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1.  INTRODUCTION

Assessing the rapid warming in the 20th century,
which is unprecedented during the last millennium,
continues to be one of the highest priorities for clima-

tologists. One approach to this is to compare the cur-
rent and past natural variations of climate as recon-
structed from proxy data derived from natural
archives (e.g. tree-rings, ice cores, spe leo thems and
marine or lake sediments). Numerous proxy-based
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ABSTRACT: Previous studies have either exclusively used annual tree-ring data or have combined
tree-ring series with other, lower temporal resolution proxy series. Both approaches can lead to sig-
nificant uncertainties, as tree-rings may underestimate the amplitude of past temperature varia-
tions, and the validity of non-annual records cannot be clearly assessed. In this study, we assembled
45 published Northern Hemisphere (NH) temperature proxy records covering the past millennium,
each of which satisfied 3 essential criteria: the series must be of annual resolution, span at least a
thousand years, and represent an explicit temperature signal. Suitable climate archives included
ice cores, varved lake sediments, tree-rings and speleothems. We reconstructed the average
annual land temperature series for the NH over the last millennium by applying 3 different recon-
struction techniques: (1) principal components (PC) plus second-order autoregressive model (AR2),
(2) composite plus scale (CPS) and (3) regularized errors-in-variables approach (EIV). Our recon-
struction is in excellent agreement with 6 climate model simulations (including the first 5 models
derived from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and an earth
system model of intermediate complexity (LOVECLIM), showing similar temperatures at multi-
decadal timescales; however, all simulations appear to underestimate the temperature during the
Medieval Warm Period (MWP). A comparison with other NH reconstructions shows that our results
are consistent with earlier studies. These results indicate that well-validated annual proxy series
should be used to minimize proxy-based artifacts, and that these proxy series contain sufficient
information to reconstruct the low-frequency climate variability over the past millennium.
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regional to global climate reconstructions have al -
ready been published (e.g. Jones et al. 1998, Mann et
al. 1998, 1999, 2008, 2009, Crowley & Lowery 2000,
Briffa et al. 2001, Esper et al. 2002a, Mann & Jones
2003, Cook et al. 2004a, Moberg et al. 2005, D’Arrigo
et al. 2006, Osborn & Briffa 2006, Hegerl et al. 2007,
Ammann & Wahl 2007, Kaufman et al. 2009, Ljung -
qvist 2010). However, the selection criteria for paleo -
temperature proxy series can significantly affect
these large-scale composite temperature reconstruc-
tions (Küttel et al. 2007, Mann 2007, Jones et al. 2009,
von Storch et al. 2009).

Two different approaches have usually been used
to screen the predicted proxy records: either (1) only
annual tree-ring data were used, or (2) tree-ring
series were combined with non-annual records (see
Table 1). The advantages of tree-ring data are that
their chronologies have exact dating control and
annual resolution, and their temperature signals are
usually well understood and can be validated using
meteorological data (Hughes 2011). In addition, tree-
ring records are widespread for the Northen Hemi-
sphere (NH). The problem with tree-ring series is
that the low-frequency climate signal, longer than
the age of the tree, is not well preserved, or, if pres-
ent, it would need to be statistically extracted from
the raw data (Cook et al. 1995, Briffa & Melvin 2011).
Alternative proxy data (e.g. ice cores, speleothems,
varved lake or marine sediments) are good proxies
for the low-frequency temperature variability, and
invariably come from regions where long tree-ring
records are not available. However, the problem with
those records is that most are not annually resolved
and their quality is hard to assess because they usu-
ally cannot be validated using annual meteorological

data. Therefore, both of these approaches have asso-
ciated problems, as a pure tree-ring reconstruction
may not reproduce the amplitude of past tempera-
ture changes correctly while non-annual data may
introduce false or at least unvalidated information.
New, non tree-ring records with annual resolution
have recently been published. Thus, for this study,
we assembled 45 proxy records including the tree-
ring data and other proxy series with annual resolu-
tion to combine the advantages of all types of climate
archives (Table 2), without their usual weaknesses.

