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1.  INTRODUCTION

One of the most common methods used to inter -
polate irregular observations to a regular grid is
angular-distance weighting (ADW). ADW was origi-
nally developed by Shepard (Shepard 1968, 1984,
Willmott et al. 1985). It includes an ‘angular’ term
which accounts for the directional separation as seen
from a target grid point, so that over-weighting of
information from a densely sampled direction is
avoided (Efthymiadis et al. 2006). All forms of ADW
have a common approach that an estimate at a regu-
lar point is a weighted average of nearby irregular
stations’ data, where individual station weight is a
function of inverse distance from the point to be esti-

mated and angular isolation from other data points
(Shepard 1968, Willmott et al. 1985, New et al. 2000,
Hofstra & New 2009).

On global and regional scales, ADW has been used
to create grid datasets of climatology (Legates & Will-
mott 1990a,b), monthly anomalies (New et al. 2000),
daily series (Hofstra & New 2009, Herrera et al.
2012), and extreme indices (Kiktev et al. 2003,
Alexander et al. 2006, Yin et al. 2015). For long-term
gauge-based daily precipitation datasets in China,
many interpolation methods have been used, such as
thin-plate spline (Yuan et al. 2015) and optimal inter-
polation (Xie et al. 2007, Shen et al. 2010, Shen &
Xiong 2016). Application of interpolation algorithms
to extremes has taken 2 approaches: either calculat-
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ing indices then gridding (Yin et al. 2015), or deriving
extreme indices from gridded datasets (Zhou et al.
2016). Differences in estimated extreme index trends
between these 2 methods tend to be small, but differ-
ences in magnitudes are large.

The implementation of ADW often uses the concept
of correlation decay distance (CDD), also called cor-
relation length scale. CDD is used to guide the choice
of which stations influence a grid value and to form
the inverse-distance component of station weight.
CDD is defined as the distance at which the correla-
tion between one station and all other stations decays
below e−1 (Briffa & Jones 1993, Jones et al. 1997, Hof-
stra & New 2009). When interpolating climate vari-
ables, the CDD has often been assumed to be iso -
tropic (e.g. New et al. 2000). However, CDD can be
anisotropic both for temperature (Jones et al. 1997)
and precipitation (Hofstra & New 2009); daily climate
series (Hofstra & New 2009) and extreme  climate in-
dices (Alexander et al. 2006); and global (Jones et al.
1997) and regional scales (Hofstra & New 2009).
Using CDDs that varied spatially by seasonal or syn-
optic state would yield small improvements in ADW
interpolation skill, relative to using a fixed CDD
across the whole of Europe (Hofstra & New 2009). In
other words, accounting for local conditions could im-
prove the statistical performance of global measures.
For instance, when the inverse- distance weighting
method is adjusted for local sampling density, the re-
sults are superior to the standard results (Lu & Wong
2008). When regression is ad justed for local variabil-
ity, local regressions always perform better than the
global regressions (e.g. Brunsdon et al. 1998).

The purpose of this study is to assess any improve-
ment obtained by using a regionally and seasonally
variable CDD rather than a fixed CDD based on the
entire mainland China daily precipitation dataset or
the intermediate case of a seasonally invariant CDD
within each region. We also assess the influence of
using anisotropic versus isotropic CDDs. Before
inter polating, we applied a bias correction to daily
precipitation data from each gauge in terms of wind-
induced undercatch, wetting losses, and neglect of
trace precipitation amounts in order to improve the
accuracy and systematic biases in the precipitation
data series.

Formal explanations about CDD and the ADW
interpolation technique are presented in Section 2. In
Section 3, the daily precipitation dataset and bias-
correction method are introduced. Section 4 presents
the spatial and seasonal variability in CDD and its
spatial field of anisotropy for precipitation. In Section
5, we use different CDDs along with one year (2008)

cross-validation to test the sensitivity of ADW inter-
polation skill to the assumptions about CDD, and
suggest the best choice of CDD in each region of
mainland China for precipitation spatial interpola-
tion. In the last section, some conclusions are listed.

