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ABSTRACT: Empirical studies show that observed frequencies np for a daily precipitation amount P
can be approximated by np < €™, with negative values for the exponential coefficient m. The para-
meter m describes the mean (1) or any quantile for variables following such exponential distributions.
The coefficient m varies from location to location, and exhibits a systematic relationship with local
mean temperature and precipitation as well as other geographical parameters. A general linear
model can be utilised to model pu directly from local climate conditions and geography. Estimates of
m and [ from local climatic conditions allow an estimation of extreme values in the form of high per-
centiles. Given changes in the mean local climate, it is possible to infer changes in the upper per-
centiles. A new multi-model ensemble of the most recent climate simulations, carried out for the
Intergovernmental Panel on Climate Change fourth assessment report (IPCC AR4), has been sub-
jected to empirical-statistical downscaling, and provides best estimates for the continuing trends in
mean temperatures and precipitation in northern Europe. These scenarios are used in conjunction
with (1) the established relationship between the exponential coefficient m on the distribution func-
tion, and (2) local mean temperature and precipitation for 2050, to infer changes in the 95th per-
centiles of the rainfall for 2050. Two new independent analyses point towards an increase in the
number of extreme precipitation events and a slight change in the number of rainy days over large
parts of the Nordic countries. The projected increase was found to be sensitive to to the choice of
predictors used to model the geographical dependency, rather than to the choice of method.
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1. INTRODUCTION

It is notoriously difficult to determine trends associ-
ated with very rare climate extreme events due to the
large sampling fluctuations and low number of cases.
Nevertheless, precipitation observations suggest an
increasing trend in intense precipitation over parts of
Europe (Frei & Schar 2001, Klein Tank & Koénnen 2003,
Hundecha & Bardossy 2005, Schmidli & Frei 2005,
Achberger & Chen 2006) and elsewhere (Frich et al.
2002, Groisman et al. 2005). An analysis of trends over
the 1961 to 2004 period by Achberger & Chen (2006)
revealed that there has not been a spatially coherent
pattern for Norway and Sweden for the annual 99th
percentile, yet the overall aggregated trend was never-
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theless positive. Alexander et al. (2005) analysed global
historical trends and found fewer clear signs of change
in the probability density function (PDF) for daily pre-
cipitation than for temperature. However, they ob-
served a general tendency towards changes in the pre-
cipitation indices consistent with a wetter climate.
They documented a lack of large-scale coherent trend
patterns for precipitation, but found positive trends for
the 1951 to 2003 winter seasonal maximum 5 d precip-
itation over northern Europe. Furthermore, there was a
significant increase in very wet days in general (95th
percentile), although the index had an incomplete spa-
tial coverage across the globe. Frich et al. (2002) also
analysed the historical evolution of heavy precipita-
tion, and concluded that ‘indicators based on daily pre-
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cipitation data show more mixed patterns of change but
significant increases have been seen in the extreme
amount derived from wet spells and number of heavy
rainfall events' (Frich et al. 2002, p. 193).

In addition to analysing the past, a number of studies
have addressed how precipitation may change in the
future under a global warming scenario. Previous pro-
jections based on 19 different global climate model
(GCM) simulations with a coarse resolution suggest an
increase in the probability of extreme winter precipita-
tion over northern Europe (Palmer & Raisanen 2002).
One caveat is that GCMs provide a representation of
mean values for large areas, whereas it is often local
extreme rainfall that is of interest. Regional climate
models (RCMs) with higher spatial resolution also
point to more extreme rainfall amounts over northern
Europe as a consequence of a global warming (Chris-
tensen & Christensen 2002); such RCM studies have
traditionally only involved a few simulations, yet large
model ensembles are usually needed to infer changes
in extreme-event statistics. With the completion of
the PRUDENCE project (see http://prudence.dmi.dk/)
more RCM results have become available from 8 dif-
ferent regional models driven by 4 different GCMs
(http://prudence.dmi.dk/public/DDC/extended_table
.html). The PRUDENCE results represent a small
ensemble in terms of the driving GCMs, mainly based
on the HadCM3 model (Frei et al. 2006), which also is
reflected in the solutions obtained with the 8 PRU-
DENCE RCMs. The spatial resolution of the RCMs typ-
ically ranges between 10 and 70 km, however, the
representation of local extreme precipitation or tem-
perature may not always be adequate as 50 x 50 km?
averages, as most real observations are made for more
local scale precipitation and can be considered as point
measurements. Whereas empirically based analyses of
the number of rainy days tend to derive the wet-day
frequency from actual values, RCMs can be biased
(Frei et al. 2006). RCMs nevertheless give useful infor-
mation about spatial scales up to a few tens of km, and
higher-resolution RCMs have been used to improve
the fidelity of the projections.

It is possible to define a number of climate extreme
indices (Frich et al. 2002, Alexander et al. 2005) and
then apply empirical-statistical downscaling (ESD)
directly to those. Such work has been carried out
within the European Union STARDEX project (www.
cru.uea.ac.uk/projects/stardex/). Frich et al. (2002)
used an index (R95T) that described the fraction of the
total precipitation associated with events exceeding
the 95th percentile.

In the present study, 2 new approaches are adopted,
both of which involve estimating the change in the
parameters describing PDFs representing the statisti-
cal distribution of precipitation (P). Downscaling of a

PDF for the variable X given external conditions Y
implicitly employs Bayes' theorem (Leroy 1998), i.e.
Pr(X1Y) = [Pr(Y1X)Pr(X)]/Pr(Y), and is thought to pro-
vide a more realistic representation of the upper tails of
the distribution than a direct downscaling of the daily
values from the climate models (Hayhoe et al. 2004,
Pryor et al. 2005, Pryor et al. 2006).