Statistical techniques also have an important role
in paleoclimate reconstruction (Christiansen 2011,
McShane & Wyner 2011). Therefore, 3 different sta-
tistical techniques were used to reconstruct the
annually resolved NH mean land temperature over
the past 1000 yr, allowing us to analyze the effects of
the different methods. Finally, we compared our re -
construction with other NH temperature reconstruc-
tion series and with 6 climate model simulations to
assess its quality and reliability.

2.  DATA AND METHODS

2.1.  Instrumental and proxy data

Paleoclimate reconstructions may suffer from an
aliasing effect when proxy data series with different
temporal resolutions and different lengths are mixed
(Mann et al. 2008). In this paper, criteria for the selec-
tion of the proxy records were very strict to minimize
such effects. We only used proxy data series with
annual resolution, which span >1000 yr, and repre-
sent an explicit temperature signal. For each re -

search area, we considered only
the newest data available and se -
lected the data to ensure a uni-
form spatial distribution (Fig. 1,
Table 2). Restricting data sets to
those spanning >1000 yr was nec-
essary to avoid heterogeneity in
data set variance.

We started our proxy data col-
lection using the large data set of
climate records compiled by Mann
et al. (2008), who collected 79
proxy records spanning >1000 yr
to reconstruct NH temperatures.
Of these series, 60 were not re -
tained for this study, as they did
not meet our very re strictive stan-
dards: e.g. some poor-quality data
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                                         Type of proxy Resolution            Total
                                                      Dendro   Others    Annual  Non-annual

This study                                          34           11            45                0             45
Ammann & Wahl (2007)                   28            0             28                0             28
Christiansen & Ljungqvist (2012)     9            23            16               16            32
Crowley & Lowery (2000)                 5             8              6                 7             13
Esper et al. (2002a)                           14            0             14                0             14
Hegerl et al. (2007)                           11            3              0                14            14
Jones et al. (1998)                              2             1              3                 0              3
Ljungqvist (2010)                              11           19            16               14            30
Mann et al. (1999)                             28            0             28                0             28
Mann et al. (2008)                             18           28            30               16            46
McShane & Wyner (2011)                62           33            77               18            95
Moberg et al. (2005)                          7            11             8                10            18

Table 1. Number and types of data series used in multi-proxy Northern Hemi-
sphere (NH) reconstructions (see Fig. 4). Only proxy series spanning at least 

1000 yr were considered
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with a coarse resolution. Regional curve standardiza-
tion (RCS) is an efficient method for preserving the
low-frequency signal in the raw data (Briffa & Melvin
2011). We gave priority to the collection of RCS chro -
nologies to better preserve the low-frequency signals.

Prior to a more in-depth examination of the series,
we excluded 33 tree-ring records from the Mann et
al. (2008) dataset, because they did not meet the min-
imal replication required for tree-ring series used in
this study (5 independent contributing cores). Fur-
thermore, 16 records with a non-annual resolution
were excluded. For example, we did not use the lake
sediment data derived from Lake Korttajärvi, as the
sedimentation has been affected by human activity
since the early 18th century (Tiljander 2005). Briffa et
al.’s (1992) and Grudd’s (2008) Fennoscandian tree-
ring sampling areas are the same (Torneträsk, North-
ern Sweden), but the Grudd (2008) record was up-
dated from AD 501 to 2004 using new samples from
35 relatively young trees. This new Torneträsk tree-
ring maximum latewood density (MXD) record in-
cludes samples from a total of 100 trees and covers
the period AD 441−2004. Therefore, we used the
most up-to-date data from Grudd (2008). For Green-
land, we used Vinther et al.’s (2010) annually