2.  CDD AND ADW INTERPOLATION TECHNIQUE

CDD is the key component for the ADW interpola-
tion technique, which is usually calculated as follows.
First, Pearson correlation coefficients between the
target station and each other station are determined.
Then these values are sorted by spherical-geometry
distance (Willmott et al. 1985) to the target station
and an exponential function is fitted by least squares
to the cloud of points. The CDD is set as the distance
where the fitted exponential function is equal to e−1.
Relatively short CDDs indicate that only nearby sta-
tions within this distance have a significant correla-
tion, whereas a larger CDD arises when more distant
stations are also significantly correlated with the tar-
get point (Briffa & Jones 1993, Jones et al. 1997,
Osborn & Hulme 1997, Hofstra & New 2009).

The weights of ADW interpolation include 2 com-
ponents: the distance term and the angular term,
which accounts for the geographical separation of
the sites of the time series. This technique relies on
the fact that the inter-relation of stations decreases
with distance, both in terms of the time-mean and the
variability. Thus in terms of local averaging, it is rea-
sonable to assign higher weights to nearby-located
stations than to remote ones. Moreover, since the
time series averaged are, in general, unevenly dis-
tributed in space, the angular separation between
the sites of the interpolated time series is taken into
account by avoiding over-weighting of information
from the same sector: well-separated stations are
more strongly weighted than nearby ones (Efthy -
miadis et al. 2006). The angular distance weight for
each station i is the outcome of their product (Hofstra
& New 2009):

(1)

where w is the integrated weight, wrad is the distance
weight, and wang is the angular weight. All stations
within the search radius (which equals CDD) from
the target grid for interpolation are selected. The dis-
tance term wrad(i ) assigned to each station i is an
exponential function of its distance x from the target
grid point:

(2)

( ) ( ) ( )rad ang= ×w i w i w i

( ) (e )rad
/CDD= −w i x m
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where m is a constant global parameter, and setting
to 4 is an optimal performance after cross-validation.
This value has also been used by New et al. (2000)
and Hofstra & New (2009). The angular term for each
station is:

(3)

where n is the number of contributing stations within
the CDD, and θki is the angular separation of stations
k and i with the vertex of angle defined at the target
grid point. The overall weighting favors stations clos-
est to the target grid or more isolated.

3.  DATASET

3.1.  Observations

We use daily precipitation from a dense national
network of ~2400 gauges (Fig. 1a) from 1951 to 2013
provided by the National Meteorological Information
Centre (NMIC) of the China Meteorological Admin-

istration (CMA). All the data had been subject to
quality control by NMIC, including extreme checks
and internal consistency checks. There are 115
breakpoints from 35 gauges, and the proportion of
inhomogeneous gauges is about 1.46% (Shen &
Xiong 2016). Breakpoints are the abrupt shifts in cli-
mate time series due to natural and artificial reasons.
Usually, artificial breakpoints are introduced by
changes in measurement conditions, relocation of
weather stations, land-use changes, new instrumen-
tation or changes in observational hours, among oth-
ers, which are sometimes recorded in the metadata
(Kuglitsch et al. 2009). Climate time series with no
breakpoints are homogeneous. Owing to the com-
plexity of daily precipitation precluding the avail-
ability of highly correlated reference series, along
with the lack of original metadata, inhomogeneous
rainfall series have not been corrected. In addition,
excluding all the inhomogeneous gauges would
likely remove some real records, and it is quite diffi-
cult to determine the causes of inhomogeneity, due to
the lack of supporting metadata. Therefore, the in -
homogeneous gauges were included in our work.

( ) 1
( )[1 cos ]
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Fig. 1. Distribution of (a) the ~2400
China Meteoro logical Administration
national stations, (b) the Regional Ba-
sic Synoptic Net work gauges used
for cross-validation, with dif ferent
numbers and colors re presen ting dif-
ferent WMO blocks, and (c) adminis-
trative regions in China (see https://
en. wiki pedia.org/wiki/ Provinces _ of _ 

China for abbrevi ations)
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Fig. 1a indicates that the network of
gauges is dense in southern and
southeastern parts of China, while it
is sparse in the northern and north-
western parts. Fig. 1b shows 213
gauges of the  Regional Basic Synop-
tic Network (RBSN), which belongs to
~2400 CMA gauges and has an even
distribution across the whole of
China. We plan to use these RBSN
stations for cross-validation. There
are a total of 34 administrative
regions in China (Fig. 1c), some of
which we use in Section 4.2 to show
geographical variations in CDD.
Fig. 2 shows the number of available
stations year by year with different
thresholds for at least 75, 90, and 99%
valid daily records within each year.
We found that the number of stations
grows until 1961, where it remains >2000. This poses
some limitations for a trend analysis before 1961.
There are >60 gauges with incomplete records in the
period of 1968, and most gauges have >2 months
missing. Unfortunately, the reason is still unclear at
present. Therefore, there is a small dip in the number
of valid stations in 1968 in Fig. 2.

