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ABSTRACT: Bacterioplankton have the potential to significantly affect the cycling of organic matter
in the ocean; however, little is known about the linkage between bacterial assemblage structure and
carbon metabolism. In this study, we investigated whether changes in the phylogenetic composition
of bacterioplankton were associated with changes in bacterial carbon processing (bacterial produc-
tion, respiration and biomass) in the subtropical NE Atlantic Ocean. We found consistent differences
in the composition of the bacterial assemblage, as revealed by denaturing gradient gel electrophore-
sis (DGGE) and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), along
a gradient from the NW African upwelling to the oligotrophic North Atlantic Subtropical Gyre. The
percent contribution of Bacteroidetes, Roseobacter and Gammaproteobacteria significantly increased
towards more productive waters, whereas the SAR11 clade of the Alphaproteobacteria remained rel-
atively constant (average 28 % of DAPI-stained cells) throughout the area. Changes in the composi-
tion of the bacterial assemblage detected by DGGE were weakly but significantly correlated with
changes in carbon processing variables. The abundances of Roseobacter and Gammaproteobacteria
were highly correlated with the concentration of particulate organic carbon and chlorophyll a,
reflecting the affinity of these groups to nutrient-enriched conditions. The abundance of Roseobacter
was also positively correlated with heterotrophic bacterial production, suggesting their active partic-
ipation in carbon processing.
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INTRODUCTION

Much effort has been devoted in marine microbial
ecology to determining the role of bacterioplankton in
the flux of carbon in the ocean, resulting in a good
knowledge of the spatial variability of bacterial activity
(e.g. Ducklow & Carlson 1992, Ducklow 2000). The
advent of molecular biological techniques in the late
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1980s allowed the examination of the diversity of
prokaryotes in oceanic waters and the identification of
abundant bacterial groups in the sea (Giovanonni &
Rappé 2000). However, we still lack knowledge about
the spatial distribution of dominant prokaryotes at both
large and small scales in the ocean (but see Suzuki et al.
2001 and Zubkov et al. 2002) and, more importantly, we
largely ignore their in situ phenotypic characteristics.
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Martinez et al. (1996) found that marine bacterial
isolates showed different metabolic and enzymatic
properties, suggesting that phylogenetic diversity may
be a critical factor to consider when analyzing spatial
and temporal patterns of bacterial activity. Experimen-
tal studies have subsequently shown that shifts in the
composition of marine bacterial assemblages can be
associated with changes in bacterial growth and activ-
ity rates (Pinhassi et al. 1999, Riemann et al. 2000,
Kirchman et al. 2004). However, the biogeochemical
implications of the phylogenetic diversity of marine
bacterial assemblages are poorly understood, because
few studies have simultaneously compared in situ bac-
terial assemblage structure with carbon processing,
particularly in oceanic open waters (but see Reinthaler
et al. 2005, Winter et al. 2005).

Here, we examined the relationship between bacte-
rial assemblage structure, environmental, and carbon
metabolism parameters throughout an oceanic transi-
tion zone (bottom depth > 1000 m) between the North
Atlantic Subtropical Gyre and the NW African
upwelling. Upwelling areas are characterized by a
major input of inorganic nutrients, which leads to
increased phytoplankton productivity and bacterial
heterotrophic production (e.g. Cuevas et al. 2004). In
our sampling area, the Cape Blanc upwelling waters
also showed higher bacterial abundance and produc-
tion than did the oligotrophic stations (Alonso-Séez et
al. 2007). In this study, we determined whether
changes in bacterial assemblage composition are asso-
ciated with the observed changes in bacterial carbon
dynamics, and whether particular communities could
be associated with particular patterns of bacterial car-
bon processing. The effects of the underlying environ-
mental variables on bacterial assemblage structure
and carbon metabolism were also investigated.

MATERIALS AND METHODS

Location and sampling. The study was conducted
along 2 transects from NW African coastal waters to
open waters of the North Atlantic Subtropical Gyre
(Fig. 1) during a cruise on board ‘BIO-Hespérides'
(COCA-II: 20 May to 10 June 2003). Water was col-
lected from the surface (5 m depth) at 10 stations, and
temperature, salinity and fluorescence were also
recorded using a CTD system (Mark III-IOC) mounted
on a General Oceanic rosette sampler equipped with
twenty-four 12 1 Niskin bottles.