Generalised linear models (GLMs) have not yet been
widely used in climate literature (Yan et al. 2006), al-
though there are some publications in climate-research
journals authored by people with strong statistics back-
ground (Yang et al. 2005, Yan et al. 2006 and references
therein). Yang et al. (2005) used GLMs (www.statsoft.
com/textbook/stglm.html) to simulate sequences of
daily rainfall at a network of sites in southern England,
and Yan et al. (2006) used GLMs to simulate sequences
of daily maximum wind speeds. One obstacle to the
GLM gaining popularity in the wider research commu-
nity may have been the different cultures of the statis-
tics and physics communities and that the papers on
GLMs have been written by statisticians using a rigor-
ous formal statistical treatment that is often difficult to
digest for climatologists with physics, meteorology, or
geography backgrounds. For GLM-based analysis, a
common viewpoint regards each data value as one re-
alisation of a stochastic process, in contrast to the clas-
sical Newtonian physics viewpoint where the variable
is regarded more as a deterministic response to a set of
forcing conditions. Moreover, a GLM approach often
assumes that the PDF is varying over time, as opposed
to the PDF being constant over time but where each
realisation is predicted deterministically, given a set of
predictors. Although the differences may seem subtle,
the implications are more profound, since the PDF
changes from one observation to the next in the former,
and it is the PDF that is systematically affected by the
forcing (Yan et al. 2006). On the other hand, from a
Newtonian viewpoint, systems are regarded as well-
defined for which energy, momentum and mass are
conserved quantities. Ideally, any state can be deter-
mined accurately within the Newtonian framework if
all the forcings are known, given these constraints. Un-
known factors produce behaviour that is unaccounted
for, commonly referred to as ‘noise’. If the noise is weak
(high signal-to-noise ratio), then the system is practi-
cally deterministic, but if the noise is overwhelming,
then the system behaves in a stochastic manner. Thus,
from a Newtonian viewpoint, the noise is not affected
by the known forcing conditions, and the PDF for the
response is taken to be independent of that of the noise;
whereas in the Bayesian frame, the PDF describing any
stochastic behaviour is assumed to be systematically in-
fluenced by the external conditions. The implications of
stochastic systems are that the principal conditions of
causation are not accounted for because different reali-
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sations can be drawn from the same PDF, but there is no
way to predict the exact value even if the PDF is well
described. In practical terms, however, the 2 ap-
proaches are 2 sides of the same problem, but involve
completely different interpretations.

Two different and independent approaches are em-
ployed in this study, and these will henceforth be
referred to as Approach A and Approach B. In the for-
mer, the PDFs are modelled through a step-by-step
procedure, whereas in the latter, the PDFs are modelled
more directly with a GLM. In this study, Approach A
is examined and compared with Approach B in the
light of validation against independent empirical data.
These results will contribute towards an assessment
carried out for the Norwegian Agricultural Authority
on scenarios for extreme weather events for year 2050.

2. DATA AND METHODS

The following convention will be used in this paper:
Pwill denote precipitation amount in general terms, P,
will denote precipitation for wet days, and P, repre-
sents precipitation for all days, and the

different PDFs representing various locations that span
the latitude range from Greece and Spain in southern
Europe to Svalbard in the Arctic (circles in Fig. 1; list of
‘Dependent’ stations in Appendix 1); ‘daily data’ hence-
forth refer specifically to data from these stations.

ESD has been used to estimate the local mean cli-
matic conditions (Benestad 2005). Since the down-
scaled changes in the mean conditions have been thor-
oughly documented in Benestad (2005), we will not
dwell with the ESD technicalities here other than pro-
viding a short description; however, more details are
given in Appendix 2.

The set of station data used for the ESD analysis in
Benestad (2005) differ from the selection of stations
used to examine the daily precipitation distributions,
with monthly instead of daily data. The former con-
sisted of 102 independent local series of temperature
and 119 independent local series of precipitation
(henceforth referred to as ‘monthly data'). The monthly
data were used for inferring changes in the mean tem-
perature (T) and precipitation (P,). The monthly data
station locations are indicated by triangles and squares
in Fig. 1 and the stations are listed in Appendix 3.
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Fig. 1. Location
exponential law

of the (daily) station series used for estimating the linear
slope m (@) in the present study, as well as stations used for

mapping the mean (monthly) temperature (T; O) and precipitation (P; A) in
Benestad (20095). Indep.: independent local precipitation series
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The number of stations and locations were deter-
mined by the data availability and quality. Most of the
stations with daily data are located in northern Europe
as this was the focus area of this study. Only wet
days with precipitation exceeding a threshold value of
1 mm d! were used for constructing the histograms
and fitting PDFs because of uncertainties associated
with low values (false readings associated with con-
densation or fog).

Scenarios for PDFs representing 2050 have been
inferred indirectly through ESD (Benestad 2005),
where trends from transient runs were used to esti-
mate the future conditions: T* = T+ AT and P,* = P,
+ AP,. Here, the asterisk X* is used to signify the
scenario for 2050. The changes AX were estimated
from the linear annual mean trends according to AX
= dX/dt x At, and At was taken to be 50 yr. The cli-
mate scenarios were taken from the most recent
GCM simulations carried out for IPCC AR4, and the
results presented here represent the IPCC SRES Alb
emission line.

When histograms for daily precipitation are plotted
with a log-scale along the vertical axis, a close to
linear dependency to magnitude is evident (see Fig. 2).
The following definitions are used: let y(P,,) = lnlﬁpl,
where ﬁp is the number of P, events with values
falling within the interval P,, and P, + &P, (0P, was
taken to be 2 mm). The linear model f‘/: m'P, +c'is
then used to represent the linear dependency be-
tween counts and magnitude, and a weighted least-
squares regression was used to solve for m' and c’,
taking P,, as the predictor and the log of the counts
as the predictand (the weights were taken as \mp in
order to emphasise the cases with a greater statistical
sample). The convention used here is that m' and m
are different estimates of the m based on different
models and used in different situations. A linear
dependency Inlnpl < P, implies a simple exponential
distribution, np « e™w with m < 0, and has one
advantage that the PDF can be written as f(P,) =
-me™w because the area under the PDF curve must
equal unity (the expression is derived in Appendix 4,
Eq. A1l). Another useful property is that the mean u
and any percentile g, for the wet-day distribution
can easily be derived analytically (see Appendix 5,
Eq. A2) given the exponential coefficient m:

ut=-1/m
g} = In(l-p)/m W
Here, u* and g, represent the analytical solutions for
Eq. (1), and p is the probability level, not to be con-
fused with P which is the precipitation amount.