3.2.  Bias correction

It has been recognized that uncertainties exist in
regional (Ye et al. 2004) and global precipitation cli-
matology (Korzun et al. 1978, Goodison et al. 1998)
due to biases of gauge measurements such as wind-
induced gauge undercatch (Yang et al. 2001), wet-
ting and evaporation losses, and neglect of trace pre-
cipitation amounts. Wetting losses are due to
precipitation re taining or sticking to the sides of the
gauge which cannot be poured out and measured
(Ye et al. 2004). A precipitation event of <0.1 mm is
recorded as a trace amount of precipitation in China.
It is unreasonable for trace events to be treated as
precipitation days, so they are treated as zero
amounts quantitatively. Wind-induced undercatch is
caused by wind field deformation over the gauge ori-
fice (Sevruk & Hamon 1984, Ye et al. 2004). Though
this correction is a complicated issue, it is necessary
to undertake. These systematic errors in gauge
measurements should be  corrected, because these
biases may be substantial, especially in cold environ-
ments (Ye et al. 2004). Wind-induced gauge under-
catch is the greatest bias in most regions of mainland

China (Ye et al. 2004). The effect of wind-induced
error on the estimates of winter snowfall trends is
particularly significant in northeastern China, with a
maximum overestimate for measured long-term
trends reaching 1 mm every 10 yr, or approximately
64.3% in terms of relative bias between measured
and corrected trends (Sun et al. 2013). Wetting loss
and neglect of trace amounts of precipitation are
more important in the arid and semi-arid regions of
China than in the wet regions (Ye et al. 2004).

Therefore, before interpolation, a bias-correction
methodology developed by Ye et al. (2004) was ap -
plied to daily data for ~2400 observation sites in
China during 1951−2013 to improve the accuracy of
precipitation data and systematic biases in the pre-
cipitation data series. According to Ye et al. (2004),
the general model for precipitation correction is as
follows:

(4)

where Pc is the corrected precipitation; Pg is the
gauge-measured precipitation; ΔPw and ΔPe are wet-
ting loss and evaporation loss, respectively; ΔPt is the
trace precipitation; and K is the correction coefficient
for wind-induced errors.

To determine the systematic biases in Chinese
gauge measurements, a gauge intercomparison
study was carried out during 1985−91 at 4 meteoro-
logical stations in the Urumqi River basin, and the
methodology was developed to determine each item
in Eq. (4) (above, by Yang 1988 and Yang et al. 1991).
Using only 4 stations to estimate bias seems like not
enough to give a comprehensive estimate across the

( )c g w e t= + Δ + Δ + ΔP K P P P P
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Fig. 2. Temporal evolution of the number of available stations with at least 75, 
90, and 99% valid daily records within each particular year
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whole of China, which may lead to some uncertain-
ties in the correction factors. However, according to
the results from Yang et al. (1991) and Sun et al.
(2013), the difference of correction factors for snow-
fall in different areas is quite small, compared with
the adjustment caused by bias correction. According
to Goodison et al. (1998), the large differences in pre-
cipitation bias correction methods comes from vari-
ous gauge types used in different countries, whereas
all observations in China use the same Chinese stan-
dard gauge. It is very difficult to estimate the daily
evaporation losses at regional station networks by
using the average evaporation amount obtained from
other experimental sites (Ye et al. 2004). Therefore,
wetting losses, trace precipitation, and wind-induced
gauge undercatch were corrected, while the evapo-
ration loss was not corrected in this study.

