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1.  INTRODUCTION

Winter wheat Triticum aestivum L. is the most
wide spread cultivated crop in the Pacific Northwest
of the USA, occupying 1.32 million ha (2010− 2014 av-
erage; NASS 2014b). Approximately 75% of winter
wheat in this region is grown in the Columbia
Plateau, which encompasses much of central and
eastern Washington, parts of northeastern Oregon,
and northwestern Idaho (Fig. 1). Collectively, winter
wheat in the Columbia Plateau generates over US$1
billion annually (NASS 2014b), contributing substan-
tially to the rural economy. However, as nearly all the
winter wheat grown in the region is dryland farmed,

yields can fluctuate from year to year due to moisture
limitations (Schillinger et al. 2008, Fuentes et al.
2003). Interannual variability in winter wheat yield
not only impacts local eco no mies but also affects
global wheat prices (e.g. Sternberg 2012). Under-
standing the factors that contribute to interannual
variability in wheat production is thus of key impor-
tance to local agribusiness, global wheat markets,
and global food security.

Global wheat productivity increased substantially
from 1960s to 1990s (Cantelaube et al. 2004, Chen et
al. 2004, Lobell & Field 2007, Lin & Huybers 2012)
due to advances in agricultural techniques (e.g. culti-
vars) and management (e.g. fertilizer usage, irriga-
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tion and crop rotation). However, increases have
plateaued in some regions since the 1990s due to a
less favorable climate (Lobell & Field 2007) and
decreased fertilizer usage (Lin & Huybers 2012). Sim-
ilar to global wheat yields, winter wheat yields across
the Columbia Plateau increased approximately 20%
from 1980 to 2000, with little overall change since
2000 (Fig. 1b). Whereas human factors (e.g. cultivar
choices or management) contribute to long-term
trends in yields, interannual climate variability typi-
cally contributes to interannual yield variability
(Cantelaube et al. 2004).

Numerous studies have empirically or experimen-
tally examined climate–yield relationships for staple
crops such as wheat. Climate variability has been
shown to account for roughly one-third of wheat
yield variability at global scales (Lobell & Field 2007,
Ray et al. 2015). The influence of climate variability
on crop yield includes both energy and moisture con-
straints that can take on different relationships
throughout crop development and vary geographi-
cally (Porter & Gawith 1999, Schlenker & Roberts

2009, Asseng et al. 2012). Tempera-
ture–yield relationships can be non-
linear in nature throughout the grow-
ing season (Porter & Semenov 2005).
Optimal temperature ranges have
been identified for various wheat de -
velopment stages, with detrimental
impacts for both warm and cold excur-
sions from thermal optimums. For
example, high temperatures (>30°C)
during flowering and grain-filling
stages can reduce yields (Porter &
Gawith 1999). Warm temperatures
can also accelerate the growth cycle
thereby limiting photosynthesis and
crop biomass (Ferris et al. 1998). Cli-
mate–yield relationships for dryland
wheat cropping  systems typically
show linear relationships between
moisture availability and yield (e.g.
Zhang & Oweis 1999, Schillinger et al.
2008). Water limitation can de crease
stomatal conductance and viable leaf
area, lead to a decline in photosynthe-
sis, and result in reduced grain num-
ber and mass and in creased grain pro-
tein content (Asseng et al. 2012).

Prior studies have typically exam-
ined climate–yield relationships ac -
ross broad geographic scales (e.g.
national and state level) and using

climatic summaries tied to fixed calendar dates such
as months or seasons (e.g. Ray et al. 2015). However,
interannual climate–yield relationships are likely to
vary at finer spatial scales due to geographic hetero -
geneity in underlying climatology and its interplay
with thermal and moisture optimums for crop
development (e.g. Leng et al. 2016). Additionally,
climate metrics (e.g. water balance, solar radiation)
that are aligned with plant physiological constraints
throughout crop development may have more ex -
planatory power in predicting crop yields than
 summaries of temperature and precipitation tied to
static calendar dates (e.g. Hernández-Barrera &
Rodríguez-Puebla 2017). Our study addresses these
knowledge gaps in  climate–yield relationships for
winter wheat across the Columbia Plateau using
county-level crop and climate data. Collectively,
the ability to improve our understanding of the cli-
matic factors that influence interannual variability
in wheat yields may improve seasonal outlooks for
wheat yields and help inform wheat futures on the
global  market.
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Fig. 1. (a) Geographic extent of the 27 counties in the Columbia Plateau of
the USA (inset map) and average county winter wheat yields for 1980 to
2014. The extent of agricultural land where winter wheat was grown in at
least 1 yr from 2008 to 2014 is shown in grey. The numbering of the counties
is referred to in Table S4. (b) Annual county area weighted average winter 