Both changes in the number of rainy days per year
Ny and changes in the PDF must be known in order
to infer changes in probability of rainfall amounts

exceeding a given threshold value. The probability
for rainfall amount exceeding any given wet or dry
present-day percentile can be estimated from Bayes’
theorem:

Pr(wetlP>q,)Pr(P>q,)
Pr(wet)

Pr(P>q,| wet) = (2)

By rearranging Eq. (2) and using the fact that
Pr(wetlP > q,) = 1 (it is always wet when the rainfall
exceeds g, > 0), the probability of the precipitation
exceeding the threshold level for any day is given by
the product between the cumulative distribution func-
tion (CDF) for P,, and the fraction of wet days:

Pr(wet) x Pr(P >qp\ wet)

mq, 3
“meneap| = Nee™r
365.25

AL x(l— o
365.25 0

Here, Pr(wet) is just the fraction of rainy days to total
number of days in the year, and an analytical solution
is easily found for the integral: Zem’“dx = [e”’"/m]fff =
(e™2 — e™1)/m.

Geographical models were used for the production of
maps for m, Ny, percentiles and probabilities, based on
multiple regressions similar to those employed in Ben-
estad (2004c) and Benestad (2005). Initially, the mean
temperature (T), precipitation (P,), logarithm of the alti-
tude (In[z]), square root of the distance to the coast
(\/H), eastings (x), and northings (y) were used as pre-
dictors, and a stepwise screening based on the Akaike
information criterion, AIC (Wilks 1995, p. 301-302) was
used to exclude the variables without predictive skill.

2.1. Approach A

For Approach A, the multiple regression analysis
identified the empirical relationship between m on the
one hand and the local T (°C) and P, (mm d') on the
other:

m = —(0.233 + 0.009) + (0.006 + 0.001) T

+(0.019 + 0.004)P, 4)
A step-wise multiple regression analysis that also
included the quadratic terms T? and P? in the initial
set of predictors gave:

m=—(0.247 + 0.012) + (2.7 + 1.5) x 10-3T
+(0.024 + 0.004)P, + (3.1 £ 0.1) x 107*T%  (5)
+(1.7+09)x103/d- (2.3 +1.1) x 107°x

where d is the distance from the coast (km) and x rep-
resents eastings (km from 10°E meridian). (See Tables 1
& 2 for further details about the regression analysis). The
analysis is based on all the stations, and reflects the geo-
graphical variations in m.
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2.2. Approach B

A maximum likelihood estimation (MLE) is used to
derive a model for the expectation value E(-) for a vari-
able Y, at any given time t: E(Y;) = u, = g~ }(XB). Here,
U, is the mean for the PDF [y, = [ yf(y)dy] at time ¢,
rather than the empirical average for the entire
sequence (Y), and g(-) is a function that determines the
scale on which the predictors are additive. The vari-
ance function used by the GLM was V(i) = i (assuming
a Poisson process). Note that in Approach B, the GLM
predicts the mean p of the distribution rather than the
realisation itself. Thus, Approach B employed a gener-
alised linear model (GLM) to predict p directly:

In(w) = B+ BiT + PoPy + BT + Pux + BsIn(z) (6)

This exercise was also repeated with u replaced by g,
for the prediction of percentiles (Gp) in a more traditional
fashion. The regression analysis just by itself, however,
does not provide a description of the PDF the same way
as Approach A does, but if the estimates of | are used in
connection with Eq. (1), then it is possible to use GLM to
estimate PDFs too. This approach is similar to that of Yan
et al. (2006), who assumed either Gamma or Weibull dis-
tributions and constant shape parameters, and then used
uto infer the PDF for given time. Thus Approaches A and
B are methodologically independent. In order to assess
the skill of the analysis, empirical values obtained with
the analytical expressions @ =-1/m' (Eq. 1) were com-
pared with the GLM predictions. It should be noted here
that p is not independent of Pin Approach B, as both con-
tain the same data for rainy days.

2.3. Number of wet days

A stepwise multiple regression analysis was used to
examine the relationship between Ny and local T, P,
as well as the other geographical parameters, yielding
the following equation: %

In(Ng) = 4.88 = 0.23 + (0.22 = 0.05) P, — (0.048 + 0.008) T
—(0.05+0.03)In(z) + (1.9 + 1.0) x 10~*x— (2.9 £ 0.9) x 10~y

Here, only stations with N > 30 d were included in the
calibration of Eq. (7), and the predictors have the same
units as in Eqgs. (4) to (6). The regression analysis
assumed a Poisson distribution for the counts, and
hence used a GLM with a log-link: g(-) =In(-); however,
the results were not critically sensitive to this choice.

2.4. Result mapping

The mapping of m and Ny required high-resolution
gridded values of both T and P,. Maps of T and P, had

been constructed though a similar geographical in-
formation system (GIS) type analysis (Benestad 2005),
involving a multiple regression between T or P, and the
respective station coordinates, north—south/east—west
slopes, altitude, and distance from the coast, employ-
ing a stepwise screening. The residuals from the multi-
ple regression analysis, based on Eqgs. (4) to (7), were
added to the predictions by employing spatial interpo-
lation (see Appendix 6). For the maps presented here,
stations with dry southern European climates Ny <30d
were excluded in the regression analyses, implying
that Egs. (4) & (5) were calibrated with a subset of the
data originally used for their calibration.

3. RESULTS

The least-squares fits to the exponential slopes are
shown as black dashed lines for each location in Fig. 2.
Also marked in the panels are the mean and 95th per-
centiles for each location. A linear fit is only used as
an approximate description here, as a gamma fit may of-
ten yield a more accurate representation of the upper
tails of the precipitation distribution. It can be shown that
the exponential law is not very different to the more
commonly used gamma distribution when its parameters
are fitted to provide a best-fit to the daily precipitation
amounts. The gamma parameter's shape and scale also
show a highly statistically significant relationship with
local climatic conditions (Benestad et al. 2005). A linear
exponential distribution provides simpler analytical so-
lutions, and reduces the number of unknown parameters
to fit. Furthermore, the upper tails involve a smaller
number of events and are thus affected by uncertainty
associated with statistical fluctuations (also due to intra-
seasonal, inter-annual, and decadal variability) to a
higher degree than less extreme values.