Basic data. The samples (250 ml) were filtered
through Whatman GF/F filters to determine the chloro-
phyll a (chl a) concentration. The filters were homo-
genized and kept refrigerated in the dark and pig-
ments extracted in 90% acetone for ca. 1 h.
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Fig. 1. Location of sampling area and stations in the NE
Atlantic. Different areas are characterized according to
hydrographical data (Alonso-Séez et al. 2007)

Fluorescence of the extracts was measured in a Turner
Designs fluorometer. Samples (2 1) for particulate
organic carbon (POC) were filtered through com-
busted (450°C, 12 h) 25 mm Whatman GF/F filters. The
filters were wrapped in combusted aluminum foil and
frozen at -20°C. In the laboratory, the filters were dried
overnight at 65°C in a desiccator with HCI fumes to
remove carbonates, and finally dried overnight in a
desiccator with silica gel. Previous to analysis, samples
were packed into ultra-clean tin disks. The carbon
analyses were performed on a Perkin Elmer-2400 CHN
elemental analyzer according to the Joint Global
Ocean Flux Study (JGOFS) protocol (UNESCO 1994).
Dissolved inorganic nutrients (nitrate and phosphate)
were measured on an autoanalyzer using standard
colorimetric methods (Hansen & Koroleff 1999).
Denaturing gradient gel electrophoresis (DGGE).
Surface microbial biomass was collected by sequen-
tially filtering around 2 1 of seawater through a 3 pm
polycarbonate filter (Poretics, 47 mm) and a 0.2 pm
polycarbonate filter (Poretics, 47 mm) under gentle
pressure. We used these last filters for the analysis. The
filters were stored in cryovials filled with 1.8 ml of lysis
buffer (50 mM Tris-HCI pH 8.3, 40 mM EDTA pH 8.0,
0.75 M sucrose) and kept at —80°C. Microbial biomass
was treated with lysozyme, proteinase K and sodium
dodecyl sulfate (SDS), and the nucleic acids were
extracted with phenol and concentrated in a Centri-
con-100 (Millipore) as described by Schauer et al.
(2000). DGGE and gel analysis were essentially per-
formed as described previously (Schauer et al. 2000).
Briefly, 16S rRNA gene fragments (around 550 bp in
length) were amplified by PCR, using the universal
primer 907 rm and the bacterial-specific primer 358f,
with a GC-clamp. The PCR products were loaded on a
6 % polyacrylamide gel with a DNA-denaturant gradi-
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ent ranging from 40 to 80 %. The gel was run at 100 V
at 60°C for 16 h in 1x TAE (Tris-Acetate-EDTA) run-
ning buffer. DGGE gel images were analyzed using
the Diversity Database software (BIO-RAD).

Catalyzed Reporter Deposition-Fluorescence In
Situ Hybridization (CARD-FISH). Samples were fixed
with formaldehyde (3.6% final concentration, over-
night at 4°C), filtered and stored at —20°C until process-
ing using the protocol of Pernthaler et al. (2004). Filters
were embedded in agarose (0.1 % wt/vol) and perme-
abilized at 37°C with lysozyme (10 mg ml™%; 0.05 M
EDTA, 0.1 M Tris-HCI; Fluka) for 60 min and achro-
mopeptidase (60 Uml™}; 0.01 M NaCl, 0.01 M Tris-HCI,
pH 7.6; SIGMA) for 30 min. For the hybridization (35°C,
overnight), 3 pl of horseradish peroxidase (HRP)-
labeled probe working solution (50 ng ul™!, www.bio-
mers.net) were added to 900 pl of hybridization buffer
(HB; 0.9M NacCl, 20 mM Tris-HCI,10 % dextran sulfate
wt/vol, 0.02 % SDS, and 1 % blocking reagent) contain-
ing the following percentages of formamide: 55 % for
Eubl-III (mixture of probes Eub338, Eub II, and Eub III;
Amann et al. 1990, Daims et al. 1999), Ros537 (Eilers et
al. 2001), Gam42a and CF319a (Amann et al. 1990), and
20 % for Eury806 (Teira et al. 2004), Cren554 (Massana
et al. 1997) and Non338 (Wallner et al. 1993). A higher
concentration of probe (9 pl in 900 pl HB, 45% for-
mamide) was used to detect the cells with SAR11-441R
(Morris et al. 2002) and Alf968 (Neef 1997) probes.
Probe Gam42a was used with a Bet42a competitor
oligonucleotide (Manz et al. 1992). Results of hybridiza-
tion with the probe Non338 (negative control) never ex-
ceeded 1% of DAPI counts, and were not subtracted
from the CARD-FISH counts. Filters were washed for 5
min (37°C) in pre-warmed washing buffer and subse-
quently incubated for 15 min at 46°C in 1 ml of amplifi-
cation buffer with 4 pl of tyramide-alexa 488 (1 mg ml ™)
containing p-iodophenylboronic acid (20 mg per 1 mg
tyramide). Finally, filter sections were mounted in a 4:1
Citifluor-Vecta Shield mixture containing 4'-6'-di-
amidino-2-phelylindole (DAPI; final concentration 1 pg
ml!) and visualized in a Nikon epifluorescence micro-
scope. Between 500 and 1000 DAPI-stained cells were
counted per sample in a minimum of 10 fields.