resolved oxygen isotope record from
ice cores. We did not use the older
records published by Fisher et al.
(1996) and Meese et al. (1994). The
record compiled by Qian et al. (2003)
represents centennial-scale dry−wet
variations in East Asia, but not a spe-
cific temperature signal; it was thus
not used in this study. Naurzbaev &
Vaganov (2000) and Naurz baev et al.
(2002) both studied tree-rings in east-
ern Taimyr; the newer data by Naurz -
baev et al. (2002) were used here.
Also not considered for this study
were the Scottish speleothem data
published by Proctor et al. (2000,
2002) as the sensitivity of this archive
to temperature is weak (strong nega-
tive correlation with precipitation).
The latest update of the Yamal tree
ring data (Briffa et al. 2008) used the
RCS chronology and better reflects
low frequency climate signals than
former versions of the record (Briffa
2000, Hantemirov & Shiyatov 2002).
The DYE-3 ice core data (Andersen
et al. 2006) have been corrected for
 upstream depletion of δ18O (Vinther

et al. 2010). Consequently, only 19 of these 79 proxy
series were in common with both the present and the
Mann et al. (2008) reconstructions. We also collected
26 other records, resulting in a total of 45 series used
for our temperature reconstruction (Table 2). All ref-
erences for the 45 proxies come from 21 studies (see
Table 2). Here, every series was required to exceed a
90% confidence level with either one of the 2 closest
instrumental temperature grid points over the cali-
bration interval to ensure that it had a significant
 statistical relationship with the local instrumental
temperature signal.

Table 2 shows that the proxy records represent res -
ponses to temperature in different seasons, be cause
of their variable local environments. For example,
some tree-ring data strongly reflect the temperature
of the growing season, while other tree-ring data also
respond to mean annual temperature. The multi-
decadal variability of annual temperature and other
season temperatures is usually synchronized (Jones
et al. 2012). Thus, for consistency, all records were
considered to approximately represent an entire
year’s temperature signal.

For calibration and verification purposes, we ex -
tracted the instrumental land-only NH temperature
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Tree-ring (34) Ice core (4) Spelepthem (2) Sediment varve (5)

Fig. 1. Geographical distribution of the 45 records used in this study. Listed in 
Table 2
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data for the period AD 1850 to 2006 from the Univer-
sity of East Anglia (Climatic Research Unit [CRU],
Norwich, UK; www.cru.uea.ac.uk/cru/data/tempera-
ture) instrumental surface-air temperature dataset
(CRUTEM3v) (Brohan et al. 2006).

2.2.  Statistical methods

Three different reconstruction methodologies were
used to reconstruct NH temperatures during the last
1000 yr: multivariate principal component regression
(PCR), composite-plus-scaling (CPS) and the regular-
ized errors-in-variables approach (EIV).

Principal components (PC) regression has been
used in climate reconstruction research for many
years (Cook et al. 1994, 2004b, Luterbacher et al.
2004, Riedwyl et al. 2009). It is well known that there
is no single objective way by which to select the PCs
(Wilks 2006, McShane & Wyner 2011). According to
the cross-validated root mean square error (RMSE)
results, the first 10 PCs of the proxy record dataset
and a second-order autoregressive (AR2) model were
retained (McShane & Wyner 2011). The AR2 can be
used to statistically and optimally reduce the uncer-
tainty of the regression equation errors (McShane &
Wyner 2011). The model was fitted to the period AD
1850−1998 and used to reconstruct the period AD
998−1849. A Bayesian algorithm was used to esti-
mate parameter uncertainty and residual variance
using McShane & Wyner’s (2011) method, yielding
a much wider standard error be cause of noise in
the proxy data and uncertainty in the relationship
between the proxy data and instrumental data
(McShane & Wyner 2011). The likelihood is given by
McShane & Wyner (2011): 

(1)

where Tt represents the CRU NH annual land tem-
perature in year t and (PC)t,i is the value of principal
component i in year t. The innovations εt are assumed
to be independent and identically distributed normal
draws, εt � N(0, σ2). All parameters are defined ac -
cording to McShane & Wyner (2011), and the com -
putational code for this method is available in their
supplement.