wheat yields in the Columbia Plateau from 1980 to 2014
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2.  DATA AND METHODS

2.1.  Study region

The agricultural lands of the Columbia Plateau
comprise the lower elevations (~170 to 1000 m) of the
Columbia River Basin in the US Pacific Northwest,
located between the Cascade Range and the Rocky
Mountains. Typical of much of the Pacific Northwest,
the region receives >75% of its annual precipitation
from November to May. Annual average precipita-
tion across the wheat growing lands vary from
~200 mm in the rain-shadowed lee of the Cascade
Range in central Washington to >800 mm across the
eastern portion of the region where elevation rises on
the windward flanks of the Northern Rockies in
Idaho. The mean annual temperature generally ad -
heres to elevational relationships with the highest
temperatures in the lower elevations of the western
Columbia Plateau and lowest temperatures at higher
elevations in the eastern Columbia Plateau.

Winter wheat is the major crop in the Columbia
Plateau, covering >30% of the 3.35 million ha of
cropland across the region. Dryland farming is used
in most of the region except in the driest areas in the
southwestern extent of the region, where wheat is
often irrigated. The county-mean winter wheat
yields averaged from 1980 to 2014 vary geographi-
cally across the region from 2600 to 5100 kg ha−1 (Fig.
1a). Yields increase west to east across the region
generally tracking with the gradient of moisture
availability. Crop rotations are adopted across the
region based primarily on precipitation, with an nual
cropping in the wetter areas and annual-fallow crop-
ping in the drier areas. Occasional fallowing of crop-
land is implemented in drier areas to help recharge
soil moisture.

2.2.  Yield and climate data

County-level winter wheat yields from 1980 to
2014 for 27 counties from Washington, Oregon, and
Idaho in the Columbia Plateau were acquired from
the National Agricultural Statistics Service (NASS
2014b). Although there were several missing records
in this dataset, each county had at least 28 yr of valid
data from 1980 to 2014. Long-term changes in wheat
yields may be represented using a linear or higher-
order polynomial trend, but may also occur as abrupt
shifts due to the adoption of technological advance-
ments, particularly at smaller geographic scales. We
used first-differences (i.e. changes from the previous

year) of wheat yields (ΔY) and climate data as in pre-
vious studies (Lobell & Field 2007, Rao et al. 2015)
be cause this approach attempts to minimize the in -
fluence of slowly changing non-climatic factors on
yields without a priori assuming a functional form of
this influence through time.

Daily maximum and minimum temperature, spe-
cific humidity, precipitation, solar radiation, and
wind speed at ~4 km spatial resolution from 1979 to
2014 were acquired from surface meteorological
dataset of Abatzoglou (2013). Abatzoglou (2013) de -
monstrated good agreement between gridded mete-
orological estimates and those from in situ ob ser -
vations across the study area. We defined the geo-
graphic extent of winter wheat within each county by
aggregating location data from a composite of 30 m
resolution Cropland Data Layer (CDL; NASS 2014a)
from 2008 to 2014 (Fig. 1a) to the 4 km spatial resolu-
tion grid of the climate data. This spatial layer was
used to mask out 4 km pixels within counties where
<10% of CDL was classified as winter wheat. Cli-
mate data from remaining pixels that had at least
10% of land classified as winter wheat within each
of the 27 counties were aggregated to produce a
county-level climate collocated with the geographic
extent of the crop.