Flow cytometry. Prokaryotic abundance and the
percentage of high nucleic acid (HNA) cells were mea-
sured by flow cytometry (Gasol & del Giorgio 2000).
Samples were run in a Becton and Dickinson FAC-
SCalibur cytometer after staining with Syto13 (2.5 pM,
Molecular Probes). Prokaryotes were detected by their
signature in a plot of side scatter (SSC) vs. FL1 (green
fluorescence). Regions were established on the SSC vs.
green fluorescence plot in order to discriminate cells
with HNA content from cells with low nucleic acid
(LNA) content. The cell abundance was determined for
each subgroup. Prokaryotic biomass was calculated

from abundance assuming a conservative carbon con-
tent of 12 fg C cell! (Fukuda et al. 1998).

Bacterial carbon processing and enrichment ex-
periments. Details of the methodology used to deter-
mine bacterial carbon flux in the area are presented
elsewhere (Alonso-Séez et al. 2007). Briefly, bacterial
heterotrophic production (BHP) was estimated from the
incorporation of *H-leucine (Leu, protein biosynthesis)
and thymidine (TdR, DNA biosynthesis). Both tracers
were used at 40 nM (final concentration) in incubations
of 2to 4 h. The samples were processed by the centrifu-
gation method of Smith & Azam (1992). Carbon-to-Leu
empirical conversion factors (eCFs) were experimen-
tally determined from dilution cultures at each station
and calculated following the cumulative method
(Bjornsen & Kuparinen 1991). Bacterial respiration (BR)
measurements were made following the decrease in
dissolved oxygen in the bacterial fraction in 24 h incu-
bations by Winkler titrations, based on colorimetric
end-point detection. We assumed a respiratory quotient
of 0.88 (Williams & del Giorgio 2005). Finally, the ef-
fects of organic (glucose and acetate; 1 ptM each) and/or
inorganic (nitrate, ammonium and phosphate; 0.5 ptM
each) enrichments on BHP were studied in surface
samples from all stations (except Stn 2). BHP was mea-
sured 24 to 48 h after the nutrient addition and was
compared with 2 unamended controls. We accepted a
positive response to the enrichment over the control
when BHP increased by a factor of >2 in the nutrient
amended treatments.

Statistical analysis. A matrix was constructed for all
DGGE lanes, taking into account the relative contribu-
tion of each band (in %) to the total intensity of the lane.
Based on this matrix, we obtained a dendrogram using
Ward's clustering method (Ward 1963; euclidean dis-
tances, Statistica 6.0), and ordinations by non-metric
multidimensional scaling (nMDS; Kruskal & Wish 1978,
Clarke & Green 1988) and principal component analy-
sis (PCA; Chatfield & Collins 1980). nMDS is a non-
parametric procedure that uses ranks of the similarities
between samples to construct a map in which the posi-
tions of the samples reflect as closely as possible the
dissimilarities among them. For this analysis, all DGGE
bands were included (Bray-Curtis similarity index,
Primer version 5). PCA reduces the complexity of multi-
variate data, creating new linear variables that encom-
pass most of the variability in the original data. This
analysis was performed taking into account only the
more significant bands (those appearing in more than 2
samples and with a relative intensity of >5 %), in order
to reduce the number of variables used in the analysis
(Statistica version 6.0). A PCA performed with the total
number of bands resulted in a nearly identical ordina-
tion of the samples. For nMDS and PCA analyses,
DGGE band percentages were arcsine transformed.
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The associations among environmental factors, bac-
terial assemblage structure (DGGE band pattern), and
carbon metabolism parameters were analyzed by the
RELATE routine of Primer software (version 5, Clarke
& Warwick 1994). This routine performs correlations of
similarity matrices in a procedure similar to a Mantel
test (Mantel 1967), except that the correlation is not the
standard product-moment Pearson correlation (of a
standard Mantel test) but rather Spearman’s non-para-
metric rank correlation (rho). The statistical signifi-
cance of the coefficient rho was obtained by a simple
permutation test (999 permutations). Correlations
were performed between 3 similarity matrices, which
were constructed based on (1) DGGE banding patterns
(arcsine transformed), (2) abiotic data (temperature,
salinity, chl a, phosphate and nitrate concentrations;
log-transformed), and (3) carbon processing variables
(BHP measured by Leu uptake using eCFs, BHP mea-
sured by TdR uptake rates using a standard conversion
factor of 23 kg C mol TdR!, bacterial respiration, and
bacteria biomass; log-transformed, data shown in
Table 1). Bray-Curtis similarities (for DGGE band pat-
terns) and euclidean distances (for environmental and
carbon metabolism data) were used to construct the
similarity matrices (Primer version 5).