The exponential slope m' for the linear fit to the log-
arithm of the counts (the exponential coefficient) varies
from site to site, but a multiple regression analysis
against the local mean temperature, precipitation,
eastings and northings (Egs. 4 & 5) suggests that the
rainfall distribution depends on such local conditions,
as the p-value of the stepwise multiple regression
based on a linear combination of local climatic vari-
ables is 3.0 x 107** and the adjusted R%is 0.73 (Table 1).
However, the step-wise screening is not robust, be-
cause when the squared mean temperature and pre-
cipitation are added to the set of predictors before
step-wise screening, then eastings, the square root of
the altitude |z, and T? also pass the step-wise screen-
ing test as a skillful predictors, and Eq. (5) yields a
p-value of 2.4 x 1074 and an adjusted R?= 0.79 (Table 2).

It is important to validate Eqs. (4) & (5), and Fig. 3a
shows a comparison between estimates of m' accord-
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ing to Eq. (5) (derived from slope analysis based on an
ordinary linear regression analysis shown as dashed
black lines in Fig. 2) on the x-axis and predicted values
(1?1) on the y-axis. The results from Eq. (4) were similar

Table 1. Ordinary linear regression model for m with linear

terms: Residual SE: 0.032 on 46 df. Multiple R 0.74; adjusted

R?: 0.73. F-statistic: 66.11 on 2 and 46 df; p: 2.96 x 1074
p <0.001 for all values

Estimate SE t-value Pr(> Itl)
Intercept ~ -0.23 951x107° -24.464 <2x10716
T 6.25x107°  6.45x 10 9.69 1.11x 10712
P, 1.92x 1072 3.71x107° 5.18 4.86 x 1076

and are therefore not shown. Grey symbols for the 49
stations used to calibrate Eq. (5), and black symbols for
the independent data are also shown. Lists of the loca-
tions used for calibrations and locations used for the
independent validations not used for tuning the equa-
tion are given in Appendix 1. The scatter plot (Fig. 3a)
suggests that the points tend to lie along the diagonal.
A similar exercise with respect to Eq. (7) also indicates
that the number of rainy days Ny (for Ny > 30) to a
large degree can be predicted from the mean precipi-
tation, temperature, and location (Fig. 3b). The results
and the skill of the regression for Ny are provided in
Table 3. An inspection of the results for the different
predictors suggests that the P, and T were statistically
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Table 2. Ordinary linear regression model for m with qua-
dratic terms: Residual SE: 2.86 x 1072 on 43 df. Multiple R%
0.81; adjusted R% 0.79. F-statistic: 36.13 on 5 and 43 df; p =

2.421x 10714, ***p < 0.001; **p < 0.01; *p < 0.05

Estimate SE t-value Pr(> Itl) P
Intercept  -0.25 1.23x 1072 -20.18 <2x10716 **=
T 2.73x107% 1.45x10° 1.88 6.64x1072
P, 238x1072 3.62x10° 6.58 527x108  ***
T? 3.13x10* 9.24x10° 3.39 1.52x1073 **
Vd 1.70x 107" 9.12x10* 1.86 6.95x 1072 -p<0.1
b'e -2.33x107° 1.06x 107> -2.21 3.28x1072 *

Table 3. General linear regression model for In(/Ng). Null
deviance: 4.53 on 26 df; residual deviance: 0.79 on 21 df.

AIC:-4.73. p: as in Table 2

Estimate SE t-value  Pr(>Itl) P
Intercept  4.88 0.23 21.45 9.20x 10716 »**
T -4.76 x 1072 7.75x107° —-6.15 4.26x10°° ***
P, 0.22 527x1072 415 4.53x10*% ***
In(z) -510x 1072 2.54x 102 -2.00 5.84x 1072
x 1.74x107* 9.71x10™° 1.79 8.77x 1072
y -2.93x10* 9.80x10°° -2.99 6.95x107°% **
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significant at the 0.1% level. The strong association
between the number of rainy days, N, and the mean
precipitation, P,, can be explained by more rainy days
contributing to the average, since the average derived
from the PDF for wet day precipitation amount is P,, =
u = J; -mxe™dx = -1/m when m < 0, and P, = Ng/
365.25 x 1/(-m) (this is an under-estimate due to the
cut-off at 1 mm d~!; see Appendix 4, Eq. A1 for deriva-
tion of this expression). The negative relationship
between N and the mean temperature, T, in Eq. (7)
can be explained by the fact that there are more rainy
days in the north with colder climates.

The root mean square error (RMSE) for m is 0.029
and 13.43 d yr! for N;. Whereas plots of errors versus
the value did not show clear signs of heteroscedastic
behaviour in m (the errors are drawn from different
distributions for different values of the independent
variables), there was a tendency that the largest errors
in Nr were associated with those locations charac-
terised by larger fractions of rainy days (not shown).

Fig. 3c,d shows comparisons between estimates ob-
tained using Eq. (1) and corresponding mean and per-
centiles obtained empirically from the measurements.
The scatter-plots show results from both Approach A
and Approach B. Both dependent data, on which the
statistical models were calibrated, and independent
data are shown (see Fig. 1, Appendix 1). In general,
there is a good agreement between p* and P, and
between q{§q5 and empirical estimates of gy gs5. Thus, a
simple exponential distribution implies that the proba-
bility for extreme values can be inferred simply from
knowing the value of m or y, given a rainy day. Also
shown in the scatter plots are the values predicted
directly using GLM and Eq. (6). The skill of the meth-
ods are compared in terms of the degree of scatter:
R?= cor(P,, u*)? and the magnitude of bias expressed in
terms of root mean square error: RMSE = VX(P,, — u*)2.
The 2 different approaches yield similar results for
both dependent and independent data, albeit the
direct GLM modelling of pu and gy 95 gives a negative
bias for the larger values, whereas Approach A pro-
duces a positive bias. The biases are generally greater
for Approach A than Approach B, but they are compa-
rable for the independent data and the 95th percentile.
On the other hand, the results derived through Ap-
proach A have a stronger correlation with the empiri-
cal data than do those of Approach B.

