
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where Δt = 1 corresponds to the measurement inter-
val, and the vector (vxt, vy, vzt) is a locomotion vector
at measurement time t. The 3D swimming path
could then be reconstructed from the observational
dataset by integrating the locomotion vector with
respect to time (i.e. summing Eqs. 1 to 3) to give the
following:

(4)

(5)

(6)

However, the horizontal swimming paths obtained
using Eqs. (4) and (5) include large cumulative
errors (Shiomi et al. 2008, Komeyama et al. 2011),
mostly due to the horizontal ocean current. By con-
trast, the vertical swimming path given by Eq. (6)
includes less cumulative error because the magni-
tude of vertical currents is much lower than that of
the horizontal current. Therefore, Eqs. (4) and (5)
were decomposed into 3 terms (the tuna-location
term, the current-drift term (cd), and the accumula-
tion of error term) and then solved for tuna location.
Thus, the tuna location at measurement time t can
be written as follows:

(7)

(8)

where xε,t and yε,t represent observational errors, and
xu and yu represent errors associated with horizontal
current velocities (u). Thus, the net errors can be
expressed as follows:

(9)

(10)

To correct the estimated positional data, the net
errors of Eqs. (9) and (10) were then removed by
assuming constant linear drift. However, positions
estimated in this way accumulate error with time and
become more inaccurate simply because the ocean
current is not at all constant. Therefore, we required
alternative techniques that do not assume constant
current velocities to remove errors associated with
ocean currents.

Removing low-frequency drift

The summed observational data calculated using
Eqs. (4) & (5) include low-frequency drift, likely as a
result of physical noise, the major cause of which is
the ocean current (corresponding to the second terms
in Eqs. 7 & 8). If these biases due to physical noise are
not accounted for, they invalidate events related to
the biological signals of interest and substantially
decrease the power of the statistical analysis. There-
fore, the removal of low-frequency drift is one of the
most important steps in reconstructing 3D fish trajec-
tories. Unfortunately, this pre-processing step is also
one of the most dangerous steps because the biologi-
cal signal of interest may easily be removed if incor-
rect filters are applied. To test the developed equa-
tions and data treatment, in situ measurements were
required.

Reconstructing swimming trajectories in a net cage

We conducted an experiment in a submerged net
cage installed in offshore waters of Kochi Prefecture,
Japan, to reanalyze the data of Komeyama et al.
(2011). The diameter of the cage was 30 m, and the
net was completely submerged, with the ceiling lo -
cated at a depth of 2 m and the floor at ~22 m below
the surface.

A single bluefin tuna (fork length: 51 cm; estimated
weight: 2.6 kg taken from a regression line fit to
tuna-farm records) was captured from within the
cage by angling. Two micro-data loggers (PD3GT,
Little Leonardo, 75 g in air; DST Comp-Tilt, Star-
Oddi, 19 g in air) that had been inserted into a single
floating cellular material plate (9 cm long and 3.5 cm
high), the buoyancy of which had been adjusted to
slightly more than its underwater weight, were exter-
nally attached to the body of the tuna near the second
dorsal fin (Komeyamaet al. 2011). The fish was then
released back into the net cage.

The PD3GT data logger recorded swimming speed
and depth at 1 s intervals on a flash memory drive
from 09:30 h on 6 March to 17:30 h on 7 March 2010.
A propeller was attached to the PD3GT to record the
speed through the water, and we confirmed the rela-
tionship between velocity and the number of pro-
peller revolutions as well as the stall speed of the
device (0.13 to 0.18 m s−1) in a preliminary experi-
ment. In the study itself, the tagged fish swam at
speeds of >0.28 m s−1 without the propeller stopping.

The DST Comp-Tilt data logger recorded the head-
ing of the fish, which was calculated using 2D geo-
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magnetism at 1 s intervals. Due to the logger’s limited
memory capacity, data from the DST Comp-Tilt were
divided into 4 phases of daily activity: dawn, 05:00−
07:00 h; daytime, 11:30−12:30 h; dusk, 17:00−19:00 h;
and night-time, 23:30−24:30 h. A summary of the
depths and turning angles of the tagged fish during
each phase is presented in Table 1. Initially, we
hypo thesized that rotation of the propeller on the
PD3GT data logger would influence these measure-
ments, as the rotation speed of the propeller was
transmitted through magnetic variation caused by a
magnet attached to the propeller shaft. However, our
preliminary experiment detected no significant influ-
ence of this on compass measurements. The data log-
gers were detached from the fish using a timing
device and were collected by a diver after 3 d.

To monitor the current profile in the net cage, an
electromagnetic current meter (Infinity-EM; JFE
Advantec) was affixed to the outside of the net cage
at a depth of 12 m from 14:30 h on 5 March until
10:00 h on 12 March 2010. The meter recorded the
current speed and direction, which were calculated
from the 2D velocities at 5 min intervals. To estimate
current velocities, 30 samples were taken at 1 s inter-
vals every 5 min.