Northern Hemisphere annual mean land tempera-
tures were reconstructed by an AR2 model with the
first 10 PCs of the dataset. The posterior was esti-
mated using Just Another Gibbs Sampler (JAGS)
(Plummer 2003) and Markov Chain Monte Carlo
(MCMC) method over the calibration period (AD

T T Tt i t i
i

t t t∑= β + β + β + β + ε
=

+ +(PC)0 ,
1

10

11 1 12 2
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1850−1998). The 95% confidence interval was calcu-
lated after 100 iterations.

PCR using simple linear regression of PCs of the
proxy network and instrumental data suffers from
known biases, including the underestimation of vari-
ance (von Storch et al. 2004, Hegerl et al. 2006,
Neukom et al. 2011). To avoid this potential loss of
variance, we also used CPS by matching the variance
of the composited predictor data against the predic-
tand in the calibration period (Jones et al. 1998,
Esper et al. 2005). This is sometimes called the com-
posite matching variance method (von Storch et al.
2009). Moreover, EIV with truncated total least
squares was used to avoid overfitting in the regres-
sions (Schneider 2001, Rutherford et al. 2005, Mann
2007, Mann et al. 2008, 2009, Riedwyl et al. 2008,
2009, Neukom et al. 2011). For a general comparison
and description of the 3 approaches we refer to
McShane & Wyner (2011) and corresponding discus-
sion articles (Schmidt et al. 2011, Smerdon 2011, Tin-
gley 2011). The procedures for all the methods are
available in the supplements to original papers in the
references.

2.3.  Climate models

In order to assess whether our reconstructions are
consistent with the model physics, a comparison is
carried out with the climate of the last millennium
assessed by the 6 following models: MPI-ESM-P
(Jungclaus et al. 2010), CCSM4 (Gent et al. 2011),
GISS-E2-R (Schmidt et al. 2006), FGOALS-g1 (Zhou
et al. 2008), BCC-CSM1.1 (Wu et al. 2010) and
LOVECLIM1.2 (Goosse et al. 2010). These results are
the stacked reconstruction of the Paleo Modelling
Intercomparison Project Phase 3 (PMIP3) (Schmidt et
al. 2012) last millennium simulation and the CMIP5
historical run. The results for these two projects are
available via the Earth System Grid Federation portal
(http://pcmdi9.llnl.gov/esgf-web-fe/) except for LOVE -
CLIM, available at http://www.climate.be/lm/.

3.  RESULTS AND DISCUSSION

Northern Hemisphere annual mean land tempera-
tures anomalies (with respect to AD 1961 to 1990)
over the last 1000 yr, reconstructed with 3 statistical
approaches (PC10+AR2, CPS and EIV) are shown
in Fig. 2a. The model was fitted to the period AD
1850− 1998 and reconstructed for AD 998−1849. A
Medieval Warm Period (MWP) prior to AD 1100, a