4.  VARIABILITY AND ANISOTROPY IN CDD

4.1.  Comparison of year-round and seasonal CDDs
at individual stations

We calculate CDDs not only using year-round daily
rainfall, but also separately for 4 seasons (winter:
DJF, spring: MAM, summer: JJA, and autumn: SON).
Fig. 3 presents an example for stations in Beijing
(39.80° N, 116.47° E) and Urumqi (43.78° N, 87.65° E).
From Fig. 3, CDDs have a common feature, being
shortest in JJA, and longest in DJF. The CDDs in
MAM and SON are between those in JJA and DJF
(not shown). This is expected owing to smaller-scale
atmospheric features (e.g. convective rainfall system)

in JJA and larger-scale atmospheric systems (e.g.
frontal rainfall system) in DJF. Also note the spatial
differences in CDDs, with different stations present-
ing significantly different values in the same seasons
(e.g. Beijing has a CDD of 410 km in DJF, 169 km
more than that for Urumqi).

4.2.  Geographical variations in CDD

CDDs based on year-round daily rainfall series
show major geographical variations: they are shorter
(<200 km) in Xinjiang Autonomous Region (XJ in
Fig. 1c), the southwestern part of the Tibetan plateau
(XZ in Fig. 1c), Sichuan basin (SC in Fig. 1c), and
Hainan province (HI in Fig. 1c), and longer
(>300 km) in northeastern China, and western China
apart from Xinjiang (Fig. 4a). The short CDDs in
Hainan probably result from tropical convective rain-
fall. Local geographical features may be the reason
for short CDDs in other areas. Orographic rain
caused by cold air from the northwest ascending the
windward slope of the Tibetan massif, and a mosaic
of mountains and deserts, may be the major reasons
for the short CDDs in Xinjiang, and likewise for the
southwestern border of the Tibetan plateau with
warm moist air coming from the southwest. Addition-
ally, the Tibetan plateau acts as a barrier to frontal
influence. The Sichuan basin also has its own rainfall
type due to its depressed orography. CDDs in win-
ter are significantly larger than those in summer
(Fig. 4b,d,f) owing to the different rainfall types:
frontal in winter and convective in summer. Except
for the Tibetan plateau and parts of northeastern
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Fig. 3. Correlation decay distance (CDD, in km) at (a) Beijing station: 194.0 km using summer (JJA), 410.0 km for winter (DJF),
and 259.0 km using year-round (annual) daily rainfall series, and (b) Urumqi station: 185.0, 241.0, and 206.0 km, respectively
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China, CDDs in winter are longer than those based
on year-round daily data (Fig. 4c). CDDs for summer
data are significantly smaller than for year-round
data (Fig. 4e).

In order to estimate anisotropy in CDD, we calcu-
lated and compared zonal and meridional CDDs. To
calculate meridional (zonal) CDD, only pairs of sta-
tions with relative angles of 0° (90°) from north, with
45° of tolerance, were considered. Compared with

the seasonal differences of CDDs (Fig. 4c,e,f), the dif-
ferences between zonal and meridional CDDs and
overall CDDs (Fig. 4h,j,k) are not very distinct. In
northeastern China, meridional CDDs tend to be
longer than zonal CDDs (Fig. 4k), probably owing to
the nearly meridional propagation of frontal systems
in winter. However, in most of southeastern China
and the Tibetan plateau, zonal CDDs tend to be
longer than overall CDDs and meridional CDDs,

86

Fig. 4. Spatial patterns of correlation decay distance
(CDD) of daily precipitation over mainland China for
omnidirectional (a) year-round, (b) winter, (c) winter
minus year-round, (d) summer, (e) summer minus year-
round, (f) winter minus summer, and (g) year-round
zonal, (h) year-round zonal minus omnidirectional, (i)
year-round meridional, (j) year-round meridional minus
omnidirectional, (k) year-round zonal minus meridional 

(figure continued on next page)
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indicating predominantly zonal propagation of the
rain-bearing systems there (Fig. 4h,k). Some similar
results were also found in Europe, where CDD ex -
hibits considerable spatial variability, and the degree
of spatial variability is also dependent on season and,
to a smaller extent, subsetting by azimuth (EW and
NS quadrant pairs) over Europe (Hofstra & New
2009).
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Fig. 4 (continued)
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5.  EFFECT OF CORRELATION 
DECAY  DISTANCE ON ANGULAR-DISTANCE

