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1. INTRODUCTION

The observed increase in the CO2 concentration in
the atmosphere is lower than the difference between
CO2 emission and CO2 dissolution in the ocean. This
imbalance, earlier named the ‘missing sink’, comprises
up to 1.1 Pg C yr–1, after taking land-use changes into
account . The subsequent assessments assume that this
sink is caused by some natural changes in terrestrial
ecosystems (Houghton 1996).

The simplest explanation for the ‘missing sink’ is
CO2 fertilization. Stimulation of photosynthesis at
higher CO2 concentrations is repeatedly observed in
short-term experiments at the single leaf level. A num-
ber of biosphere models take this effect into account
for calculating the natural terrestrial sink. The results
of such calculations are normally in close agreement
with the magnitude of the ‘missing sink’.

The problem with these biosphere models is their
validity. Because of the complexity of biological sys-
tems, one normally constructs a detailed process-
based model. A model of this sort contains a huge
number of parameters that are set at ad hoc values.
One can easily obtain the desired magnitude of a ter-
restrial sink by tuning the model parameters, but one
can hardly claim that the thus-obtained value of the
sink is close to the real one when the settings of the
model parameters have not been validated.

The purpose of this study was to construct a demon-
strative biosphere model of the CO2-fertilization effect.
Every biosphere model is deductive in its nature. One
cannot compare the projected and observed dynamics
of its state variables—there are no observations of this
sort. Hence, a biosphere model should be demonstra-
tive in its form—that is, the logic of transition from
level to level should be clear, the number of coeffi-
cients should be relatively small and the coefficients
should be based on empirical information. In other
words, the structure of the model should allow the pro-
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cess of deduction to be traced and should reveal the
cause-effect links between assumptions and conclu-
sions.

2. MODEL OVERVIEW

We described the CO2-fertilization effect as a linear
increase in the rate of light saturated photosynthesis
pmax with the increase of CO2 concentration:

(1)

where Ca(t) is CO2 concentration in the atmosphere,
Ca(t0) is atmospheric CO2 concentration in 1980 and Cc

is CO2 compensation point for photosynthesis.
Then we scaled up from the single leaf to canopy by

means of Kuroiwa’s formula of gross primary produc-
tion (Oikawa 1985, 1986).

(2)

where D is the average daylength during growing sea-
son, G is the length of growing season, I0 is the light
intensity at noon, β is the light-use efficiency, K is the
light extinction coefficient, LAI is the leaf area index
and k is the constant for conversion assimilated CO2 to
synthesized dry matter.

This formula was derived from the assumption that
the light dependence of photosynthesis at a single leaf
is of the Michaelis-Menten type:

where Pg,leaf is the rate of light-limited photosynthesis
at a single leaf, L is the cumulative leaf area index
above the level of the leaf (0 ≤ L ≤ LAI), and Ican(L) is
the light intensity at this level which is supposed to be
equal to Iaexp(–K ·L), where Ia is the light intensity
above the canopy and Ican is the light intensity at the
given level of the canopy. Integration over all leaf lay-
ers gives

and integration over the daily course of Ia, which
is approximated by the formula Ia(t) = I0sin2(πt/D),
gives

The light attenuation coefficient (K ) depends not
only on the leaf inclination angle, which is relatively
constant for a given species, but also on the mode of
foliage distribution (Oikawa & Saeki 1977). We sup-
posed that the mode of foliage distribution is changing
in such a manner that K and LAI are in a specific cor-
respondence Kopt(LAI) which gives a maximum of GPP
for a given LAI. Kuroiwa’s formula (Alexandrov &
Oikawa 1997) suggests that Kopt(LAI) is similar to the
inverse relationship between K and LAI observed by
Smith et al. (1991) in Pinus contorta stands. This
relationship implies minor variations in FPAR (frac-
tion of absorbed photosynthetically active radia-
tion) of continuous vegetation cover. Therefore we set
exp(–K ·LAI) in Kuroiwa’s formula to be 0.1. Setting β
at 0.06 µmol CO2 µmol–1 photons, we reduced the
number of globally varying parameters and rewrote
Eq. (2) as follows:

(2’)

where k = 0.6, ϕ = exp(–K ·LAI) = 0.1, and pK = pmax/K;
I0 was calculated from the gridded data set on PAR
(Dye et al. 1994); D was calculated proceeding from
latitude (Iqbal 1983). The geographical distribution of
G was derived from the characteristic month averages
(1986–88) of the monthly Normalized Difference Veg-
etation Index (NDVI) (Kinemann & Hastings 1992) and
T, mean monthly temperatures (Leemans & Cramer
1991), by use of NDVI > 0.1 and Tm > 0°C as a criterion
for growth period. In order to identify the global pat-
tern of pK at 0.5° × 0.5° resolution we assumed that it is
a function of climate: pK = pK(T, RFL), where RFL is a
rain factor (precipitation divided by temperature). The
particular form of this function (Eq. 3) we derived
(Appendix 1) from the Osnabrück collection of net pri-
mary production (NPP) data (Esser et al. 1997):

(3)

where pK is expressed in (µmol CO2) m–2 s–1 and T and
RFL are mean monthly temperature and monthly rain
factor averaged over the vegetation period (RFL = P/T,
where P is the monthly precipitation averaged over
the vegetation period).

To obtain NPP we used an empirical formula linking
NPP and GPP:

NPP  =  3000· [1 – exp(–GPP/4140)] (4)

where NPP and GPP are given in g dry matter m2 yr–1.
The decrease in the NPP/GPP ratio with GPP is re-

ported in a number of papers on plant productivity.
The particular formula was taken from Box (1988).
The advantage of this model is obvious: we need not
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solve a differential equation for plant biomass to ob-
tain NPP.

3. TERRESTRIAL NPP AND ITS GROWTH FACTOR

CO2 fertilization effect is commonly described by

(5)

Experimental data generally fit this model (Amthor
1995, Wullschleger et al. 1995), but the value of the
so-called growth factor (γ) varies from experiment to
experiment. Hence, the choice of the growth factor
value at the biosphere level is not strictly prescribed by
experiments. More than often γ is tuned to match the
land-use emission estimate (e.g., Kheshgi et al. 1996)
and to obtain the same value of net terrestrial uptake
as deconvoluted from the CO2 and δ13C records. Our
calculations of the total terrestrial NPP at different CO2

levels suggest that γ should be set at 0.35 (Fig. 1) when
Eq. (5) is applied at the biosphere level.

Another factor that may significantly affect the
estimates of the sink induced by CO2 fertilization is
NPP0 – that is, NPP at 340 ppmv. The modelled NPP
ranges from 39.9 to 80.5 Pg C yr–1, with a mean of
54.9 Pg C yr–1 (Cramer et al. 1997). Our estimate is
61.6 Pg C yr–1.

The global pattern of NPP might also be significant,
but it is difficult to express it in a form other than a
map. Therefore we plotted TsuBiMo-NPP0 (Fig. 2)
together with the well-known Miami NPP and NPP
derived directly from annual NDVI (TsuBiMo stands

for Tsukuba Biosphere Model given by Eqs 1 to 4). At
first glance it would seem that there is little difference
between them, but a close look at the maps will show
some points of controversy between these models even
though they were derived from the same NPP data.

4. THE TERRESTRIAL SINK INDUCED BY CO2

FERTILIZATION AND ITS SENSITIVITY
TO TURNOVER TIME

Turnover time—the length of time between absorp-
tion and release of carbon entering the biological
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cycle—essentially affects the terrestrial sink induced
by CO2 fertilization. However, it is more common to
test the sensitivity of the terrestrial sink to the uncer-
tainty in the growth factor (the range of which is
known from experiments) than that to the uncertainty
in turnover time (the range of which is merely
assumed). More or less certain estimates of NPP0 and γ
obtained in this study allow us to evaluate the uncer-
tainty in the terrestrial sink which is related to the
uncertainty in turnover time.

The terrestrial sink Nb is commonly calculated as
the difference between the present and past biomass:
Nb(t) = B(t) – B(t – 1), where the course of B is obtained
from a differential equation of the form

(6)

where τB is the turnover time of organic matter (e.g.,
Kohlmaier et al. 1987, Goudriaan 1992) or a system of
differential equations of the same sort regarding the
biomass pools (leaves, stems, roots) and the pools of
dead organic matter (Kohlmaier et al. 1987, Goudri-
aan 1992). Disaggregating Eq. (6), biosphere mod-
ellers justify their choice of τB, but do not totally
remove its uncertainty. Solving Eq. (6) for the NPP
given by Eq. (5) at NPP0 = 61.6 Pg C yr–1 and γ = 0.35
and for Ca(t ) given by historical CO2 records of Keel-
ing & Whorf (1994) and Neftel et al. (1994), we cal-
culated the terrestrial sink for τB to range from 5 to
100 yr (Fig. 3). Proceeding from the aircraft measure-
ments of the CO2 concentrations and isotopic ratio of
its carbon in the middle and upper troposphere over
Siberia (Nakazawa et al. 1997), we assumed (Appen-
dix 2) that τB = 19.2 yr, and finally estimated the sink
at 1.3 Pg C yr–1.