RESULTS

We visited 10 stations distributed along a northern
(26°N) and southern (21°N) transect in the NE Atlantic
Ocean (Fig. 1). The northern transect extended off-
shore from the boundary of the NW African coastal
upwelling. An upwelling filament affected the station
closest to the coast (Stn 2). Stns 8 and 14 were located
in the coastal transition zone, and Stns 22 and 32

exhibited oceanic characteristics. The southern tran-
sect extended from the Cape Blanc coastal upwelling
waters to the open ocean, crossing the Cape Vert
Frontal Zone (CVFZ). The influence of upwelling
waters reached as far as Stn 52, which was the limit
between the upwelling area and oceanic waters. Fur-
ther details on the hydrography of the stations are
presented elsewhere (Alonso-Séez et al. 2007).

DGGE analysis of the samples yielded a total of 40
unique bands with a mean (+SD) of 18 + 2 bands per
sample and little variation among stations (range 15 to
22 bands, Fig. 2). Analysis of the DGGE fingerprints
(Ward's clustering method) revealed a separation
between the stations affected by upwelling waters
(Stns 2, 52, 60 and 66) and the offshore stations (Fig. 2).
The dendrogram showed further separation of the off-
shore stations into 2 clusters: (1) southern transect sta-
tions (Stns 42, 48) and (2) northern transect stations
(Stns 8, 14, 22, 32). A dendrogram of the DGGE band
profile matrix constructed using the UPGMA method
maintained the same general structure with the excep-
tion of Stn 8, which appeared as an ungrouped branch
within the offshore cluster (image not shown).

The ordination of stations by nMDS and PCA, based
on the DGGE band patterns, agreed with the cluster-
ing results. A separation of the upwelling area from
offshore stations was clearly identifiable, as was a sep-
aration of the south transect from the offshore stations
of the north transect (Fig. 3). PCA simplified the DGGE
band patterning into 3 new linear variables that
encompassed most of the variability in the original
data (71 % of total variance). The first 3 principal com-
ponents (PCs) of bacterial assemblage structure were
correlated with several environmental or bacterial car-
bon processing variables. The first principal compo-
nent (PC1, 43 % of total variance) was correlated with

Table 1. Summary of diagnostic results of BHP limitation experiments, % of HNA cells, and data included in the carbon meta-

bolism PCA. BBM: bacterial biomass; BHP1: bacterial heterotrophic production measured by Leu uptake, using eCFs; BHP2:

BHP measured by TdR uptake using a theoretical conversion factor of 23 kg C mol TdR™!; BR: bacterial respiration: NT: northern

transect offshore; UPW: upwelling zone; ST: southern transect offshore. These data are presented and discussed in a separate
study (Alonso-Saez et al. 2007)

Zone Stn BBM BHP1 BHP2 (DNA synthesis) BR HNA cells BHP limitation
(ug C1'Y)  (protein synthesis) (pgCrtdl (pgC1tadl (%) organic/inorganic

(pgClrtal nutrient

NT-UPW 2 18 0.36 2.53 10.9 80 nd

NT 8 16 0.14 0.96 10.6 35 carbon

NT 14 10 0.08 0.66 9.7 36 carbon

NT 22 16 0.03 0.87 2.2 31 phosphorus

NT 32 8 0.63 7.73 11.3 38 co-limitation

ST-UPW 66 51 1.65 1.98 16.4 77 carbon

ST-UPW 60 68 2.15 3.21 30.8 56 carbon

ST-UPW 52 11 0.26 0.59 12.1 40 carbon

ST 48 9 0.37 3.48 22.2 31 no limitation

ST 42 5 0.32 7.62 17.7 34 no limitation
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Fig. 2. DGGE pattern of surface stations and dendrogram classification (Ward's method, euclidean distances according to
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Fig. 3. (a) nMDS and (b) PCA of bacterial assemblage composition data (DGGE banding pattern). Stations (numbered) were
clustered according to Ward's clustering method results (see Fig. 2)

salinity and chl a (Table 2), as well as with several bac-
terial parameters such as bacterial production, biomass
or percentage of HNA cells (Table 2). PC2 (14.8 % of
total variance) was not correlated with any of these
environmental or biotic parameters, and PC3 (13.5 % of
total variance) was only correlated with temperature
(Table 2).