Fig. 3d suggests that the theoretical values qj, tend
to over-estimate the percentiles (lying above the diag-
onal), especially towards the higher values. Such over-
estimation could suggest that the theoretical frame-
work yields an upper tail biased to higher values, but
the empirical distributions in Fig. 2 suggest more
observed extreme events (clutter of grey circles in the
upper tail of the distributions) than are predicted by

the theoretical analysis (black dashed lines). However,
Goos is shown as vertical dotted grey lines for each
location in Fig. 2, and the impression that Eq. (1)
under-estimates the number of cases is caused by the
most extreme percentiles far out in the tail, rather than
the more ‘moderate’ qpgs.

Present analysis has neglected the cases where 0 < P<
1 mm d~! with the justification that the relative errors
amount to a large fraction of the small amounts. There is
arisk that the inclusion of the data with 0 < P< 1 mm d!
may lead to different distribution, but repeating the
analysis of Fig. 2 for P> 0 mm d~! did not change the pic-
ture (not shown). The proportion of the rainfall with 0 <
P < 1 mm d ! represents <10 % of the total amount for
most of the locations, and <20 % of the days.

Fig. 4a shows a map of q{¢s for the present-day condi-
tions. The projections for future changes in the wet-day
95th percentile, given changes in the mean precipitation
and temperature, were obtained by replacing T and P,
with T+ AT and P, + AP,, respectively, in Eqs. (4) & (5)
(Fig. 4b). The projected increase in the 95th percentile
for the year 2050 is estimated to be -6 to +10 % for most
of the region studied, with negative values over moun-
tainous regions and little change in the Arctic (Fig. 4b).
The most pronounced changes can be seen in the south
and along the western coasts of Norway and Sweden, as
well as over the British Isles, Denmark, northern Ger-
many and the Netherlands. Assuming that the statistical
association between the number of rainy days per year
and the mean level of precipitation and temperatures
hold in the future, then the estimates of Ny for 2050 sug-
gest an increase (up to 10 to 20 d yr'!) in the average
number of rainy days (Fig. 4c).

Fig. 4d shows projected changes in the probability of
extreme precipitation, here defined as the amount
exceeding present-day qpgs; for all days (dry + wet).
The results shown are the ratio of the 2 solutions
of Eq. (3) with values of m and Ny representing the
present day and the year 2050 respectively: Pr(X* >
qées5)/Pr(X > q*p9s5). Thus, these results suggest that
the probability for exceeding the present 95th per-
centile may increase by up to 30% in relative terms.

Fig. 4e maps the difference in probability for 24 h
precipitation exceeding the present-day gy g5 based on
the indirect GLM results from Approach B, showing
similar results as those derived using Approach A,
albeit with weaker spatial variance and in general a
more modest change. Fig. 4f shows a corresponding
analysis to the map presented in Fig. 4d, but where
only the linear terms in temperature and precipitation
(Eq. 4) were considered as opposed, including the qua-
dratic terms (Eq. 5). The results based on the linear
variables indicate a shift to more frequent events
exceeding the present-day gy g5 everywhere, but with
a more pronounced increase at higher altitudes as
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Fig. 4. (a) Estimates of q§ 95 for the present-day conditions based on ECA and data from the Norwegian Meteorological Institute.
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opposed to a diminishing change with height. Thus,
the choice of predictors included in the step-wise
screening has a greater effect on the end results than
the choice of approach, even when both cases yield
strong statistical relationships (Tables 1 & 2).

4. DISCUSSION

The projection based on Eqgs. (5) & (7), empirical-
statistical downscaling, and the sub-grid parameterisa-
tion schemes in the GCMs all assume that the estab-
lished relationship between the predictors and
predictands is valid for the future. There are also
uncertainties associated with cascading errors terms
involving: (1) emission scenarios; (2) GCM misrepre-
sentations; (3) shortcomings associated with ESD
including both observation errors and statistical mod-
elling errors; (4) approximations associated with the
exponential-law type PDF; and (5) errors associated
with the statistical model for the relationship between
slope m and climatic and geographic parameters. The
2 different approaches produce different biases, but
both nevertheless produce similar and skilful predic-
tions for the 95th percentile. An over-estimation of g5
(Fig. 3c) may result in a bias of the estimated changes
in the upper percentiles, but this bias may not be sys-
tematic for all percentiles as the observed extremes at
the very upper range of the distributions appear to
occur more frequently than the predictions by Eq. (5).
A bias in g}, affects the limits used in the estimation of
the probability (Eq. 3), and an over-estimate in g, will
result in an under-estimation of the probabilities (m < 0
in Nre™ir/365.25). Furthermore, biases in the ESD re-
sults may affect the prediction of the PDFs for the
future scenarios, and it is therefore important to assess
the realism and errors of these.

Non-constant PDFs render the analysis of return-
intervals and return-values from extreme value model-
ling results hard to interpret (Benestad 2004b). Here,
PDFs are inferred in a Bayesian fashion from mean
conditions for the year 2050 (Fig. 4b) rather than for
an interval over which the quantity changes. The pre-
cipitation data used for calibrating the relationship
between the PDF parameters (m) and the local mean
climatic conditions is believed to be close to being
independent and identically distributed (iid), as previ-
ous analysis for maximum monthly 24 h precipitation
events suggests that P does not deviate strongly from
being iid during this interval (Benestad 2003). How-
ever, these projections hinge on the assumption that
the relationship between m and the local T and P, is
valid in the future.

Approach A yields interesting insight into the pre-
cipitation process by establishing the semi-exponential

relationship. This relationship was also utilised by
Approach B. For some locations, such as Bergen, the
precipitation is associated with orographic forcing
rather than the frontal or convective systems more
commonplace in other parts of Europe. The fact that
different large-scale physical processes are responsi-
ble for the production of rain in different regions may
suggest that there is no universal relationship between
rainfall and the local temperature, latitude or longi-
tude. However, rainfall involves a high degree of
stochastic character, which may follow a universal
power-law behaviour (Malamud 2004). Whereas the
orographic forcing is part of the macro-physical envi-
ronment, micro-physical processes (such as cloud-drop
growth through warm or cold initiation of rain) bring
in a stochastic behaviour through diffusion processes
in turbulent air spanning small to large spatial scales.
Further cloud-drop growth through collision-and-
coalescence and break-up of large cloud drops result
in a cascading avalanche process that also adds to the
stochastic behaviour (Rogers & Yau 1989). Moreover,
on the large scale, physical conditions affect the avail-
ability of moisture and set the stage for either warm or
cold cloud-drop growth, thus affecting the cloud-drop
growth rate, number, and phase. However, convective
and orthographical cloud formation often involves the
same micro-physical processes. The statistical analysis
points to a very low probability that the relationship
between the exponential coefficient and the local
mean temperature and precipitation is due to chance,
and the analysis suggests that the exponential law
provides a good approximation for the precipitation
amount distribution. Here, 2 independent approaches
both provided support for this interpretation.