While most prior research examined climate–yield
relationships using static calendar dates, we adopted
an approach that used phenological dates tied to the
development of winter wheat for each county and
year. We defined a universal planting date for all
counties as 1 Oct, which is approximate for the aver-
age planting sowing date across the broader region.
However, we acknowledge that sowing dates likely
vary geographically and interannually. Phenostages
of winter wheat were defined using a growing de -
gree day (GDD) based model for winter wheat
(Ritchie 1991). This model divides the growing sea-
son into 7 main phenostages based on cumulative
GDD with a base temperature of 0°C, consisting of
germination, emergence, tillering, booting, flower-
ing, and grain filling and maturity stages (see
Table S1 in the supplement at www. int-res. com/
 articles/ suppl/ c074 p071 _ supp.   pdf). For reference,
we report the average timing of each phenostage and
county for the 1980−2014 period in Table S2.

Dryland wheat production in the Columbia
Plateau is dependent on soil moisture captured in
winter precipitation in combination with spring pre-
cipitation. While most prior climate–yield studies
have relied on climate variables of temperature and
precipitation (e.g. Ray et al. 2015), we hypothesized
that water balance metrics should be better aligned
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with crop water use, and thus may better relate to
interannual yield variability. We applied a modified
Thornthwaite water balance model (Willmott et al.
1985) that considers temperature, precipitation, and
reference evapotranspiration using the Penman-
Montieth method (Allen et al. 1998). Because refer-
ence evapotranspiration assumes a static reference
grass surface, we used a seasonally varying crop
coefficient for winter wheat based on GDD to esti-
mate crop potential evapotranspiration (Table S3;
Saadi et al. 2015). We used county-level available
soil water capacity data for the top 1500 mm of the
soil column aggregated from winter wheat growing
regions from the State Soil Geographic (STATSGO)
database at a 1 km spatial resolution and the water
balance model to calculate actual evapotranspiration
(AET) and the water deficit (DEF, the difference be -
tween the crop potential evapotranspiration and AET).

The climate data that were ultimately considered
were mean temperature, precipitation, AET, and
DEF for each phenostage, and all combinations of
consecutive phenological stages. We also consider a
measure of heat stress as the cumulative heating
degree days (HDD) from flowering to maturity using
a base threshold of 30°C for daily maximum temper-
ature (Porter & Gawith 1999, Liu et al. 2014). All
 climate–yield relationships were assessed using
 first-difference values.

2.3.  Climate–yield relationships and models

We first explored linear climate–yield relationships
by calculating Pearson’s correlation coefficients (r)
between yield and climate metrics for each phenolog-
ical stage and all combinations of consecutive pheno-
logical stages for 1980 to 2014. This analysis sought to
identify phenological windows during which regional
climate–yield relationships were maximized, defined
by the period for which the maximum county-mean
variance was explained (R2). This optimization was
conducted separately for temperature, precipitation,
AET, and DEF. Spatial variability in county-level
 climate–yield relationships was ex plored using both r
and coefficients from bivariate linear regression for
each optimized phenological window. Although op-
tima could be identified separately for each county,
we wanted to constrain our modeling effort to a single
phenological window for each variable to assess cli-
mate impacts for the whole region and spatial vari-
ability across the study region.

We developed forward stepwise linear regression
models separately for each county using the opti-

mized phenological windows from the 4 climate
variables and HDD. Results were largely similar
using backward stepwise regression. We chose to
use stepwise regression models over multiple linear
regression to avoid overfitting and to develop more
parsimonious models. The stepwise regression
model considered 5 climate predictors and their
square terms. Stepwise regression fits variables in
order of im portance, and is often used to develop
models where there are several independent vari-
ables that may explain the variance of the depend-
ent variable. Independent variables were included
in the model when the p-value for the F-test of the
change in the sum of squared error was <0.05, and
were removed from the model when the p-value
was >0.10.

Finally, we compared climate–yield relationships
developed at the county level to a pooled model that
combined first-differences of yields and climate vari-
ables from all 27 counties in the study region into a
single equation. The pooled model assumes that
 climate–yield relationships are identical across the
study region. Conversely, climate–yield models de -
veloped at the county level can portray spatial varia-
tions in these relationships, and hence may be more
adept at capturing differences in climate–yield rela-
tionships across agricultural regions that span dis-
tinct climatic gradients.

