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1.  INTRODUCTION

‘All downscaling approaches will only be as accurate
as the available GCM predictors’ (Wilby et al. 1998,
p. 17).

Nowadays, statistical downscaling (SD) is a sound
and mature field that provides several techniques to
use coarse-resolution global climate models (GCMs) or
atmosphere-ocean GCMs (AOGCMs) on regional to
local scales (Hewitson & Crane 1996, Wilby & Wigley
1997, Zorita & von Storch 1999, Maraun et al. 2010).
These methods link the large-scale output of GCMs
(predictors) with simultaneous local historical observa-
tions (predictands) in the region of interest.

Selecting appropriate large-scale predictor(s) is a
key task of the SD approach. The choice depends on

the area under study (Cavazos & Hewitson 2005), the
predictand to be downscaled (Haylock et al. 2006), and
the underlying data sets (Timbal et al. 2003). To date,
most SD studies have been applied to mid-latitude cli-
mates. For these regions, some spatially robust predic-
tors have been identified when working under optimal
conditions (Cavazos & Hewitson 2005), i.e. taking the
predictor data from quasi-observations which are typi-
cally represented by reanalysis data (Hewitson & Crane
1996, Wilby et al. 2004, Sauter & Venema in press).

However, little is known about how the predictive
power of SD models trained on reanalysis data is
affected, when they are applied to GCM data (Randall
et al. 2007). In this case, the predictor choice made
under optimal conditions has to be re-evaluated with
respect to the following  criteria:
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(1) The applied GCMs should successfully reproduce
the statistics of the reanalysis data set used to cali-
brate/train the statistical model.

(2) The predictor–predictand relationship, identified
with reanalysis/observational records, should be time-
invariant/stationary (Wilby 1997, Frías et al. 2006).

In the present work we focus on the first point and
refer to this problem as ‘model performance’, i.e. the
‘ability of AOGCMs to reproduce different aspects of
present-day climate’ (Giorgi & Mearns 2002, p. 1142),
as characterized in reanalysis data. Due to a lack of
general consensus, there currently exist many differ-
ent GCM performance measures, which can be classi-
fied as those including (1) a single and (2) several of the
time-series characteristics relevant for climate model-
ing (Giorgi & Mearns 2002, Räisänen et al. 2010).
These are: climatological mean state (Randall et al.
2007, Gleckler et al. 2008), frequency of extreme events
(Kharin & Zwiers 2000), seasonal cycle (Errasti et al.
2010), low frequency variability (Benestad 2003, San-
ter et al. 2008), and interannual variability (Gleckler et
al. 2008). However, an optimal metric of overall model
performance probably does not exist, as the usefulness
of any validation approach depends on the intended
application (Gleckler et al. 2008).

The main goal of the present study was to assess the
ability of 12 state-of-the-art GCMs—from 2 different
model generations used in the ENSEMBLES project, a
European Commission-funded climate-change research
project (van der Linden & Mitchell 2009)—to repro-
duce the probability density functions (PDFs) of large-
scale variables taken from reanalysis data.

To this aim we used the PDF score proposed by
Perkins et al. (2007) and Maxino et al. (2008). As the
complete simulated PDF is validated, we evaluated the
models’ performance to reproduce the mean state as
well as the frequency of extreme events. However, we
neither validated low frequency nor interannual vari-
ability and our results have to be seen in this context.

Secondary goals of the present study were to esti-
mate the ‘skillful scale’ (Grotch & MacCracken 1991,
Benestad et al. 2008) of the models and to check the
added value of a simple monthly bias correction, a
post-processing step often applied to raw GCM data in
order to cope with limited model performance (e.g.
Demuzere et al. 2009).

The present study can be seen as a GCM perfor-
mance guide, tailored to the downscaling and impact-
assessment community working in southwestern
Europe. In Section 2, the data used and the area under
study are presented. Section 3 introduces some discus-
sion about GCM validation from a downscaling per-
spective. Section 4 describes the validation and bias-
correction procedure. Results are shown in Section 5,
while the discussion and conclusions are in Section 6.

2.  STUDY AREA AND DATA

In downscaling studies, the areal extent for which
information is needed for the large-scale predictor
variables may vary from a single grid-box (e.g. Abaur-
rea & Asín 2005) to a domain of subcontinental scale
(e.g. Brands et al. 2011, this CR Special). We chose a
domain that widely surrounds the northwestern Iber-
ian Peninsula (Fig. 1). It extends from 30° N to 60° N
and from 20° W to 5° E and is hereinafter called ‘south-
western Europe’.