5. CONCLUSION

For a particular ecosystem, the abundance of compli-
cated details suggests that the model was formulated
thoroughly. However, we considered global vegeta-
tion, and this forced us to schematize the model and
seek the simplicities behind the details. Thus, we
supposed that Kuroiwa’s formula summarizes some
detailed models of canopy photosynthesis and that
Box’s formula for the GPP-NPP relationship might be
supported by some detailed models of dry matter
reproduction. Finally, we reduced the results of our

calculations of the response of terrestrial NPP to CO2

increase to the simple formula that has been heavily
used for the last 2 decades.

Modellers rarely convert their results into simple
formulas to avoid the false impression that their con-
clusions remain valid outside the domain of model set-
tings. However, such a precaution renders complicated
models unsuitable for instantly improving the state of
the art in carbon cycle studies. To maintain the balance
between credibility and usability of our results, we
recorded CD-R containing the information about the
settings of our model. This also makes the model open
to modification by those who study global change at
the level of plant physiology—proceeding from the
TsuBiMo on CD, they can easily trace how their find-
ings affect the balance of global budget of carbon.

The global manifestation of the CO2 fertilization
effect is determined by the turnover time of the bio-
logical cycle—that is, the average time span between
absorption and release of carbon. Considering 13C as a
tracer, we analyzed some data on summertime
changes in CO2 and its isotopic ratio in the troposphere
over Siberia and set the turnover time at some plausi-
ble value. We cannot be confident of this value
because it is sensitive to the average isotopic shift that
occurs in air-plant exchanges. The latter must be
determined more accurately as at its current accuracy
one can hardly define a feasible confidence interval for
the turnover time.
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Appendix 1. The global pattern of light saturated photosynthesis

The Osnabrück collection of NPP data, synthesized by H.
Lieth and G. Esser, is available at http://www-eosdis.ornl.
gov/npp/other_files/ods_des.html. We produced from this
collection a reference data set (Alexandrov et al. 1999) by
selection of the data points that meet the following criteria:
• contains original estimate of total NPP
• geographical location of data point allows one to specify

vegetation zone, mean annual temperature and annual
precipitation

• shows normal distribution of NPP within the groups
related to vegetation zones.

We added to this data set on NPP the environmental charac-
teristics required by the Kuroiwa’s formula and calculated
the results given in Table A1, which we put into the basis of
the pk(T,RFL) calibration.

We assumed

pK(T,RFL)  =  ƒ1(T ) ·ƒ2(RFL) (A1)

(A2)

(A3)

set Topt to be 30°C, and fit the data (Table A1) by calibrating
the other coefficients (a0, b0, α, σ, and θ). For this purpose,
we calculated a0 and σ from the data on summergreen
broad-leaved forests (Class 13) and needle-leaved ever-
green forests (Class 36). (The function ƒ1 is determined by
2 points, if Topt is known.) Thus calibrated temperature
dependence overestimates the value of pK for grasslands
(Class 15). Considering this as a sign of water limitation, we

concluded ƒ2(3.1) = 0.647. Then, supposing that ƒ2 is close
to 1 at RFL = 5 (the value typical for boreal and temperate
forests), we calculated α and θ.
Thus Eq. (3) fits well not only the data on the classes that
were used for estimating its coefficients but also the data on
other classes; a projected value always falls within the con-
fidence interval of the mean value given in the Table A1.
However, the suggestion that pK peaks at 30°C is not strictly
dictated by the data. Due to the large uncertainty in pK of
tropical forests (Classes 3, 8 and 10), it might be set also at
25 or 35°C (or even 20°C).