The relationship between bacterial assemblage
structure, carbon processing, and environmental fac-
tors was assessed through Spearman rank correlation
of the corresponding similarity matrices. We found a
strong relationship between environmental data and
bacterial assemblage structure in all samples (Spear-
man's rho=0.70, p < 0.01) and a weaker but significant
relationship between bacterial assemblage structure
and carbon processing patterns (Spearman's rho =

0.36, p < 0.05). The relationship between environ-
mental parameters and carbon processing data was not
statistically significant (p > 0.05).

Results from experiments exploring the nutrient lim-
itation of bacterial production (Table 1) agreed rela-
tively well with the grouping of stations based on the
bacterial assemblage structure obtained by nMDS or
PCA (Fig. 3). The upwelling Stns 52, 60 and 66, which
clustered together according to DGGE band patterns,
were characterized by carbon limitation (Table 1). At
Stns 42 and 48, which also showed a related bacterial
assemblage structure, bacteria responded in a similar
way to the experimental additions showing no appar-
ent limitation by inorganic or organic resources. We
found higher variability in the response to nutrient
enrichment within the group of northern offshore sta-
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Table 2. Correlation coefficients (Spearman's rho) between
the scores of stations on PC1, PC2 and PC3 generated by the
bacterial diversity PCA, and environmental (temperature,
salinity, and concentrations of POC [uM] and chl a [pg 17!],)
and bacterial variables (bacterial production estimated by
leucine [BHP Leu, pg C I'! d”!] and thymidine uptake [BHP
TdR, ng C I"! d°!], bacterial respiration [bact. resp., ung C I'!
d™!], bacterial biomass [bact. biomass, pg C I"'], and % of
HNA cells). Sample size (n) varies between 9 and 10; % of
variance of bacterial diversity explained by each PC shown;
*p<0.05 **p<0.01

PC1 (43% PC2(15% PC3(14%
variance) variance) variance)
Environmental
Temperature -0.56 -0.47 0.64*
Salinity -0.73* 0.42 0.03
POC 0.63 0.18 0.25
Chl a 0.76** -0.34 0.02
Bacterial
BHP (Leu) 0.84* 0.27 0.17
BHP (TdR) 0.28 0.30 0.05
Bact. resp. 0.66* -0.09 0.58
Bact. biomass 0.64* -0.37 -0.32
%HNA 0.82** -0.18 -0.32

tions, which included stations located in the coastal
transition zone and the open ocean. Nevertheless, both
coastal transition zone stations (Stns 8 and 14), which
were close in the PCA ordination, exhibited carbon
limitation of bacterial production (Table 1).

In situ abundances of bacterial phylogenetic groups
were determined by CARD-FISH, which on average
detected 66 % of the DAPI-stained cells with the mix-
ture of 3 HRP-probes that covered the Bacteria domain
(Eub+ cells, Eub 338-II-1II; Fig. 4). The proportion of
cells hybridizing with archaeal probes (Eury806 and

Crenb54) in surface waters was below 3% of DAPI-
stained cells (data not shown).

In the upwelling area, a higher percentage of Eub+
cells was identified with probes for Alpha- and Gamma-
proteobacteria and Bacteroidetes groups (Alf968,
Gam42a, CF319a; average 87 % of Eub+ cells) than that
identified in offshore waters (Fig. 4). Alphaproteobacte-
ria was the most abundant group in both transects, com-
prising on average 36 % of the DAPI-stained cells (55 %
of Eub+ cells). The SAR11 clade accounted for the major-
ity of Alphaproteobacteria cells. Bacteroidetes and
Gammaproteobacteria constituted on average 8 and 7 %
of Eub+ cells, respectively, and like the Roseobacter
group were detected in significantly higher proportions
in the upwelling zone (Student's t-test, p < 0.05; Fig. 4).