The analysis presented here is solely based on statis-
tics, whereas Sapiano et al. (2006) proposed models
based on physics. They explicitly included sea level
pressure (SLP; dp'/dx) and specific humidity g, as pre-
dictors, and observed that the often neglected quantity
dT/dyis important for large-scale vertical motion. How-
ever, it is unclear how this predictor would relate to the
exponential slope m of a distribution for the local mean
conditions. Since the present analysis involves stations
at different altitudes, there are further uncertainties
due to topographical effects and lapse rates, and due to
large variations in the surface altitude on the spatial
scales used here. In the present analysis, T and P,
represent only some of the physical elements relevant
for the local climate, but it is thought that SLP and
humidity will not improve the description of the local
conditions significantly. The reason why a change in
the mean SLP will not contribute much to the pre-
dictive skill of precipitation is that it is a smooth field,
whereas precipitation lacks the large-scale spatial co-
herence (Frich et al. 2002, Klein Tank & Kénnen 2003,
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Alexander et al. 2005, Achberger & Chen 2006). Fur-
thermore, this paper focuses on geographical, rather
than temporal, variations. The SLP can often capture
temporal fluctuations in temperature and precipitation
due to anomalous advection, however, the mean local
conditions are already implicitly taken into account
through T and P,. Humidity is not used as it is not read-
ily available (network of radiosondes not very dense),
and the quality of the observations is not regarded as
high as for temperature and precipitation, neither in
models nor observations. However, P, does involve the
atmospheric humidity indirectly.

Ferro et al. (2005) found that changes in scale (o) of
the precipitation distributions predicted by the HIR-
HAM4 RCM (Christensen et al. 1998) from 1961-1990
to 2071-2100 can explain many differences over north-
ern Europe. They compared the scale and shape para-
meters of the functions describing the PDF, F(6z%), thus
analysing transformed variables. In the present study,
no transformation has been made, but the logarithm
has been taken of the counts in each bin containing the
number of events with precipitation amount within
the bin's interval. Thus, the slope m, which reflects the
number of events as a function of rainfall amount, is
distinct from the shape parameter oo employed by Ferro
et al. (2005), and which explained few of the differ-
ences between the simulated present-day conditions
and the scenario precipitation. Ferro et al. (2005) also
estimated a change in the proportions of number of
wet days over Fennoscandia in the range —-15 + 20 %,
which implies a greater range than the present results.

Groisman et al. (2005) found a disproportionate
change in heavy precipitation compared to the change
in the mean. Here, both Ny and m are sensitive to the
mean precipitation. The results presented here are in
accord with Groisman et al. (2005), as the present
analysis implies that higher percentiles will respond
more strongly to a shift in the location. Equation (1) can
illuminate the relationship between changes in the
mean and extreme precipitation, if it can be assumed
that the number of wet days (INg) is constant. Then,
if the mean value changes as Apu = - (1/my) +
(1/my), percentile changes as Aq, = {[In(1-p)]/my} -
{[In(1-p)]/m;}, and p > 0.63, then lIn(1-p)l > 1, and the
percentile is more sensitive to changes in m than the
mean. Raisdnen (2005) analysed results from the cou-
pled inter-comparison project (CMIP2), which involved
contributions from 20 different global climate models
forced with 1% increased greenhouse concentrations
per year. Since he focused on monthly and annual time
scales, his results are not directly comparable to the
results presented here, although the upper tails of
monthly and daily distribution may be somewhat
related. One conclusion of that study was that extremes
on longer time scales are highly correlated with changes

in the long-term mean precipitation, in contrast to 24 h
extremes. He also observed that the large-scale geo-
graphical patterns of simulated fractional changes in
the annual, seasonal and monthly maximum precipita-
tion tend to scale with changes in the mean, although
there may be differences in some of the regional
details. The general picture according to CMIP2 was
wetter future conditions over northern Europe and the
Nordic countries. This finding is in agreement with
previous analysis of monthly precipitation scenarios
based on SRES Alb, suggesting more record-breaking
events (compared to the same month in previous years)
over northern Europe in the future (Benestad 2006),
and is also consistent with the results from the present
analysis. An interesting question, which is beyond the
scope of this paper, is whether the change in the inten-
sive precipitation is of cyclonic origin or due to convec-
tive systems. The implications of the former could be
that intensified heavy precipitation could be an inde-
pendent indication of more powerful storms, as the
precipitation is the product of the energy transforma-
tion in the storms.

The results presented here are in rough agreement
with the general picture given by Frei et al. (2006),
who examined RCM simulations representing the 2071—
2100 period forced by only one GCM (HadAMS3H;
Hudson & Jones 2002) following the SRES A2 scenario
as opposed to the SRES Alb. Frei et al. (2006) found a
strong response in the extreme behaviour, as the pre-
sent-day 40 to 100 yr events were found to have a 20 yr
return interval in 2071-2100. The return interval asso-
ciated with qg 999 for daily data is f = 365.25/1000 — 1 =
2.7 yr. The proportional change in the probability for
exceeding gpgg9 for the analysis presented here was
estimated according to

NR_ meqoee _ _ N e™M40.9%
365.25

Pr(P*> /Pr(P> = 10052 '
i Go.999) / Pr(P > @ 99) N = emdoss

365.2 (8)

employing Eq. (1), and the results suggested values as
high as 35% in some places (not shown). Hence, the
change in probability implies that a return interval of
2.7 at the present will be ~2 yr in 2050. One should
keep in mind that the return intervals of several years
represent values further out in the tails of the PDFs
where the exponential distribution does not fit the data
closely (Fig. 2).