colder Little Ice Age type event (LIA; AD ~1550−
1750) and the 20th century warming are visible in the
NH. The period of the LIA agrees with the recon-
structions of Moberg et al. (2005) and Mann et al.
(2008) that reveal cooler conditions in the NH during
the intervals AD 1500− 1600, 1400−1700 and 1500−
1800. The most recent decades (AD 1920−1998) were
clearly warmer than any period of the past 1000 yr.
These posterior probabilities clearly support the
assessments by Mann et al. (2008) and the Intergov-
ernmental Panel for Climate Change (IPCC) AR4
(Jansen et al. 2007) stating that the current warming
is unprecedented during the past 1000 yr. About
64 yr quasi-cycles are identified in the 3 reconstruc-
tions by wavelet analysis (not shown), which are not
sta tistically significant. Fig. 2b compares the recon-
structed results with the instrumental data since
1840. Note that the value of the EIV reconstruction is
the same as the filtered instrumental data since 1850,
because the EIV method is an algorithm for the im -
putation of missing values in incomplete datasets.
Fig. 2b shows that the PC1+AR2 result is closer to the
filtered instrumental data (i.e. the EIV result) than
the CPS result. Fig. 2c shows results reconstructed
using the no-dendro dataset, and Fig. 2d shows the
dendro re sults. ‘no dendro’ means the results
obtained using the proxy datasets after excluding the
tree-ring re cords, and ‘dendro’ means the results
reconstructed only using tree-ring data. Fig. 2c,d
indicates that the reconstruction technique has an
important effect on the reconstruction results, espe-
cially for the very small number of proxy data used in
Fig. 2c. There are only 11 proxy records in the ‘no-
dendro’ case. Overall, the results in this study are all
very similar, with no distinct differences in the cold/
warm phases of the reconstruction results at multi-
decadal timescales. However, the means and ampli-
tudes of the 3 results are distinctly different due to
the different regression equations (i.e. the transfer
functions) of the 3 techniques. For example, Fig. 2b
reveals that the composited proxy records obtained
using PC10+ AR2 and CPS are distinctly different
after AD 1840. Thus, the backcasted results from
these 2 methods would be inconsistent. The values of
the instrumental data and proxy records during the
calibration period should include their maximum and
minimum values to render a stable regression equa-
tion (Fritts 1976). However, this is very difficult for
paleoclimate reconstructions with short instrumental
data series. The EIV result is distinctly higher than
the others before AD 1700, especially during the
MWP. Similar results were also found in other recon-
structions. Mann et al. (2008) showed that the EIV
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method produces significantly higher temperatures
in the 11th century warm period than the CPS
approach. Also, Riedwyl et al. (2009) showed that
PC regression underestimates the amplitude of past
 temperature variability, and the regularized expecta-
tion maximization (RegEM) me thod overestimates
the temperature amplitude. This indicates that the
choice of the reconstruction technique has an influ-
ence on the final paleoclimate reconstruction.

Fig. 3 compares NH land temperature anomalies
(with respect to AD 1961−1990) over the last 1000 yr
obtained with and without tree-ring records. ‘All’
means that all 45 proxy records were used to recon-
struct the results. All results were smoothed by the
loess method (span: 0.01), fitted for AD 1850−1998
and reconstructed for AD 998−1849. Fig. 3a shows

the PC10+AR2 results for the last 1000 yr, and Fig. 3b
the same results for AD 1800−1998. Fig. 3c shows the
CPS results over the last 1000 yr, and Fig. 3d the
same results for AD 1800−1998. For the PC10+AR2
and CPS results, the amplitudes of the ‘non-dendro’
results are distinctly larger than those of the ‘dendro’
and ‘All’ results. This is consistent with the  ‘non-
dendro’ records retaining more information on the
low-frequency variability. For the EIV results in
Fig. 3e, all 3 results have large amplitudes; however,
these results need to be further verified. It can be
argued that even though the improvements and
development of reconstruction techniques are very
important, the most fundamental factor affecting
 climate reconstruction is still the quantity and quality
of the input proxy data.

237

Fig. 2. Northern Hemisphere (NH) land temperature anomalies (with respect to AD 1961−1990) over the last 1000 yr recon-
structed with PC10+AR2 (red solid line), CPS (black solid line) and EIV (blue dashed line). The 3 reconstruction results were
smoothed by the loess method (span: 0.01). All models were fitted to the period AD 1850−1998 and reconstructed for AD
998−1849. Reconstructions for (a) AD 1000−2000 and (b) 1840−2000. Olive line: instrumental CRU NH annual mean land
temperature. Gray lines: uncertainty associated with the PC10+AR2 reconstruction. Reconstructions results using (c)  no-
dendro data (i.e. using other types of proxy records, excluding tree-ring records), and (d) tree-ring records (dendro).
 Methods: 10 principal components plus second-order autoregressive model (PC10+AR2), composite plus scale (CPS) and 

regularized errors-in-variables approach (EIV)
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Fig. 4 compares our reconstruction with other re -
constructions, with 0.05 filtered values for AD 1001−
1960. To facilitate comparison, every series was
firstly expressed as anomalies from AD 1850− 1960,
and was then variance matched using the instru -
mental data from AD 1850−  1960. Ljungqvist’s (2010)

result was interpolated to annual resolution and was
then filtered by a 0.05 span.‘ Mann et al. (2008) CPS’
is for the NH reconstruction result based on the CPS
method, while the ‘Mann et al. (2008) EIV’ is for that
based on the EIV method. Ammann & Wahl’s (2007)
curve was established by reinterpreting Mann et