3.  RESULTS

3.1.  Bivariate climate–yield relationships

Interannual relationships between climate and
winter wheat yield exhibited higher correlations with
moisture-related metrics than temperature (Fig. 2).
The strongest climate–yield correlations covered
time periods that include the latter stages of crop de -
velopment. The county mean squared Pearson’s
 correlation coefficient (⎯R⎯2) between first-difference
yield (ΔY) and first-difference temperature showed
an optimum (⎯R⎯2 = 0.14) during the period from grain
filling to maturity (ΔTgm). The optimum R2 for first-
difference precipitation (⎯R⎯2 = 0.22), first-difference
AET (⎯R⎯2 = 0.29), and first-difference DEF (⎯R⎯2 = 0.26)
also occurred during the latter stages of crop devel-
opment from booting to maturity (ΔPbm), grain filling
to maturity (ΔAETgm), and booting to maturity
(ΔDEFbm), respectively. Although the maximum⎯R⎯2

values of ΔDEF occurred between booting to matu-
rity, there were only minor reductions in⎯R⎯2 values
during other phenological windows that included
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grain filling. Therefore, we adopted growing season
(germination-maturity) ΔDEF in subsequent analy-
ses. Heat stress on winter wheat only occurs during
the latter stages of development, given the climatol-
ogy of the region, so we used ΔHDD from flowering
to maturity in subsequent analyses (⎯R⎯2 = 0.05, not
shown). 

The spatial variability in county-level bivariate cli-
mate–yield correlations is shown in Fig. 3. Tempera-
ture (ΔTgm) exhibited negative correlations with yields
across the most of study area. Statistically significant
correlations (p < 0.05) were found  primarily in clima-
tologically cooler counties in the northeastern portion
of the region. Correlations between HDD and yield
were mainly weak and not significant across the Co-
lumbia Plateau, except for a few significant negative
correlations for a few counties in the warmer south-
western portion of the region. In contrast, more coher-
ent relationships were realized between yield and
moisture related variables across the study area, with
positive correlations between ΔY and both ΔPbm and

ΔAETgm, and negative correlations
with ΔDEF. The strongest correlations
with moisture-related variables were
seen in the central and southern por-
tion of the plateau, for counties with
mean annual precipitation between
300 and 550 mm. Nonsignificant corre-
lations with moisture variables were
evident in counties along the western
flanks of the plateau where irrigation
was more prevalent (see Table S4 in
the supplement at www. int-res. com/
 articles/ suppl/ c074 p071 _ supp.   pdf).

Bivariate linear regression coeffi-
cients between climate variability and
yield exhibited similar spatial patterns
as seen for correlations (Fig. 3). Aver-
aged across all counties, the mean
 co efficient for ΔTgm was −143.4 kg ha−1

°C−1 (Table 1). However, we show a
strong linear correlation (r = 0.85)
across the 27 county study area be-
tween county-level coefficients for
ΔTgm and annual mean temperature
(Fig. 4a), suggesting that wheat yields
in cooler counties were more sensitive
to interannual variability in tempera-
ture during the latter stages of crop de-
velopment than in climatologically
warmer counties. County-average co-
efficients (Table 1) for ΔPbm, ΔAETgm,
and ΔDEF were 7.0 kg ha−1 mm−1,

14.5 kg ha−1 mm−1, and −7.9 kg ha−1 mm−1, respec-
tively. A significant negative correlation (r = −0.49)
was seen between the coefficient of ΔDEF and annual
mean precipitation (Fig. 4b), suggesting larger overall
sensitivity to moisture deficits for wheat yields in wet-
ter counties than in drier counties.