We analyzed the correlation between the abundance
of bacterial groups detected by CARD-FISH and envi-
ronmental or bacterial variables, including the PCs that
captured most of the variation of the banding DGGE pat-
tern. The abundance of Roseobacter and Gammapro-
teobacteria was highly correlated with salinity and con-
centration of POC and chl a, and Bacteroidetes showed
a strong negative correlation with temperature (Table 3).
The abundance of these 3 groups was significantly cor-
related with the percentage of HNA cells, as well as with
the PC1 of bacterial diversity PCA. Although the abun-
dance of Roseobacter was significantly correlated with
bacterial heterotrophic production (estimated by leucine
uptake with eCFs), the abundance of total Alpha-
proteobacteria was negatively correlated with this para-
meter and also with bacterial respiration (Table 3). The
SAR 11 group was not significantly correlated with any
of these parameters.

DISCUSSION

100 -

80 -

The composition of bacterial assem-
blages appears to be uniform over
large oceanic areas (Acinas et al.

60
% B

1997), even when significant differ-

ences in environmental or bacterial

activity parameters exist (Riemann et
al. 1999, Riemann & Middelboe 2002).
As an example, Arrieta et al. (2004)
found that the phylogenetic composi-

tion of the bacterioplankton commu-
nity did not change after an iron fer-
tilization experiment in the Southern

40 -

20 -
0 8 14 22 32 42 48 52 60 66
Northern Southern Upwelling
transect offshore transect offshore zone

Fig. 4. Abundance (%) of bacterial groups detected by HRP-probes (CARD-
FISH), scaled to DAPI counts. Ros: Roseobacter; Alpha: Alphaproteobacteria;
Gam: Gammaproteobacteria; Bact: Bacteroidetes; Eub: Eubacteria

2 Ocean, despite significant changes in
bacterial production, abundance and
ectoenzymatic activities. This suggests
that bacterial community structure
can remain stable under different
trophic conditions, and probably per-



Alonso-Saez et al.: Bacterial assemblage structure and carbon metabolism 49

forms with redundancy in carbon pro-
cessing.
In contrast, other studies have re-

Table 3. Spearman rank correlation coefficients between proportions of Bac-
teroidetes (CF319), Gammaproteobacteria (Gam42a), Alphaproteobacteria
(Alf968), Roseobacter (Ros537) and SAR11 (SAR11-441R) groups, concentrations

of POC and chl g, bacterial production estimated by leucine (Leu) and thymidine

ported substantial spatial variability in
bacterial assemblage structure, particu-
larly in upwelling and frontal systems

(TdR) uptake, bacterial respiration, bacterial biomass, and % of HNA cells.
Abbreviations and units as in Table 2. The % of groups corresponds to abun-
dance scaled to DAPI counts; n varies between 9 and 10; *p < 0.05, **p < 0.01

(Kerkhof et al. 1999, Suzuki et al. 2001,
Pinhassi et al. 2003). To know whether

changes at the bacterial diversity level
can affect the in situ carbon metabolism
is crucial to understanding whether bac- Salini

. - alinity
terioplankton can be regarded as a uni- POC

form unit, or if a more detailed phyloge- Chl a
netic picture is needed in carbon flux Bacterial

. BHP (Leu)
models. However, s'uch hnl.iage has BHP (TdR)
rarely been explored in oceanic waters, Bact. resp.

and those studies that do exist almost ex-

clusively compare changes in bacterial %HNA
richness (number of taxa) with several ig;
carbon processing parameters (Rein- PC3

thaler et al. 2005, Winter et al. 2005).

Environmental
Temperature

Bact. biomass

%CF319 %Gam42a %Alf968 %Ros537 %SAR11-441R
-0.75** -0.60 0.14 -0.50 0.40
-0.65* -0.77** 0.27 -0.76** 0.44
0.58 0.84** -0.43 0.91** -0.38
0.50 0.77** -0.32 0.77** -0.42
0.45 0.36 -0.79** 0.70* -0.37
-0.17 -0.28 -0.58 0.06 -0.30
0.11 0.26 —-0.64* 0.58 -0.26
0.64* 0.67* -0.25 0.61 -0.25
0.877** 0.849** -0.16 0.67* -0.14
0.69* 0.66* -0.51 0.81** -0.18
-0.04 -0.01 -0.11 -0.01 0.18
-0.26 0.01 -0.18 0.18 0.45

Here, we explored the linkage using

a multivariate approach, in which we analyzed
changes in bacterial assemblage composition by
DGGE and, simultaneously, a range of bacterial carbon
processing variables. PCA was used in order to reduce
the complexity of bacterial community structure
(DGGE banding patterns) into a few linear variables,
which were subsequently correlated with environmen-
tal and bacterial variables, similarly to previous studies
in different systems (e.g. Fry et al. 2006). The ordina-
tion of the stations with the PCA analysis of DGGE
banding patterns was highly coherent, with results
from a non-parametric approach based solely on simi-
larity distances of stations (nMDS) and Ward's cluster-
ing method.