 WEIGHTING

In order to test the sensitivity of ADW interpolation
skill to the assumptions made about CDD, we created
alternative analyses using different CDDs, including
a constant value of 258.45 km, which is the average
of all CDDs based on year-round data for all of China
(ADWc); omnidirectional CDD calculated using year-
round daily data for the region applicable to each sta-
tion (ADWr); omnidirectional CDD calculated by
region and season (ADWrs); and anisotropic CDD
calculated by region and season (ADWrsa). To com-
bine zonal and meridional CDD for ADWrsa, we
applied an elliptical transformation, with the zonal
and meridional CDDs as the axes of the ellipse. The
equation of the ellipse is:

(5)

where x and y are Cartesian values correspondent to
CDD for a given angle θ, which is the direction from
one station to the target point (zero is towards the
north, 90° is towards the east, etc.), and CDDz and
CDDm are the zonal and meridional CDDs, respec-
tivela. Translating x and y into polar coordinates:

(6)

Then:

(7)

Like Hofstra & New (2009), we chose 5 metrics to
evaluate interpolation estimations: Pearson correla-
tion (R), mean absolute error (MAE), compound rela-
tive error (CRE), proportion correct (PC), and critical
success index (CSI). R, MAE, and CRE are used for
evaluating the magnitude of estimated daily precipi-
tation, whereas PC and CSI assess the daily rainfall
state (wet or dry). The optimal metrics are 1 for R, PC,
and CSI, and 0 for MAE and CRE.

R shows the linear relationship between 2 samples.
Though R is insensitive to biases and errors in vari-
ance, it highlights the variations of the difference
between predictions and observations (Murphy &
Epstein 1989, Wilks 2006, Hofstra & New 2009):

(8)

where Cpo is the covariance of the predicted series p
and the observation series o, and Cpp and Coo are the
variances of p and o, respectively.

MAE measures how close predictions are to real
outcomes on average, and shows the errors in the
same unit as the climate variable itself:

(9)

where k is a particular station, pk is the predicted
series, ok the observation series, and n the total pairs
of stations.

CRE is a measure of similarity between predictions
and observations (Murphy & Epstein 1989, Schmidli
et al. 2001, Hofstra & New 2009):

(10)

where ō is the mean of the observation series, and n
the total number of stations.

PC is defined as the number of correct categoriza-
tions divided by the total number of predictions (Hof-
stra & New 2009):

(11)

where wc and dc are the number of correctly pre-
dicted wet and dry events, respectively, and n the
total number of stations.

CSI also assesses categorization, and it is more
appropriate than PC when one category is much
more common than the other (Wilks 2006, Hofstra &
New 2009):

(12)

where wi and di are the numbers of incorrectly esti-
mated wet events and dry events, respectively.

We use 191 of 213 RBSN gauges (Fig. 1b) for cross-
validation. Twenty-two RBSN stations were rejected
because they had too few data available to calculate
climatology, or because they had too few neighbors
within the CDD. Following previous research (e.g.
Shen & Xiong 2016), we interpolate daily fractions
(%) of the climatological average precipitation for the
relevant month. This process reduces the influence of
factors such as elevation and geography on the inter-
polation. The interpolated fractions are finally multi-
plied by the climatological average to yield actual
precipitation. During cross-validation, each selected
station is removed from the dataset in turn, and its
daily rainfall anomalies (daily rainfall amount minus
the monthly climatology) in 2008 — when an ex -
tremely intense snowfall and freezing wea ther event
(January and February) occurred in central and
southern China — are estimated using the remaining
stations. The predicted daily anomalies are multi-
plied by climatology to get the final estimated daily
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rainfall series. Then the 5 metrics men-
tioned above (R, PC, CSI, MAE, and
CRE) are used to evaluate the character-
istics of the interpolated daily series over
China as a whole (Table 1). On average,
ADWr shows better scores for daily rain-
fall magnitude (MAE and CRE) than
ADWc, with equal scores for daily rain-
fall state (PC and CSI). ADWrs and
ADWrsa show better scores than ADWc
and ADWr for all metrics. ADWrsa is as
good as ADWrs for R and CRE, and bet-
ter than ADWrs for MAE, PC, and CSI.
So allowing CDDs to vary spatially and
seasonally improves the average ADW
interpolation skills to some extent, and
adding anisotropy appears to yield fur-
ther im provement for China as a whole.