To validate the swimming trajectories calculated in
the present study, we examined whether the trajecto-
ries fit into the aquaculture net cage. We chose the

origin (0, 0, depth) as the starting point of a trajectory.
Since the net cage had a bowl-like shape, with a
maximum diameter of 30 m near the frame on top of
the cage but a gradually decreasing dia meter with
in creasing depth due to the nets being pulled by the
sinker, it was difficult to obtain data on the diameter
of the cage at each depth. Therefore, we estimated
this factor using Net geometry and Loading Analysis
(NaLA) software (Takagi et al. 2002, Suzuki et al.
2009), which numerically estimated the geometry
and internal forces acting on the net and rigging.

Reconstructing trajectories in a flume tank

To test the validity of our technique, we also con-
ducted experiments in a flume tank filled with fresh-
water (Fig. 1). The channel dimensions of the ob -
served area of the flume tank were 6.0 m length ×
2.0 m width × 1.0 m depth, and the speeds of the car-
riages were 0 and 0.1 m s−1. We set the PD3GT and
DST Comp-Tilt data loggers at the tip of the rod that
lay vertically below the edge of a vinyl chloride disk
(diameter: 1.8 m), which completed a lap over ~20 s
at 0 m s−1 or 0.1 m s−1. After downloading measure-
ment data from these data loggers, both trajectories
were reconstructed.

RESULTS AND DISCUSSION

Reconstructing swimming trajectories in
a net cage

Fourier analysis of the locomotion vector

We conducted a Fourier analysis of the loco-
motion vector denoted in Eqs. (7) & (8) to deter-
mine the strengths of the respective frequencies
of the swimming motion in the data. The power
spectra of the x-directional (horizontal) compo-
nent of the locomotion vector xt was obtained
by integrating the velocities ob served over 1 h
between 23:30 and 00:30 h (Fig. 2a). Two signif-
icant peaks ap peared in the power spectrum,
with the higher-frequency peak (0.0134 Hz)
corresponding to a periodicity of 74 s, which
equaled the time needed for a tuna to swim 1
circumference of the net cage. The second fre-
quency peak (0.0008 Hz) was thought to be the
dominant frequency contributing to drift, but it
was not clear which frequency should be used
as a cut-off to remove the drift error from the
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Phase                 n               Depth (m)                  Turning angle
(h of day)                                                                (degree s−1) 
                                     Q1        Q2        Q3         Q1      Q2       Q3

11:30−12:30    3600   16.36    18.99    20.55        6        13        22
17:00−19:00    7200   17.82    19.04    19.97        6        12        22
23:30−00:30    3600   13.91    15.43    16.65        5        12        23
05:00−07:00    7200   12.60    14.35    16.60        7        16        35

Table 1. Number of sample, depth, and turning angle of a tagged
tuna during each phase. Q1, Q2, and Q3 mean 25, 50, and 75% 

quartiles, respectively

1 
m Flow (0 or 0.1 m s–1) Data logger package

6 m

2 
m

Dia. 1.8 m

Fig. 1. Schematic illustration of the flume tank experiment
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data. Therefore, we conducted a more thorough
ana lysis of the ocean current.

Fourier analysis of the ocean current

We conducted a Fourier analysis on the time series
of ocean current data to estimate which frequency
contributed to drift. The power spectra of the ocean
current at a depth of 12 m within the net cage were
calculated over 6 d, including the day on which the
experiment was conducted (Fig. 2b). Although the
dataset was not large, our analysis resolved the tidal
signatures, with significant peaks at ~24.4 h and

11.5 h and smaller significant peaks
at 7.5 h. These spectral peaks were
consistent with results reported by
Stockwell et al. (2004), who used data
from >19 000 monthly time series
taken from 262 data buoy sites and
also discovered peaks at 24, 12, and
8 h along the frequency spectrum.
Thus, our analysis suggested that
most of the ocean current power
spectrum at a depth of 12 m was asso-
ciated with the tidal signal, allowing
us to remove the frequency that con-
tributed a major portion of the drift by
choosing cut-off values of <8 h. It
should also be noted that ocean cur-
rents fluctuate over short periods, but
this high-frequency fluctuation was
ignored as noise for the purpose of
reconstructing the 3D tuna trajecto-
ries in the present study, as we were
only concerned with a time scale of a
few minutes to a few hours. Thus, we
calculated the energy that was con-
centrated at a frequency greater than
0.00021 Hz (the fourth peak in
Fig. 2a) and found that 31% of the
ocean current energy occurred at
these higher frequencies. This fluctu-
ation in ocean current energy needed
to be removed from our observational
data; therefore, we reanalyzed the
data used by Komeyama et al. (2011)
from a frequency perspective and
considered the role of high frequen-
cies to select an appropriate cut-off
frequency.