Daily GCM 20th-century control-run data were
obtained from the ENSEMBLES Stream 1 and Stream 2
projects (Niehörster et al. 2008, van der Linden &
Mitchell 2009). As for the variables to be validated, we
chose geopotential (Z), temperature (T), relative hu -
midity (R), specific humidity (Q), zonal (U) and merid-
ional (V) wind components, as well as mean sea-level
pressure (MSLP) (Table 1). Pressure levels at 850, 700,
and 500 hPa were considered for all 3D variables. For
Z, the 1000 hPa level (Z1000) was additionally included
for the sake of comparison with MSLP. Although both
Z1000 and MSLP may be readily available in reposito-
ries of reanalysis products, this is not necessarily the
case for GCM databases. Consequently, if a multi-
model ensemble of GCMs is applied (e.g. for down-
scaling purpose), both variables are often interchange-
ably used, assuming that they are equally well
reproduced by a given GCM.
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Fig. 1. Study area: southwestern Europe. Dots indicate the 
common 2.5° × 2.5° grid used in the study
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Except MSLP, which is a daily mean value, all data are
instantaneous records at 00:00 h UTC. Table 2 shows an
overview of the GCMs and acronyms used; for detailed
information about initial conditions, model physics, and
external forcings, see the references listed in Table 2.

In accordance with the multi-model ensemble strat-
egy (Randall et al. 2007), and in spite of common model
components (Jun et al. 2008) in the ensemble used,
each member (model) is assumed to be independent.
We worked with fully coupled GCMs, i.e. we did not
validate atmosphere-only GCMs.

The data span a 30 yr period from 1 January 1969 to
31 December 1998 and were obtained from the CERA
database of the World Data Center for Climate, Ham-
burg (http://cera-www.dkrz.de/CERA/). In total, 6
GCMs were chosen from each stream of the ENSEM-
BLES project. Stream 1 models were those used in the
Fourth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC-AR4), whereas Stream
2 models were developed within the ENSEMBLES pro-
ject. If various runs of the same GCM were available,
we selected only the first. Due to limited data availabil-
ity, some of the GCM predictor variables could not be
obtained for every model and/or pressure level and
had to be excluded from the validation procedure. For
an overview of the validated variables, see Table 3.

The main difference between the 2 generations of
models is that Stream 2 GCMs include anthropogenic
land-use change models, whereas Stream 1 models do
not, the only exception being HADGEM (Niehörster et
al. 2008, van der Linden & Mitchell 2009). Moreover, as
outlined by Niehörster et al. (2008), all GCMs are dri-
ven by anthropogenic forcing, while natural external
forcing due to the solar cycle and episodic great-vol-
cano eruptions are not taken into account. Although
the anthropogenic forcing agents are slightly different
between some GCMs (e.g. forcing of sulfate aerosols is
taken into account by all models except EGMAM and
EGMAM2; Huebener & Koerper 2008, Niehörster et al.
2008), we think that this factor is probably negligible
for the results reported in the present paper. A detailed
analysis with varying forcing configurations would be
needed to fully address this issue, but this is beyond
the scope of the present paper.

As our study is written from a downscaling point
of view, we chose the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA-40 reanaly-
sis as a reference dataset for validation, while being
well aware of possible quality problems, especially
concerning relative humidity (Ben Daoud et al. 2009).
Reanalysis data represent the only quasi-observational
data resource that offers a wide range of predictor vari-
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GCM name Acronym Stream Institution Source

BCCR-BCM2 BCM2 1 Bjerknes Centre for Climate Research, Norway Drange (2006)
CNRM-CM3 CNCM3 1 Centre National de Recherches Météorologiques, France Royer (2006)
ECHO-G EGMAM 1 Freie Universität Berlin, Germany Niehörster (2008)
IPSL-CM4 IPCM4 1 Institut Pierre Simon Laplace, France Dufresne (2007)
METO-HC-HadGEM HADGEM 1 Met Office Hadley Centre, UK Johns (2008)
MPI-ECHAM5 MPEH5 1 Max Planck Institute for Meteorology, Germany Roeckner (2007)
CNRM-CM33 CNCM33 2 Centre National de Recherches Météorologiques, France Royer (2008)
ECHO-G2 EGMAM2 2 Freie Universität Berlin, Germany Huebener & Koerper 

(2008)
IPSL-CM4v2 IPCM4V2 2 Institut Pierre Simon Laplace, France Dufresne (2009)
METO-HC-HadCM3C HADCM3C 2 Met Office Hadley Centre, UK Johns (2009a)
METO-HC-HadGEM2 HADGEM2 2 Met Office Hadley Centre, UK Johns (2009b)
MPI-ECHAM5C MPEH5C 2 Max Planck Institute for Meteorology, Germany Roeckner (2008)

Table 2. Overview of the global climate models (GCMs) used in the present study, taken from the 2 streams of the ENSEMBLES
project. Stream 1: model versions from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 

(IPCC-AR4); Stream 2: new versions developed within the ENSEMBLES project

Variable Description Pressure levels (hPa) Units Temporal aggregation

Z Geopotential 1000, 850, 700, 500 m2 s–2 Inst. at 00:00 h UTC
T Temperature 850, 700, 500 K Inst. at 00:00 h UTC
U Zonal wind component 850, 700, 500 m s–1 Inst. at 00:00 h UTC
V Meridional wind component 850, 700, 500 m s–1 Inst. at 00:00 h UTC
R Relative humidity 850, 700, 500 % Inst. at 00:00 h UTC
Q Specific humidity 850, 700, 500 kg kg–1 Inst. at 00:00 h UTC
MSLP Mean sea-level pressure Sea level Pa Daily mean value