  
ƒ =

+
2 0

1
( )

( / )

( / )
RFL

RFL

RFL
b

a

a

θ
θ

  

ƒ = −
−

















1 0

2

( ) expT a
T Topt

σ

Table A1. pK (in µmol CO2 m–2 s–1), T and RFL of Box’s
vegetation classes. N: 3 – raingreen/semi-evergreen forests/
woodlands/scrub; 4 – evergreen broad-leaved forests; 7 – shrub-
lands (seasonal/evergreen); 8 – tropical rainforest; 10 – subhumid
woodlands/scrub; 13 – summergreen broad-leaved forests and
woods; 15 – grasslands; 36 – needle-leaved evergreen 

forests/woods. NN: number of data points

N NN pK T RFL
Mean SE Mean SE Mean SE

3 8 25.074 11.907 25.6 0.6 5.7 0.2
4 5 14.4900 2.898 18.3 2.0 9.8 2.1
7 6 6.237 2.016 21.1 1.5 3.0 0.6
8 3 48.132 33.831 24.4 1.8 8.3 0.8
10 8 31.122 11.151 23.1 1.1 3.9 0.3
13 880 8.253 0.819 16.9 0.3 5.7 0.24
15 110 5.796 1.071 17.3 0.9 3.1 0.3
36 260 3.528 0.441 13.3 0.4 5.2 0.3

Appendix 2. Plausible value of the turnover time

Nakazawa et al. (1997) reported a linear relationship be-
tween the CO2 concentrations observed in the troposphere
over Siberia and δ13C (–0.05‰ ppmv–1) and concluded that
the observed variations in CO2 were caused by the CO2

exchange with a single reservoir or with reservoirs with the
same δ13C. The measurements were made in summer, and
so they also suggest that the variations in CO2 were pro-
duced by biospheric activities.

Let us denote the average, maximum and minimum of the
observed summertime CO2 concentrations as C0, C+ and C–,
respectively, and the related values of δ13C as δ0, δ+ and δ–,
respectively. Then, the suggestions of Nakazawa et al.
(1997) may be formulated as follows:

C+ – C– =  (NPP – R) ·ξ
δ+C+ – δ–C– =  (δ0 + ε)(NPP – R) · ξ + δ’τBR ·ξ
δ+ =  δ0 – 0.05(C+ – C0) (A4)
δ– =  δ0 – 0.05(C– – C0)

where NPP is net primary production, R is heterotrophic res-
piration (that is, CO2 release in the course of organic matter
decay), τB is the turnover time of the biological cycle, δ’ is
the rate of δ13C depletion (δ’ ≈ –0.03‰ yr–1), ε is the isotopic
shift that occurs in the course of air-plant exchange and ξ
is a conversion factor.
Eq. (A4) implies

δ0(C+ – C–) – 0.05(C+ – C–)(C+ + C– – C0)  =  
(δ0 + ε)(C+ – C–) + δ’τBR ·ξ (A5)

Let us assume that NPP = xR and set for simplicity x = 2, then
R· ξ = C+ – C–. This allows us to rewrite Eq. (A5) as follows:

–0.05(C+ + C– – C0)  =  ε + δ’τB (A6)

Assuming next that C+ + C– – C0 ≈ C0, we obtain

(A7)

Setting δ’ at –0.03‰ yr–1 and ε at –17‰, we obtain

Substituting the observed value of C0 (C0 = 351.5 ppmv), we
obtain τB ≈ 19.1667 yr.

There are 2 major source of uncertainty in the interpretation
of the data. The first is the ratio NPP/R during the period of
observation. The second and more important is the value of
ε. The assumed values of ε vary from –14.8‰ (Lloyd & Far-
quhar 1994) to –20‰ (Quay et al. 1992) and dramatically
affect the estimate of τB. The observations of Nakazawa et
al. (1997) imply ε > –17.5‰, which is in general agreement
with the Lloyd-Farquhar theory – ε ≈ –17.5‰ for an ‘all-C3

biosphere’—but must be higher due to the presence of C4

plants. (For C4 plants, ε ≈ –3.6‰.) However, their particular
estimate (–14.8‰) was derived from the contribution of C4

plants to the annual GPP (–17.8‰ × 0.79 – 3.6‰ × 0.21), and
its relevance to a particular season is questionable. Mid-
summer (July) is a dry season for many grassland biomes,
and so the contribution of C4 plants in that period may
be significantly smaller than annual. (Using NDVI [NGDC
1992] as a proxy to NPP seasonality, we concluded that con-
tribution of C4 plants in that period is half as much as their
annual contribution.) Assuming also ε ≈ –19‰ as a typical
value for C3 plants, we therefore set ε in Eq. (A7) to be –17‰
(–19‰ × 0.87 – 3.6‰ × 0.13) as a plausible value for the
summer season.
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