Reconstructed 3D trajectories and their validity

When reconstructing the 3D swimming paths of
bluefin tuna, Komeyama et al. (2011) assumed a con-
stant linear drift over time and thus subtracted drift
error by means of the least-squares fit. However, ex -
ternal effects such as ocean currents vary over time,
invalidating the linear drift assumption and leading to
large errors in the calculated swimming paths. There-
fore, we compared the linear drift and high-pass filter
methods and evaluated the nonlinear components of
the drift error from a frequency perspective.

Given the highly linear relationship between the
x-component of the locomotion vector and time
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(Fig. 3a), Komeyama et al. (2011) fit a linear trend to
the data and removed the accumulated error to give
a corrected swimming path (red line in Fig. 3b). The
blue line is the x-component of the locomotion vector
that was removed by the high-pass filter with a cut-
off frequency of 0.00021 (Fig. 3b). Neither of these
methods gave trajectories that fit within the diameter
of the cage (maximum 30 m), as the maximum and
minimum values for both methods were greater than
15 m and less than −15 m, respectively. This sug-
gested that a nonlinear effect due to a higher fre-
quency range (>0.00021 Hz) needed to be removed
to reduce the amplitude of the trajectories. There-
fore, we estimated the appropriate cut-off values
based on the above analysis and used a high-pass fil-
ter to remove all frequencies contributing to drift in
the observational data.

We conducted a Fourier analysis to estimate which
frequencies potentially contributed to drift. All fre-
quencies less than 0.0015 Hz were removed by a

high-pass filter designed in the MATLAB Signal Pro-
cessing Toolbox. The resultant data were then back-
transformed into the time domain. The low-fre-
quency (<0.0015 Hz) part of the x-component of the
locomotion vector was removed by the high-pass fil-
ter, and the filter successfully removed drift from the
data (Fig. 3b). Therefore, we applied the same filter
to all of the observational data, removing any drift
due to low-frequency movement. The amplitude of
the x-component of the 3D trajectory derived using
this method did not exceed the radius of the net cage
(Fig. 3).

We reconstructed trajectories for night-time data
(Fig. 4). We chose the origin as the starting point of
each trajectory, but any point could have been
selected without affecting the shape of the trajectory,
swimming speed, or heading of the fish (although the
distance between the fish and the cage wall may
have changed). The calculated trajectories fit within
the maximum diameter (30 m) of the net cage. We

then calculated the trajectories for
other time periods (dawn, daytime,
and dusk) in the same manner as the
reconstructed trajectories and found
that they also fit within the maximum
diameter of the net cage (Fig. 5a). For
example, trajectories that repre-
sented the tuna swimming between
the middle and the bottom of the cage
during the daytime (Table 1) fit within
the diameter of the net cage at each
depth (Fig. 5b). Although partial tra-
jectories that extended beyond the
cage were observed, these could be
ex plained by observational error in
Eqs. (7) & (8). Thus, the modified
 trajectories represent more realistic
 estimates than those presented by
Komeyama et al. (2011) (Figs. 4 & 5).

Reconstructing trajectories in a
flume tank

To validate the high-pass filter
method, we conducted a Fourier ana -
lysis to estimate which frequencies
potentially contributed to drift and,
be cause the disk was rotating at ~0.04
to 0.05 Hz, re moved all frequencies
less than 0.03 Hz using the high-pass
filter method described for the field
experiment. The data were then
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back-transformed into the time domain. We removed
the steady flow along with the long-term trend using
a high-pass filter (Fig. 6). The filtered trajectories
were not perfect circles but did approximate the
shape of a circle. Therefore, we calculated the curva-
ture radius of the estimated trajectories using 3
points along each trajectory, which gave radii of 0.80
± 0.17 m and 0.87 ± 0.16 m (mean ± SD) for the 0 m s−1

and 0.1 m s−1 conditions, respectively. The resulting
SDs of 0.16 and 0.17 m suggested that the precision
of this method was ~0.20 m. The curvature radii of
the 2 trajectories were similar to but lower than 0.90
m, which is the radius of both true trajectories. This
underestimate may have been due to the response of
the x- and y-components having been slightly
decreased during filtering. However, Hiraishi (2006)
also reported that the propeller rotation sensitivity of

this device decreases drastically with
increasing angle of the incoming
water, which approaches a tilt of ~20°.
In this flume tank experiment, the
inclination angle of the propeller in
relation to the water flow direction
changed by 16° s−1 when the lap time
was 20 s; thus, the propeller rotation
may have been less sensitive to a
change in the direction of movement
due to water flowing over it at this
inclined angle. This implies that if a
fish turns at a low curvature radius,
the dead-reckoning technique using a
propeller with attached data loggers
may underestimate the diameter of
the trajectory. Turning angles greater
than the 75% quartile had less of an
effect on trajectories in the flume tank
ex periment than in the field experi-
ment (Table 1). However, although
turning angles of >20° occurred a few
times in the field experiment, espe-
cially during the period 05:00 to 07:00 h,
the trajectories calculated in this ex -
periment most likely represented the
correct path. Thus, even though the
present method may generate some
under estimations because the shapes
of the filtered trajectories were bro-
ken rather than circular (Fig. 6), this is
un doubtedly the best currently avail-
able method for estimating 3D trajec-
tories.