Spatial variability in bacterial assemblage structure
in the NE Atlantic Ocean

In previous studies, DGGE provided insights into
changes in microbial diversity on temporal and spatial
scales (Murray et al. 1998, Schauer et al. 2000, 2003);
however, as with all PCR-based methods, it is poten-
tially prone to problems and biases (Wintzingerode et
al. 1997). The use of a PCR-independent method (i.e.
CARD-FISH) allowed the identification and quantifi-
cation of the dominant bacterial groups by the use of
specific probes. These complementary approaches
have been seldom compared (Castle & Kirchman
2004) and, in our study, showed good agreement with
regard to the differences in bacterial assemblage
structure throughout the area, especially between the
upwelling and offshore stations. As an example, the

high similarity shown by CARD-FISH between Stn 66
(closest to the upwelling area in the southern transect)
and Stn 2 (upwelling filament reaching the northern
transect), despite being separated by almost 800 km,
is particularly evident and indicates the role of
oceanographic regimes in shaping bacterial commu-
nity structure.

There are still few studies in open ocean waters that
use FISH to provide a detailed description of the com-
position of bacterioplankton, including probes for
broad and more specific phylogenetic groups. Glock-
ner et al. (1999) provided first insights into differences
in assemblage compositions of different marine
regions with group-specific oligonucleotide probes.
More recently, Fuchs et al. (2005) used the improved
CARD-FISH protocol (Pernthaler et al. 2002) to study
the composition of bacterioplankton in different areas
of the Arabian Sea, and found marked differences in
the proportions of some specific groups such as SAR86,
SAR11 and SAR116. In our study, we also used the
CARD-FISH methodology, which probably contributed
to the high detection efficiency of groups—such as
SAR11—in oligotrophic oceanic samples.

On average, we found that SAR11 made up 28 % of
the DAPI counts, which are values comparable to the
few previous studies that have detected this group by
means of FISH with the use of multiple probes (Morris
et al. 2002, Malmstrom et al. 2004). Our findings cor-
roborate that SAR11 is one of the most abundant bac-
terial groups in the oceans, and suggest that, in terms
of contribution to assemblage composition, this clade
was not favored by upwelling conditions (in agreement
with the results of Fuchs et al. 2005).
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In contrast, we found that Roseobacter, Gammapro-
teobacteria and Bacteroidetes comprised maximum
contributions to assemblage structure in the up-
welling region. The Roseobacter group has been
detected in high proportions in association with nat-
ural phytoplankton blooms (Gonzdlez et al. 2000,
Suzuki et al. 2001). Furthermore, members of this
group have been suggested to be active colonizers of
particles under algal bloom conditions (Riemann et al.
2000). Similarly, the Gammaproteobacteria group
includes members with high growth rates, potentially
favored by nutrient enrichment pulses (Eilers et al.
2000, Fuchs et al. 2000, Pinhassi & Berman 2003,
Yokokawa et al. 2004).

The Bacteroidetes cluster has also been found in
upwelling events (Suzuki et al. 2001), and their mem-
bers have a high ability to degrade high-molecular
weight compounds (Cottrell & Kirchman 2000, Kirch-
man 2002). This carbon source was probably abundant
in the upwelling area, where we also encountered
high POC concentrations (Alonso-Saez et al. 2007).
Indeed, members of the Bacteroidetes group are quan-
titatively important components of both the free-living
and the particulate fraction of bacterial assemblages
during phytoplankton blooms (Riemann et al. 2000,
Abell & Bowman 2005).

Link between environmental factors, bacterial
assemblage structure, and carbon processing

The link between bacterial assemblage structure
and carbon metabolism is a difficult issue to elucidate
under in situ conditions, because environmental
factors probably affect both parameters. In this study,
we found that environmental factors significantly
affected the composition of the bacterial assemblages
(Spearman's rho = 0.7, p < 0.01), but not the pattern
of carbon processing. The PC1 of bacterial assem-
blage structure, which included most of the variation
of the DGGE banding pattern, was significantly
correlated with environmental variables characteristic
of the upwelling, such as salinity and chl a. These
results are in agreement with reported changes in
bacterial diversity in upwelling regimes (Suzuki et
al. 2001).

The composition of the bacterial assemblage was
also significantly correlated with the bacterial process-
ing of carbon; however, the strength of this relation-
ship was relatively weak (Spearman's rho = 0.36, p <
0.05). Similarly, the PC1 of the DGGE banding pattern
was significantly correlated with bacterial production
(Leu uptake) and biomass, suggesting that the com-
munity developing in the upwelling was performing
differently in terms of carbon use.