Raisanen (2005) also discussed the relationship be-
tween changes in the frequency of occurrence exceed-
ing a critical threshold value for monthly precipitation
and changes in magnitude, and observed a non-linear
relationship with the relative frequency being more
sensitive than extreme precipitation amounts. If the
critical threshold is taken as the percentile g. = In(1-p)/
m,, the magnitude of the extreme events q;=1In(1-p)/m,
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and Pr(wet) from Eq. (3) is constant, then the frame-
work used here can be utilised to examine the relation-
ship between the magnitude and frequency. By allow-
ing the value of m to vary, the relation of g}/q. to
eMdc/eMcde is a non-linear function f(m) = (m.e™%)/
(me™dc) for which some solutions describe a stronger
response in the relative change of probability than to
the relative amplitude change. Thus, the non-linear
relationship that Rdisanen found for the longer time-
scales may appear to hold for the higher percentiles for
daily precipitation, which also is consistent with the
changes inferred from Fig. 4c,d. For the regions with
high mean precipitation, these results are also consis-
tent with one of the conclusions in Klein Tank & Kon-
nen (2003) that ‘at stations where the annual amount
increases, the index that represents the fraction of the
annual amount due to very wet days gives a signal of
disproportionate large changes in the extremes’ (Klein
Tank & Kénnen 2003, p. 3665).

Southern Europe may experience an increase in
extremes but also a decrease in mean precipitation
(Groisman et al. 2005). Such a scenario is in principle
possible with Eqgs. (4) & (5) if the contribution from
increased mean temperature is greater than that of a
reduction in the mean precipitation.

Voss et al. (2002) observed that the description of the
annual precipitation cycle in the ECHAMA4 climate
model (Roeckner et al. 1996) has the wrong phase over
northern and central Europe. Such discrepancies justi-
fies the use of ESD. On the other hand, assuming the
precipitation followed a gamma distribution, they esti-
mated an increase in gy g5 by ~20 %, and estimated the
pattern correlation between the scale parameter  for
fitted gamma functions (Wilks 1995) and gy 95 in a high-
resolution GCM experiment to be 0.71 (Voss et al.
2002). Thus, independently supporting the approach
proposed here, albeit assuming a different distribution
shape.

5. CONCLUSIONS

Climate change usually implies a change in the
PDF and can be regarded as a case of so-called non-
stationarity. Here, ESD of global state-of-the-art IPCC
AR4 climate simulations has been employed to infer
changes in the PDFs for 24 h precipitation, and a
framework for analysing upper percentiles has been
presented. The main results point to increased proba-
bilities for 24 h precipitation in western coastal areas,
southern Scandinavia, the British Isles and the north-
ern parts of the European continent exceeding the
present-day 95th percentile in 2050, given global cli-
mate change. However, the results are sensitive to the
choice of predictors used to map the results.
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Appendix 1. Name of locations from which daily data were

used to calibrate Eq. (5) and for independent evaluation of

Eqgs. (1) and (5). The calibration data are referred to as
‘Dependent’ and the validation data as 'Independent’

Appendix 2. Empirical-statistical downscaling (ESD)

Dependent Independent
Armagh Beograd
Bergen Birr
Bjorneya Bologna
Bode Borkenes
Bourges Buchuresti
Braganca Copenhagen
Brindisi Dividalen
Cagliari Dublin
Corfu Fagernes
De Bilt Falun
Drevsjo Ferder
Fagernes Fiskabygd
Fokstua Geneve
Glomfjord Halten Fyr
Hellinikon Hull
Helsinki Jyvaskyla
Heraklion Karlstad
Karasjok Ljubljana
Kjeremsgrende Lugano
Linkeping Malin Head
Lisboa Nordby
Malaga Orkdal
Marseille Ostersund
Mgsstrand Saltdal
Ny-Alesund Sklinna Fyr
Orland St. Petersburg
Oslo Tirana
Oxford Tranebjerg
Porto Veernes
Prestebakke Vaxjo
Reykjavik Varde
Roma Venabu
Salamanca Vigra

San Sebastian Vilnius
Sihcajavri Vilsandi
Sirdal Vinger
Skabu Wick
Sodankyla

Sonnblick

Stensele

Svalbard

Svingy

Torrevieja

Toulouse

Tromse

Utsira

Valencia

Verona

Wien

The empirical-statistical downscaled results were ob-
tained using a common empirical orthogonal function
framework described in Benestad (2005) auxiliary mat-
erial. The ESD was implemented using a tool called
clim.pact v.2.1-5 (Benestad 2004a), written for the R-envi-
ronment (R Development Core Team 2004), a package
that is open source and freely available from CRAN
(http://cran.r-project.org).

The predictor used for calibrating ESD models for the
local T was the monthly mean large-scale T anomalies
from the ERA40 re-analyses (Simmons et al. 2004), and the
corresponding predictor for local Pwas the total Pfrom the
ERA40. The ESD analysis selected the predictor domain
on an individual station basis, based on the criterion that
the predictor region should only encompass the region
where the large-scale anomaly field is positively corre-
lated with the local variable (Benestad 2004a). Once the
domain was selected for a location, the GCM results were
interpolated to the observed (here ERA40 re-analysis) grid
for the same domain, and the anomalies from the GCM
results were combined with those of ERA40. Then an
empirical orthogonal function (EOF) (Lorenz 1956) analy-
sis was applied to the combined data set (common EOF;
Barnett 1999), and the EOF products were used for ESD
model calibration and prediction. This method is evalu-
ated and described in further detail by Benestad (2001).
The observations were de-trended prior to model calibra-
tion and a stepwise screening using the Akaike informa-
tion criterion (AIC; Wilks 1995, p. 301-302) was used to
exclude non-important principal components and hence
avoid over-fitting. In clim.pact, this objective downscaling
approach is done through the function objDS (Benestad
2004a). The downscaling was applied separately to single
series for one given station and a given calendar month.
The annual series for each location was constructed from
12 individual downscaling exercises in order to represent
all calendar months. The downscaled results were not
subject to ‘inflation’ (von Storch 1999).

In order to ensure that the observed spatial patterns
dominate the EOF products, the GCM data were scaled
(multiplication with 0.25 x n;/n,, where n; is the ERA40
record length and n, the GCM record length) prior to the
EOF analysis, and subsequently re-scaled to describe the
original variance before the stepwise regression analysis.
The motivation for using a scaling factor of 0.25 is to avoid
splitting the ERA40 and GCM into different modes (prin-
cipal components) if the spatial structures differ sub-
stantially.