The differences are small, so we used
standard errors (SEs) to assess the differ-
ence in metrics for different ADW ver-
sions (Fig. 5). Nearly all the SEs are less
than half the margin of improvement (higher R, PC,
CSI; lower MAE, CRE: Table 1) of ADWrsa relative to
each other method. So allowing anisotropic CDDs to
vary spatially and seasonally emerges as the best
option.

To select the best interpolation skill for each region
of China, we first rank the validation-station-average
skill scores for a given metric for the 4 ADW versions
in a given WMO block (e.g. Block 50 in northeastern
China), then take the 5-metric average of these ranks
in the block for a given ADW version, and finally
rank these average ranks (Table 2). As well as doing
this for the 10 WMO blocks, we also do it for 5

regions (Cluster0 through Cluster4; Fig. 6) defined
by k-means clustering of stations’ 1981−2010 clima -
to logical average monthly precipitation (J. Hidalgo
unpubl.) and smoothed to increase geographical
coherence, as shown in Fig. 6b.

In densely monitored blocks (53, 54, 57, 58, and 59),
ADWrsa shows the best performance; therefore,
anisotropic CDDs bring further benefit to ADW inter-
polation in dense observation networks. Addition-

89

ADW versions R MAE CRE PC CSI

ADWc 0.783 1.612 0.414 0.849 0.586
ADWr 0.781 1.601 0.413 0.848 0.586
ADWrs 0.791 1.563 0.400 0.853 0.593
ADWrsa 0.791 1.552 0.400 0.860 0.595

Table 1. All-China average skill scores for 4 versions of an-
gular-distance weighting (ADW) for 191 Regional Basic Syn-
optic Network (RBSN) stations. Scores with underlines are
optimal values. ADWc: average of all correlation decay dis-
tances (CDDs) based on year-round data for all of China,
ADWr: omnidirectional CDD calculated using year-round
daily data for the region applicable to each station, ADWrs:
omnidirectional CDD calculated by region and season,
 ADWrsa: zonal and meridional CDD calculated by region
and season, CRE: compound relative error, CSI: critical
 success index, MAE: mean absolute error, PC: proportion 

correct, R: Pearson correlation

WMO block No. of ADWc ADWr ADWrs ADWrsa
or k-means validation 
cluster stations

50 14 1 4 2 3
51 15 4 1 2 3
52 13 2= 4 1 2=
53 23 2 4 3 1
54 30 3 4 2 1
55 2 2 4 3 1
56 29 3 4 2 1
57 24 4 3 2 1
58 23 4 2 3 1
59 18 4 3 2 1
Cluster0 42 3 4 1 2
Cluster1 42 4 3 2 1
Cluster2 11 4 3 2 1
Cluster3 25 4 3 2 1
Cluster4 71 3 4 2 1

Table 2. Regional ranks of skill for 4 different versions of an-
gular-distance weighting (ADW), and Rank 1 with under-
lines are optimal choices. (2=) ADW versions are in the same 

rank. See Table 1 for ADW version abbreviations

Fig. 5. Standard error (SE; standard deviation divided by square root of the
number of validation stations) of all-China average skill scores of the angu-
lar-distance weighting (ADW) versions — ADWc: average of all correlation
decay distances (CDDs) based on year-round data for all of China; ADWr:
omnidirectional CDD calculated using year-round daily data for the region
applicable to each station; ADWrs: omnidirectional CDD calculated by re-
gion and season; ADWrsa: the same as ADWrs, but relative to zonal and
meridional CDD. CRE: compound relative error; CSI: critical success index;
MAE: mean absolute error; PC: proportion correct; R: Pearson correlation
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ally, ADWrsa is best in Block 55 where CDD is dis-
tinctly anisotropic (Fig. 4k). ADWrsa also improves
the interpolation skill in Block 56, where elevation
varies between stations more than in the other
blocks, ranging from 138 to 4533 m. However, aniso -
tropic CDDs bring no further improvement in sparse -
ly observed blocks (Blocks 50, 51, and 52). In sum-
mary, ADWrsa is better than ADWrs in regions with
dense networks or very irregular terrain, or with dis-
tinctly anisotropic CDDs, but not in sparsely moni-
tored regions (Blocks 50, 51, and 52; Cluster0).