238

Fig. 3. Comparison of Northern Hemisphere land tempera-
ture reconstructions (with respect to AD 1961−1990) over
the last 1000 yr with (dendro) and without (no-dendro) tree-
ring records. All models were fitted in the period AD
1850−1998 and reconstructed for AD 998−1849. ‘All’: results
using 45 proxy records. Results for PC10+AR2 (a) over the
last 1000 yr and (b) for AD 1800−1998. CPS results (c) over
the last 1000 yr and (d) for AD 1800−1998. (e) EIV results
over the last 1000 yr. All series were smoothed by the loess 

method (span: 0.01)
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al. (1999), and shows little difference. These results
show that our models are very similar to those from
other studies in terms of the multi-decadal variability.
In particular, the value of temperature variability in

PC10+AR2 and CPS reconstructions
during the MWP is generally lower
than in some new reconstructions
(Mann et al. 2008 EIV, Ljungqvist
2010, McShane & Wyner 2011), but the
EIV result is equivalent to those of
Mann et al. (2008) CPS and Ljungqvist
(2010). Table 3 shows 100 yr arithmetic
means of the tem perature reconstruc-
tions de picted in Fig. 4. All 3 recon-
structions are very similar to the recon-
structions of Christiansen & Ljung -
qvist (2012), Crowley & Lowery (2000),
Hegerl et al. (2007), Jones et al. (1998),
Ljung qvist (2010) and Mann et al.
(2008) CPS, which indicate lower tem-
peratures than other reconstructions in
the 11th century, when most recon-
structions indicate cooler conditions
than in the 20th century, except for
Mann et al. (2008) EIV, Ljungqvist
(2010) and McShane & Wyner (2011).
The coldest century of our reconstruc-
tion was the 17th century. This result is

similar to reconstructions by Christiansen & Ljung -
qvist (2012), Crowley & Lowery (2000), Hegerl et al.
(2007), Jones et al. (1998), Mann et al. (2008) EIV and
Moberg et al. (2005). Different results were found by

11th     −0.23   −0.18   0.13   −0.12   −0.15   −0.21   −0.25   −0.22   −0.15   0.09   −0.16   −0.22   0.34     0.62   –0.10 
12th     −0.36   −0.34   −0.04   −0.12   −0.33   −0.23   −0.61   −0.40   −0.26   −0.18   −0.17   −0.44   −0.05   0.42   –0.18 
13th     −0.46   −0.36   −0.19   −0.18   −0.41   −0.34   −0.85   −0.43   −0.29   −0.22   −0.22   −0.35   0.01     0.36   –0.43 
14th     −0.43   −0.36   −0.13   −0.16   −0.39   −0.34   −0.70   −0.41   −0.23   −0.43   −0.20   −0.52   −0.05   0.19   –0.45 
15th     −0.59   −0.34   −0.13   −0.22   −0.41   −0.45   −0.61   −0.34   −0.31   −0.63   −0.36   −0.48   −0.17   –0.17   –0.52 
16th     −0.56   −0.36   −0.23   −0.28   −0.42   −0.49   −0.46   −0.46   −0.42   −0.63   −0.29   −0.54   −0.41   –0.28   –0.89 
17th     −0.77   −0.53   −0.39   −0.32   −0.56   −0.72   −0.76   −0.68   −0.52   −0.90   −0.35   −0.59   −0.52   –0.33   –0.85 
18th     −0.58   −0.43   −0.36   −0.28   −0.46   −0.55   −0.53   −0.41   −0.31   −0.57   −0.29   −0.51   −0.45   –0.42   –0.67 
19th     −0.52   −0.49   −0.41   −0.37   −0.49   −0.57   −0.54   −0.51   −0.49   −0.49   −0.39   −0.47   −0.46   –0.54   –0.56 
20th     −0.12   −0.10   −0.16   −0.16   −0.12   −0.07   −0.12   −0.09   −0.07   −0.11   −0.15   −0.15   −0.12   –0.12   –0.14