The coupling between bacterial assemblage compo-
sition and carbon metabolism contrasts with the results
of some other studies of marine open waters that have
reported no such relationship, like the experimental
study by Arrieta et al. (2004). However, a recent study
by Fuhrman et al. (2006) demonstrated that the tempo-
ral patterns in distribution and abundance of bacterial
taxa (analyzed by automated ribosomal intergenic
space analysis, ARISA) off the Californian coast were
significantly influenced by a range of abiotic and biotic
factors, including TdR uptake. These results suggest
low levels of redundancy in functional bacterial com-
munities.

Pinhassi et al. (2003) suggested that not only quanti-
tative but also qualitative differences in variables that
affect bacterial growth are required to understand the
variability in bacterioplankton assemblage composi-
tion. In their study across the Skagerrak front, these
authors hypothesized that N vs. P limitation could
affect the variability in bacterial assemblage structure.
In contrast, Van Mooy et al. (2004), using the T-RFLP
methodology, found that the growth response to differ-
ent organic amendments was generally unrelated to
bacterial assemblage structure in the North Pacific. In
our case, nutrient limitation seemed to be generally
related to bacterial assemblage structure, albeit with
some exceptions.

Relationship between the in situ abundance of
bacterial groups and environmental or
biotic parameters

SAR11 was the dominant group of Alphaproteobac-
teria, and their abundance was not significantly corre-
lated with any carbon processing variable. Although
this group was shown in some studies to be highly
active in the Sargasso Sea (by means of microautoradi-
ography combined with FISH; Malmstrom et al. 2004),
their activity seems to be significantly lower in more
coastal waters such as the North Sea or the NW
Mediterranean (Alonso & Pernthaler 2006, L. Alonso-
Séez et al. unpubl. data).

The percent contribution of Roseobacter was highly
correlated with POC and chl a, suggesting that this
group can be a good competitor under high levels of
resources, efficiently consuming the carbon produced
by the phytoplankton. This is in agreement with the
common association of this lineage with phytoplank-
ton cultures (Schafer et al. 2002) or natural blooms
(Suzuki et al. 2001). This group was also highly corre-
lated with bacterial production, in agreement with
their high single-cell activity in terms of substrate
uptake (Alonso & Pernthaler 2006, L. Alonso-Séez et
al. unpubl. data).
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The 3 groups Roseobacter, Gammaproteobacteria,
and Bacteroidetes were positively correlated with the
percentage of HNA cells (Table 3). The percentage of
HNA cells has been shown correlate relatively well
with bacterial activity in coastal waters (Lebaron et al.
2001, 2002). Shifts in bacterial metabolism have been
associated with changes in the percentage of active
cells (del Giorgio & Bouvier 2002). Although the posi-
tive correlation is not a direct observation, it suggests
that these groups could be composed of HNA (‘active’)
bacteria. This would agree with the results of Zubkov
et al. (2001), who sorted the HNA bacterial community
of an offshore sample using flow cytometry and found
high proportions of Bacteroidetes and Roseobacter
within this group. On the contrary, SAR11 always fell
in the LNA group in a study conducted in the Arabian
Sea by Fuchs et al. (2005).

In summary, bacterial assemblage structure was
highly influenced by environmental factors such as
temperature, salinity and chl a, showing a distinct
community in the upwelling region and spatial vari-
ability within offshore waters. Bacterial carbon meta-
bolism was significantly correlated with bacterial
assemblage structure, as shown by the Mantel proce-
dure and the significant correlations between the PC1
of bacterial assemblage structure data and several car-
bon processing parameters. The bacterial groups
Roseobacter and Gammaproteobacteria showed posi-
tive correlations with bacterial heterotrophic produc-
tion and biomass, respectively. The SAR11 group,
which was relatively constant throughout the area, did
not correlate with any of these parameters. The correl-
ative approaches, such as the one we used, can pro-
vide first insights into the link between bacterial
assemblage structure, biotic and abiotic parameters.
Even if correlations do not imply causality, it is of great
interest to know whether changes in bacterial assem-
blages are associated with changes in carbon metabo-
lism for carbon modeling and predictive purposes. Fur-
ther studies that use single-cell techniques will
undoubtedly help us to identify the groups with the
most important role in the flux of carbon in the ocean,
and accelerate the potential incorporation of bacterial
assemblage structure into carbon cycle models.
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