The ESD analysis incorporated a form of quality control
by requiring similar spatial structures on anomalies in the
observations and the GCM and is described in more detail
in the auxiliary material of Benestad (2005). The end result
is in essence a weighted ensemble mean of the ESD
results for the SRES A1b scenario derived from the super
ensemble consisting of 23 different GCM scenarios for T
and 21 for P. Annual mean trends have been derived for T
and P, for each station location using a Bayesian-type
approach (Wilks 1995, Leroy 1998, Barnett et al. 1999)
based on 21 different GCM simulations for precipitation
and 23 for temperature, where the individual GCMs were
weighted according to a set of grades given on their per-
formance (Benestad 2005). The downscaled scenarios
used here are available from ftp://ftp.agu.org/apend/gl/
2005GL023401.
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Appendix 3. Name of locations from which daily data were used for gridding Tand gridding P,, respectively

I
ol
ol

Station T

Station T P, Station
Abisko + + Junsele
Akureyri + + Jyvaskyla
Ammasalik + + Kajaani

Ath + Kalmar
Bergen-Flor. + + Karasjok
Bergen-Fred. + Karesuando
Birr + + Karlstad
Bjerneya + + Kirkwall
Boras + + Kjoremsgrendi
Braemar + + Kebenhavn
Chimay + Krokshult
Chiny + Krakmo
Danmarkshavn + + Kuopio

De Bilt + + Kuusamo

De Kooy + Kvikkjokk
Dumfries + + Leerdal
Edinburgh + + Landsort
Eelde + Lappeenranta
Falsterbo + Leipikvattnet
Falun + + Leopoldsburg
Ferder + Lerwick
Gembloux + Lien-Selbu
Glomfjord + + Lisjo
Godthaab + + Lovanger
Goteborg + + Maastricht
Gotska Sandoén + + Malin Head
Graengesberg + Malung
Halden + Maredsous
Haell + Markree Castle
Harnésand + Mestad
Halmstad + + Narsarsuaq
Hammerodde + + Nedstrand
Haparanda + + Nesbyen
Havelund + Nordby
Havraryd + Nuuk
Helsinki + + Oland

Hives + Qrskog
Hoburg + + Ostersund
Holmégadd + + Oksoy
Hopen + Ona

Tlulissat + Oslo-Blind.
Ittogqortoormiit + + Oulu

Ivigtut + + Phoenix Park
Jakobshavn + + Pitea

Jan Mayen + + Raufarhoefn
Jokkmokk + + Reinli

Reykjavik +
Rochefort

Roches Point +
Scoresbysund
Ship M +
Sidsjo
Sint-Andries-Brugge
Skjak

Sodankyla +
S6sj6

Stavelot

Stensele
Stockholm
Stornoway
Stykkisholmur
Svalbard

Sveg

Svenska Hogarna
Tampere
Tarnaby

Tasiilaq
Teigarhorn
Thimister
Tjamotis

+ Torshavn
Tranebjerg
Tromso

Turku

Uccle

Upernavik
Uppsala

Utsira
Vanersborg +
Veernes

Vaxjo

Valentia obs.

+ Vardoe
Vestervig
Vestmannaeyjar
Vetti

Vinga

Visby
Vlissingen
Wick

+ o+ 4+ +
+ o+ A+ o+ o+ +

+
+ o+ + +
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+ o+ + + +
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+
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Appendix 4. Analytical expression for relationship between
m and P,

Appendix 5. Derivation of the analytical expression for the
percentile

An analytical expression for the mean value of wet day
precipitation (P,,) can be derived by employing integration
by parts:

- q
o= [ rmeerax <[ Fom ] [ Tomar]

m
0

:m[eQ} & Pu=-tm<0 (A1)
m? |, m

The expression for the percentiles can be found analyti-
cally by solving the integral over the PDF:

In(1-p)
m

(A2)

_ ap mx _ mx19p _ mq _
p—'[xzo—me dx = [e™ ]’ = """ +1m<0—>q,=
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Appendix 6. Mapping

Multi-model ensemble weighted mean linear trends
dT/dt for annual mean values over the period 2000-2099
were estimated for each station location, thus providing a
quality-weighted trend estimate. The gridding technique
used in the Benestad (2005) study used the square-root dis-
tance from the coast (Vd) and included the 4 additional geo-
graphical predictors: zonal distance, meridional distance (in
units of 10 km), north-south slope and east-west slope. The
differentiation is described in more detail in the auxiliary
material of Benestad (2005), and was carried out in the R-
environment, using the geoGrad function in the contributed
cyclones-package (v.1.1-4) described in Benestad & Chen
(2006), an open source code that is freely available from
http://cran.r-project.org.

The regression of the weighted mean ESD results d7/d¢
against geographical parameters obtained R? of 66 % for the
annual mean Ttrends (an F-ratio of 32.2 and a p-value of 5 x
1071, indicating a strong relationship. Extrapolations of
dT/dt based on this regression analysis were then used
together with values for present-day conditions to provide
gridded estimates for T* = T + AT in year 2050. The corre-

sponding statistical relationship obtained for P against the
geographical parameters was weaker, however, still statisti-
cally significant to a high degree: 33% of the P trends, F-
ratio = 10.8, and a p-value of 4 x 1077. Thus, the value ofﬁa is
underestimated unless the residual is accounted for.

A kriging analysis (Matheron 1963) was applied to the
residuals of the regression analysis in order to spatially
interpolate the part of the trends that could not be related to
geographical parameters (using the geoR package for R).
Hence, the maps represent more than just the geographical
variance accounted for by the multiple regressions used for
geographical modelling, since interpolated residuals are
added to the prediction to recover most of the signal. Krig-
ing is a standard method used for spatial interpolation in
geo-sciences, and an evaluation of the kriging methodology
is outside the scope of this paper. The mapping analysis
used east—west and north-south displacements from the
central point of the set of locations (in units of 10 km) rather
than longitude and latitude. Due to the Earth's curvature, a
difference of one degree at high latitudes corresponds to a
smaller zonal displacement than at lower latitudes.
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