CONCLUSIONS

Swimming speed measurements taken by the
PD3GT data logger represent speed through the
water rather than relative to the ground, making
them subject to tidal effects, and the drift trajectory
results shown in Fig. 3 imply that the dead-reckoning
technique cannot accurately estimate swimming tra-
jectories where there are ocean/tidal currents. Shi -
omi et al. (2008) applied a dead-reckoning technique
similar to the PD3GT used in the present study to
reconstruct the 3D trajectories of emperor penguins
Aptenodytes forsteri and suggested that the ac cumu -
lated error was the result of ocean currents, and
Mitani et al. (2003) also recognized the influence of
current flow when calculating trajectories. However,
although these studies provided clear start and end
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Fig. 4. Night-time (23:30 to 0:30 h) trajectories as reconstructed by the
 methods proposed in the present study. Colors of the trajectories indicate 
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points for the trajectories of animals, the recon-
structed end points were not consistent with the
actual end points.

In the present study, the fish was in the net cage
throughout the observational period. However, in the
previous study of Komeyama et al. (2011), the fish ap -
peared to move outside the net cage, despite calm
current conditions, making it difficult to determine
the exact path taken by the fish because the location
would have been influenced by tidal currents. Previ-
ous studies have attempted to remove such effects by
assuming a linear accumulation of errors; however,
although this corrected a portion of the trajectory
error, it did not completely remove temporal changes
in the tidal component. Moreover, the current can
change in 3 dimensions, making it difficult to meas-
ure current velocities. By contrast, the high-pass
 filter method used in the present study was effective
at removing accumulated error even when there
were 3D changes in tidal flow, and the results of the
flume tank experiment further indicated the useful-
ness of this method for removing the tidal component
and accumulated error. However, the response of the
filter was extremely low near the start and end points
due to the filter’s characteristics. Further research is
required to determine how to best overcome this
problem (e.g. by excluding the first and last portions

of the trajectory from the analysis).
However, the methods presented here
generated sufficiently accurate trajec-
tories to analyze the turning perform-
ance and space use of the net cage by
cultivated fish.

By analyzing the frequency of the
circling fish in combination with time-
series data for current velocity, we de -
termined the 3D trajectories of a blue -
fin tuna circling within a submerged
aquaculture net cage more ac curately
than has been accomplished in previ-
ous studies. The corrected paths help
to determine the swimming speed,
inclination of the circle, and swim-
ming depth at which fish swim (Fig. 4),
providing useful information regard-
ing the use of space by cultivated fish
in aquaculture net cages. Given that
no monitoring techniques currently
exist for cultivated tuna, we were not
able to assess whether a causal rela-
tionship exists between fish mortality
and reduced living space. However,
we believe that visualization of the

trajectories of circling fish using the methods devel-
oped in the present study will help increase the effi-
ciency of bluefin tuna cultivation by contributing to
future behavioral studies investigating how fish turn
at cage walls (Bégout Anras & Lagardère 2004, Gau-
trais et al. 2009) and the movement of fish schools in
outdoor cages.

The distance at which tagged fish swim from the
wall of a net cage remains poorly understood, but we
could improve our knowledge of this factor by deter-
mining the location of a fish within the cage or as -
sess ing the distance of fish trajectories from the wall.
To effectively use the method proposed in the pres-
ent study to do this, several pass points of trajectories
should be measured to ensure they are correctly
located and mimic the absolute coordinates.

Application of the proposed method may be lim-
ited to circling fish in aquaculture, as additional
challenges will be met when measuring trajectories
of free-ranging aquatic animals in the open sea.
However, exact trajectories in the open sea could
potentially be estimated if one could remove any
drift components that fluctuate periodically, such as
tides. Alternatively, if noise sources cannot be iden-
tified, acoustic telemetry could be used to detect
fish positions within estimated trajectories in the
open sea.
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Fig. 6. Results of the flume tank experiment. (a) Water stop, (b) steady flow
(10 cm s–1). Black lines = reconstructed trajectories; blue lines = corrected
 trajectories from which accumulated error had been removed using the 

high-pass filter method
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