Pooled results of first-difference yields and first-
difference climate for all 27 counties showed ana -
logous linear climate–yield relationships. Unlike
 correlations or regressions at the county-level,
pooled results only provide single values for the
study area, and cannot capture subregional variabil-
ity in climate–yield relationships. Pearson’s correla-
tion coefficients and regression coefficients generally
resembled those for county-level means. Bivariate
linear regressions to temperature variables (Table 1)
were −132.7 kg ha −1 °C−1 and −1.6 kg ha −1 °C−1 d−1

for ΔTgm and ΔHDD, respectively. Pooled linear
regressions coefficients (Table 1) for ΔPbm, ΔAETgm,
and ΔDEF were 6.3 kg ha−1 mm−1, 14.0 kg ha−1 mm−1,
and −6.6 kg ha−1 mm−1, respectively.
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Fig. 2. Matrices of county-mean R2 value between first-difference winter wheat
yields (ΔY) and first-difference climate variables for mean temperature (ΔT), ac-
cumulated precipitation (ΔP), actual evapotranspiration (ΔAET), and climatic
water deficit (ΔDEF). The y-axes denote the ending phenology stage, and x-axes
denote the number of consecutive phenology stages. White cells: not evaluated
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3.2.  Multivariate climate-yield relationships

Stepwise linear regression models for each county
explained an average of 37% of county level ΔY
(Table S4, Fig. 5a). Yakima County, Washington and
Union County, Oregon had no model, whereas cli-
mate explained 77.4% of the yield variance in
Garfield County, Washington. The 3 most frequently
selected predictors for the first-difference stepwise
model were ΔAETgm, ΔPbm, and ΔDEF. However, due
to the collinearity among moisture variables, typi-
cally only a single moisture variable was used in each
county. All but a single county for which a first-differ-
ence model was built incorporated a moisture vari-
able. Seven counties selected square terms of climate
variables as wheat yield predictors, indicating po -
tential nonlinear climate–yield relationships. Fifteen
counties used a single climate predictor, with 8 of
these selecting ΔAETgm. Residuals between observed
and modeled yields were normally distributed and
centered around zero, suggesting that our modeling
choices were reasonable.

The geographic pattern of explained variance sug-
gests a larger portion of explained variance for coun-
ties in the central portion of the plateau than for
counties on the periphery, similar to that seen in bi -
variate relationships (Fig. 5). However, the spatial
variability in modeled R2 did not exhibit any appar-
ent relationship to underlying spatial variability in
climate, unlike for the bivariate relationships. Part of
the spatial variability is likely a function of the under-
lying non-climatic factors such as spatial variability
in irrigation usage. For example, the first-difference
model explained an average of 25% of the variance
in interannual wheat yields in counties where ≥10%
of harvested land was irrigated, compared to nearly
40% of the variance in all remaining counties (Table
S4).

The stepwise model that used pooled data from all
counties explained 27% of the interannual variability
in ΔY using ΔPbm, ΔAETgm, ΔDEF, and ΔHDD as pre-
dictors (Table S5). The sign of the coefficient for each
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                                      ⎯rcounty                                             ⎯βcounty                                 rpooled                                  βpooled

ΔTgm                    −0.32 ± 0.19 (13)                   −143.4 ± 88.2 kg ha−1 °C−1                    −0.30*                 −132.7 kg ha−1 °C−1

ΔPbm                      0.44 ± 0.17 (22)                        +7.0 ± 3.4 kg ha−1 mm−1                    0.43*                     +6.3 kg ha−1 mm−1

ΔAETgm                 0.51 ± 0.17 (23)                       +14.5 ± 5.8 kg ha−1 mm−1                    0.50*                   +14.0 kg ha−1 mm−1

ΔDEF                  −0.49 ± 0.17 (22)                         −7.9 ± 4.5 kg ha−1 mm−1                  −0.46*                     −6.6 kg ha−1 mm−1

ΔHDD                 −0.06 ± 0.21 (3)                          +0.3 ± 4.4 kg ha−1 °C−1 d−1              −0.10*                     −1.6 kg ha−1 °C−1 d−1

Table 1. Pearson’s correlation coefficient (r) and linear regressions (β) averaged for the 27 counties (parentheses: no. of counties
with statistically significant [p < 0.05] correlations) and for pooled variables. Data are mean (±SD, where indicated). *Significant 