Table 3. Centennial Northern Hemisphere mean temperatures. Mean base period: AD 1900–1960 in the 20th century;
PC10+AR2: 10 principal components plus the second order auto-regressive model; CPS: composite plus scale; EIV: errors-

in-variables approach

Fig. 4. Comparison of different Northern Hemisphere (NH) temperature re-
constructions. All series were variance matched with the overlapping segment
of CRUTEM3v instrumental NH land temperature record for 1850−1960. All
reconstructions were filtered by the loess method (span: 0.05). Reconstruc-
tions: PC10+AR2 (red solid line), CPS (black solid line) and EIV (blue dashed 

line). Base period: AD 1001−1960
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Mann et al. (2008) CPS and Moberg et al. (2005), who
found that the coldest episode occurred in the 16th
century, and by Ammann & Wahl (2007), Mann et al.
(1999) and McShane & Wyner (2011)
who found the coldest interval in the
19th century. In conclusion, it appears
that for the NH, the LIA maximum cool-
ing occurred mainly during the 16th and
17th centuries. Table 4 is a correlation
matrix be tween all the series over the
common period 1001− 1960. The corre-
lation coefficients between the PC10+
AR2 reconstructions and other studies
are all >0.7, except for Esper et al.
(2002a), Mann et al. (2008) CPS and
McShane & Wyner (2011). The CPS and
EIV results follow a similar pattern.
These findings further illustrate that our
reconstructions are well correlated with
others with respect to the multi-decadal
variability.

We compared our results with 6 cli-
mate model simulations over the past
millennium to assess the agreement
between our reconstruction and the cli-
mate physics (Fig. 5). Fig. 5 shows that

the reconstructed multi-decadal variability is in very
good agreement with the model results over the pre-
industrial period. In addition, the amplitudes of the
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Fig. 5. Annual Northern Hemisphere temperature anomalies (with respect to
AD1500–1850) smoothed with a loess filter (span: 0.05) for PC10+AR2, CPS and
EIV reconstructions and 6 climate model simulations: BCC-CSM1.1, CCSM4,
GISS-E2-R, FGOALS-g1, IPSL-CM5A-LR,  MPI-ESM-P and LOVECLIM1.2. 