Fig. 7 gives the regional skill scores of the top-
ranked technique indicated in Table 2. Except for
MAE, the scores of the top-ranked techniques for a

given metric are not hugely different from the overall
scores for the corresponding metrics in Table 1.
Mean annual precipitation can be classified as (cf. Ye
et al. 2004, their Fig. 8a): ≥1000 mm (Blocks 59, 58,
57; Cluster2, Cluster3, Cluster1); <500 mm (Blocks
51, 52, 53, 55; Cluster0); and 500−1000 mm (Blocks
56, 54, 50; Cluster4). As expected, the MAE of the
best overall technique in Fig. 7 is very sensitive to the
mean precipitation of the region, being large in
humid regions and small in arid regions where PC is
also good. Both R and CRE tend to have higher scores
in intermediate and humid regions. PC performs bet-
ter than CSI in arid regions, but the reverse holds in
wet regions.
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Fig. 6. Different climatology regions defined by 5-cluster k-means (J. Hidalgo unpubl.) that were (a) not modified, and (b)
modified by adjusting some borderline or ‘outlier’ stations, interpolated to a 0.25 resolution grid. Each grid cell is assigned to 

the same cluster as the nearest station

Fig. 7. Regional skill scores using the best overall angular-distance weighting (ADW) interpolation technique (blue bars), and
overall scores for the same technique in Table 1 (red hollow bars) for (a) Pearson correlation (R), (b) mean absolute error

(MAE), (c) compound relative error (CRE), (d) proportion correct (PC), and (e) critical success index (CSI)
(figure continued on next page)
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Fig. 7 (continued here and on next page)
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6.  DISCUSSION AND CONCLUSIONS

We have found that for ADW interpolation, choos-
ing a suitable CDD is the key factor, not only as the
search radius for selecting appropriate stations, but
also to calculate their respective weights more accu-
rately. Variable (across space and time) CDDs have
been widely used in the research community when
interpolating fields such as precipitation and temper-
ature using ADW. Taking this into account, we inves-
tigated the spatial and seasonal variability patterns
of CDD of daily rainfall over mainland China. Addi-
tionally, an anisotropy analysis was carried out to
consider possible directional effects. To evaluate the
impact of these differences in CDDs on the ADW
interpolation, we conducted a cross-validation exer-
cise interpolating daily rainfall during 2008 using the
different approaches.

We found that CDDs are shortest in JJA and
longest in DJF over much of China. This is similar to
the results in some other regions (e.g. Europe in Hof-
stra & New 2009), and is expected, owing to the
smaller-scale atmospheric circulation and convective
activity in JJA and the larger-scale atmospheric fea-
tures and frontal activity in DJF. However, we also
found some exceptions. In particular, some stations
on the Tibetan plateau have unique characteristics
owing to their special geography and topography
(Fig. 4f,k). Compared with the seasonal differences
of CDDs, the differences between anisotropic and
isotropic CDDs are small. Places where meridional
CDDs tend to be longer than zonal CDDs are likely to
be dominated by nearly meridional rain-bearing sys-
tems, and vice versa.

From the cross-validation exercise, it can be con-
cluded that, in general, when geographical and sea-

sonal varying effects are considered in CDD calcula-
tion, results improve in comparison with using a uni-
versal CDD. Further improvements in ADW interpo-
lation are also achieved when anisotropy is in cluded
in the CDD calculation. These results are consistent
across most of China (with the exception of less
densely monitored areas in northwestern and north-
eastern China, where the rain gauge density is
beneath 3 gauges per 1° latitude × 1° longitude grid
box). Anisotropic CDDs generally yield further im -
provement in regions with dense monitoring net-
works, very irregular terrain (southwestern China),
or that have markedly anisotropic CDDs (Tibetan
plateau).

Finally, from the results derived from our analysis,
it can be concluded that it is advisable to take into
account geographical, seasonal, and anisotropic
effects when calculating and choosing CDDs. Our
metrics for the chosen ADW schemes provide only
parametric uncertainties, because they are related to
the choices of CDD in ADW; future plans include a
similar analysis using different interpolation tech-
niques, such as kriging, in order to establish compar-
isons between different techniques and estimate
structural uncertainties in the interpolation of daily
precipitation over China.
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