(p < 0.05)

Fig. 3. Pearson’s correlation coefficients (r) and coefficients of
linear regression (β) between first-difference yields and first-
difference climate variables for mean temperature from grain
filling to maturity (ΔTgm), heat degree days from flowering to
maturity (ΔHDD), accumulated precipitation from booting to
maturity (ΔPbm), actual evapotranspiration from grain filling to
maturity (ΔAETgm), and climatic water deficit during the entire
growing season (ΔDEF). β values for the 3 moisture-related
variables share a common color bar. Counties that exhibited 

non-significant relationships are denoted by hatched area
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term in the pooled model was consis-
tent with results bivariate county-level
regression analyses. However, absent
in the pooled model is the direct incor-
poration of temperature during the lat-
ter stages of crop development, which
exhibited substantial subregional vari-
ability in bivariate analysis. The spatial
pattern of explanatory power from the
pooled model was similar to that of the
county-level model (Fig. 5b). However,
the pooled model explained 10% over-
all variability in crop yields with re-
duced explanatory power for counties
in the eastern portions of the region
that exhibited significant relationships
with temperature.

4.  DISCUSSION AND
 CONCLUSION

Stepwise linear regression models
indicate that climate explains 27 to
37% of the county-level interannual
variability in winter wheat yield over
the Columbia Plateau from 1980 to
2014. These results are similar to the
proportion of explained variance in

global wheat yields by climate factors (Ray et al.
2015). Interannual variability in winter wheat yields
was more sensitive to moisture and energy variability
during the latter stages of the crop development,
especially during flowering and grain filling, than
during the earlier growing season. These results are
consistent with previous studies that have shown
wheat yields are more sensitive to temperature dur-
ing its reproductive phase (from flowering to matu-
rity) than during its vegetative phase (Por ter & Gaw-
ith 1999, Asseng et al. 2012). Collectively, we suggest
that moisture is the primary climatic constraint of
winter wheat yields in the Columbia Plateau, and
that water balance metrics provide more explanatory
power than precipitation alone.

Our results demonstrate a negative relationship
be tween wheat yield and temperature during the
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Fig. 4. Scatterplot of county-level 1981 to 2010 climate normals and climate-
yield coefficients for first-difference yields and climate for (a) mean tempera-
ture from grain filling to maturity (ΔTgm) and mean annual temperature, (b) cli-
matic water deficit during entire growing season (ΔDEF) and mean annual
precipitation, (c) accumulated precipitation from booting to maturity (ΔPbm)
and mean annual precipitation, and (d) actual evapotranspiration from grain
filling to maturity (ΔAETgm) and mean annual precipitation. The correlation 

coefficient and p-value is reported for each relationship

Fig. 5. The spatial distribution of coefficient of determination
(R2) from (a) county-level stepwise regression models and
(b) pooled stepwise regression model. Dark grey: counties
for which no climatic predictor entered in the stepwise 

regression model was developed
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later pheno stages of wheat development from flow-
ering to maturity, consistent with previous studies
that found that elevated temperatures during this pe-
riod re duce grain numbers and grain weight (Ferris
et al. 1998, Narayanan et al. 2015). Liu et al. (2016)
and Asseng et al. (2015) suggested a 4.1 to 6.4% de -
cline in global wheat yield per 1°C warming. Our re-
sults support this hypothesis for the study region, al-
though we only address temperature impacts directly
through temperature–yield relationships over 1 pe-
riod of crop development — ignoring the indirect in-
fluences of warming through AET and DEF and how
warming influences phenology. Bivariate re gres sion
between wheat yields and temperature variability
suggest an average 3.6% decline in wheat yield per
1°C warming during grain filling to maturity phenos-
tages across the Columbia Plateau.