Base period: AD 1000−2000 

PC10+AR2                                         1.00 0.90 0.72 0.70 0.88 0.85 0.64 0.79 0.74 0.85 0.75 0.65 0.71 0.59 0.77 
CPS                                                   0.90 1.00 0.76 0.74 0.91 0.79 0.72 0.87 0.74 0.72 0.74 0.65 0.70 0.52 0.67 
EIV                                                    0.72 0.76 1.00 0.65 0.77 0.70 0.38 0.62 0.65 0.73 0.59 0.48 0.79 0.79 0.70 
Ammann & Wahl (2007)                   0.70 0.74 0.65 1.00 0.69 0.71 0.35 0.69 0.73 0.63 0.93 0.57 0.76 0.67 0.56 
Christiansen & Ljungqvist (2012)   0.88 0.91 0.77 0.69 1.00 0.81 0.71 0.87 0.74 0.82 0.71 0.72 0.73 0.58 0.73 
Crowley & Lowery (2000)               0.85 0.79 0.70 0.71 0.81 1.00 0.50 0.78 0.80 0.85 0.72 0.63 0.76 0.68 0.80 
Esper et al. (2002a)                           0.64 0.72 0.38 0.35 0.71 0.50 1.00 0.68 0.45 0.45 0.42 0.48 0.28 0.05 0.43 
Hegerl et al. (2007)                           0.79 0.87 0.62 0.69 0.87 0.78 0.68 1.00 0.77 0.70 0.66 0.71 0.67 0.42 0.68 
Jones et al. (1998)                             0.74 0.74 0.65 0.73 0.74 0.80 0.45 0.77 1.00 0.73 0.73 0.61 0.70 0.57 0.68 
Ljungqvist (2010)                             0.85 0.72 0.73 0.63 0.82 0.85 0.45 0.70 0.73 1.00 0.68 0.71 0.82 0.76 0.84 
Mann et al. (1999)                            0.75 0.74 0.59 0.93 0.71 0.72 0.42 0.66 0.73 0.68 1.00 0.58 0.70 0.64 0.55 
Mann et al. (2008) CPS                   0.65 0.65 0.48 0.57 0.72 0.63 0.48 0.71 0.61 0.71 0.58 1.00 0.71 0.50 0.58 
Mann et al. (2008) EIV                     0.71 0.70 0.79 0.76 0.73 0.76 0.28 0.67 0.70 0.82 0.70 0.71 1.00 0.89 0.74 
McShane & Wyner (2011)               0.59 0.52 0.79 0.67 0.58 0.68 0.05 0.42 0.57 0.76 0.64 0.50 0.89 1.00 0.67 
Moberg et al. (2005)                         0.77 0.67 0.70 0.56 0.73 0.80 0.43 0.68 0.68 0.84 0.55 0.58 0.74 0.67 1.00

Table 4. Correlation coefficient matrix between all Northern Hemisphere temperature series over the period AD 1001−1960
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models are very similar to the reconstruction except
during the MWP. All curves display a general long-
term cooling trend from the beginning of the millen-
nium until AD ~1849. Some particularly cold periods
are also well represented both in the sim ulations and
in the reconstruction, such as AD ~1452−1453 and in
the 17th century. However, the cooling simulated
after the AD 1258 and Tambora eruptions (AD 1815)
is much larger than in the reconstruction. Our results
indicate that while some volcanic eruptions were
captured by our reconstructions, others were less dis-
tinct. The reason is that there are some uncertainties
both in the simulation and in the reconstruction
(Anchu kaitis et al. 2012, Mann et al. 2012). However,
the paleoclimate reconstruction, to a certain extent,
can capture the volcanic cooling and provides a
unique opportunity to test model simulations (Bra-
connot et al. 2012). It is worth noting that all model
simulations underestimated the temperature of the
MWP. The causes of those dis crepancies between the
reconstruction and simulated results are difficult to
assess, but we em phasize that both approaches yield
the same overall pattern for the past millennium,
despite their respective errors.

4.  CONCLUSIONS

We selected 45 paleotemperature proxy records on
the basis of 3 criteria (annual resolution, >1 millen-
nium in length, and representing an explicit temper-
ature signal) in order to minimize artifacts due to (1)
combination of time series of different lengths or res-
olution and (2) non-climatic artifacts. Using these
records, NH temperature over the last millennium
was reconstructed using 3 different reconstruction
techniques: principal component regression (PC10+
AR2), composite plus scale (CPS) and the regularized
errors-in-variables approach (EIV). The high quality
of our reconstructions is demonstrated by the very
good agreement with 6 independent climate model
simulations; however, our reconstructions yielded
distinctly warmer temperatures than those in all sim-
ulations during the MWP, and while our reconstruc-
tions captured the largest tropical volcanic eruption
cooling event with a magnitude equivalent to that in
the simulations, the other eruption cooling events
were not distinct. There were notable differences
between the temperature reconstructions de rived
from different reconstruction methods, proving that
the improvement and development of reconstruction
techniques is of importance for current paleoclimate
reconstructions. Our results also indicate that the

amplitude of the reconstruction based only on the
annually resolved dataset is equivalent to that of
other reconstructions with non-annually re solved
data sets. Thus, we advise the exclusive use of annu-
ally resolved proxy data which represent clearly a
temperature, and which have been validated using
meteorological data.
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