Paradoxically, the strongest negative relationships
between temperature and yield were generally found
in the climatologically cooler counties of the study do-
main. However, our use of phenological calendars al-
lows wheat to reach the grain filling-maturity phenos-
tages later in the calendar year when day lengths are
longer and temperatures are higher. Mean air tem-
perature from grain filling to maturity was, on aver-
age, 1.2°C warmer for the climatologically coolest ter-
cile of counties (for mean annual temperature) than
the rest of the domain. We hypothesize that the de-
layed phenology in these cooler counties, where the
average onset date of grain filling is 25 d later than in
other warmer counties (Table S2), allows them to be
susceptible to temperature variability during a clima-
tologically warmer time of the year when tempera-
tures may deviate from thermal optimums for wheat
growth. Similarly, we hypothesize that relatively
weak relationships be tween HDD and yields across
the Columbia Plateau are a consequence of the
 seasonal mismatch between the phenology of winter
wheat and extreme temperatures across the region,
with wheat typically reaching maturity in warmer
counties before the onset of temperatures exceeding
30°C.

The bivariate regression coefficients for AET sug-
gest slightly lower moisture impacts on wheat yields
than shown in previous field studies within the
region by Schillinger et al. (2008). Estimated bivari-
ate coefficients for AETgm, which integrates water
use by wheat during the latter stages of develop-
ment, were 14.5 kg ha−1 mm−1 and 14.0 kg ha−1 mm−1

for county-mean and pooled regression models
(Table 1), respectively. In contrast, Schillinger et al.
(2008) showed a regression coefficient of 19.2 kg ha−1

mm−1 to total available moisture. While there are dif-

ferences between total available moisture (overwin-
ter soil moisture gain plus April−June precipitation)
as defined by Schillinger et al. (2008) and AETgm,
which represents plant water use from soil moisture
reserved and precipitation occurring from grain fill-
ing to maturity, the results are comparable, and ex -
tend the field-study relationships defined by Schil -
linger et al. (2008) to the broader geographic area.

Several caveats in our study may constrain the per-
formance of our yield models. First, the actual plant-
ing date of winter wheat varies across the study
region. Due to the lack of planting date records, we
arbitrarily defined planting as 1 Oct, the middle of
the general planting window for the region. This
assumption may impact the timing of subsequent
phenology stages and climate–yield relationships.
Secondly, we did not distinguish irrigated and non-
irrigated cropland due to a lack of continuous yield
records. Irrigation can mitigate climate impacts on
crop development, particularly related to water limi-
tation, thereby leading to weakened climate–yield
correlations (Troy et al. 2015). We hypothesize that
poorly performing yield models for counties in the
arid western portion of the plateau are a function of a
higher fraction of harvested wheat being irrigated,
and thus less sensitivity to moisture variability. Addi-
tional unexplained variances may be related to direct
and indirect climate impacts beyond those that we
considered, for example, the occurrence of stripe rust
(e.g. Sharma-Poudyal & Chen 2011) and precipita-
tion events prior to harvest may be detrimental to
yield. Non-climatic drivers of variability in wheat
yield are also probable, and may even interact with
observed climate relationships. For example, spatio -
temporal changes in wheat cultivars could alter the
climate sensitivity of yields (Cattivelli et al. 2008) and
produce non-stationarity in climate–yield relation-
ships.

Stepwise regression models across the 27 counties
in the Columbia Plateau showed that climate ex -
plained up to 77% of the interannual variability in
wheat yield. Unlike previous analyses that have exa -
mined climate–yield relationships at broader political
or spatial units (e.g. Ray et al. 2015), we show sub -
regional variability in climate–yield relationships
across the study area. Pooled models may fail to
 capture these subregional differences because they
as sume a fixed relationship across geographic space.
This finding highlights potential limitations of  climate–
yield models that use pooled data or that aggregate
climate and yield data to broader geographic units
in regions that traverse climatic gradients. Our yield
models may have applied value in forecasting winter
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wheat yields during the growing season by incorpo-
rating both observed climate and seasonal climate
forecasts, such as those from downscaled seasonal
forecasts that have demonstrated skill across the
study area (Barbero et al. 2017). Collectively, im-
proved understanding of the subregional variability of
climate impacts on agriculture can help improve sea-
sonal forecasts of yield. Simple empirical climate–
yield models may also provide insight on potential
subregional agricultural impacts in a changing climate
to complement results from processed-based crop
models (e.g. Stockle et al. 2017).
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