Table 1. Variables analyzed in the present work. Inst.: instantaneous records



ables at the different levels needed for an SD study
(e.g. Wilby et al. 2004), especially in the climate-
change context (Hewitson & Crane 2006). Ideally,
GCMs should additionally be validated against radio -
sonde (Ben Daoud et al. 2009) and/or satellite (Brog-
niez & Pierrehumbert 2007) data to estimate observa-
tional uncertainties.

ERA-40 data were obtained from the ECMWF MARS
server at their native resolution of 1.125° × 1.125°. In
contrast, the native horizontal resolution of the GCMs
varies between 1.25 and 3.75° and comes on regular or
Gaussian grids. Therefore, all predictor data were
regridded on a common regular 2.5° × 2.5° lattice by
using bilinear interpolation. Gleckler et al. (2008) high-
lighted that validation results are sensitive to the
choice of grid size in the case of precipitation, while for
MSLP they are not. Consequently, if spatially redun-
dant variables (like MSLP) are evaluated, as is the case
in the present study, sensitivity to different grid sizes is
probably negligible. Outliers were defined as values
above or below 10 times the interquartile range (IQR)
and subsequently set to ‘not a number’ values. In
accordance with Huth (2005) and Ben Daoud et al.
(2009), we found negative values and values well
above 100% for R in both the reanalysis and GCM con-
trol-run data, as obtained from the ECMWF MARS
server and CERA database (see Section 2). Before the
regridding process, we corrected them to 0 and 100%
respectively.

For the sake of simplicity, we refer to ‘observations’
when talking about ERA-40 reanalysis data and to
‘simulations’ when focusing on GCM data.

3.  VALIDATING GCMs FROM A DOWNSCALING
PERSPECTIVE

Although there exist plenty of GCM validation
 studies with a regional focus (Giorgi & Mearns 2002,

Perkins et al. 2007, Errasti et al. 2010), they are of lim-
ited practical value for the downscaling community
and, in particular, the SD community. The main reason
is that most of these studies focus only on surface vari-
ables (e.g. Perkins et al. 2007) but do not validate mid-
dle tropospheric variables, which are commonly used
as predictors in the downscaling process. Moreover,
most studies work with monthly averages, which are of
practical value on a daily timescale only if weather
generators are used (Semenov & Stratonovitch 2010).
Finally, if a wide range of daily variables is evaluated,
validation is usually restricted to a single model or
model family (e.g. Ringer et al. 2006).

Consequently, a study assessing which of the predic-
tor variables identified in optimal downscaling condi-
tions, i.e. by using reanalysis data (Cavazos & He -
witson 2005, Sauter & Venema 2011), are reliably re -
produced by state-of-the-art GCMs, is still missing,
to our knowledge. This is an important issue, since
GCM errors are transmitted through the downscaling
scheme and affect the downscaled time series (Chen et
al. 2006, Brands et al. 2011), as well as subsequent
impact studies (Beaumont et al. 2008).

Among the predictors to be validated, we included
2 variables, Q and R, which on the one hand have
considerable predictive power for downscaling in
optimal conditions (Cavazos & Hewitson 2005), but on
the other hand are assumed to be poorly reproduced
by the current GCM generation (Maraun et al. 2010).
This is an important issue, since humidity variables
should be included as predictors in order to yield
realistic climate-change signals (Charles et al. 1999,
Hewitson & Crane 2006). In contrast, the use of circu-
lation predictors alone yields downscaled projections
that should be treated with caution, as the circula-
tion’s simulated response to greenhouse gas forcing
is negligible (Wilby et al. 1998, Goodess & Jones
2002)—at least with predictions until the middle of
the 21st century.

Clim Res 48: 145–161, 2011148

Model Variable
T Q R Z U V MSLP

850 700 500 850 700 500 850 700 500 850 700 500 1000 850 700 500 850 700 500 sea level

MPEH5 x x x x x x x x x x x x x x x x x x x x
MPEH5C x x x x x x x x x x x x x x x x x x x x
HADGEM x x x x x x x x x x x
HADGEM2 x x x x x x x x x x x x x x x x x x x
HADCM3C x x x x x x x x x x x x x x x x
CNCM3 x x x x x x x x x x x x x x x x x x x x
CNCM33 x x x x x x x x x x x x x x x x x x x x
BCM2 x x x x x x x x x x x x x x x x x x x x
EGMAM x x x x x x x x x x x x x x x x x
EGMAM2 x x x x x x x x x x x x x x x x x
IPCM4 x x x x x x x x x x x x x x x x
IPCM4V2 x x x x x x x x x x x x x x x x

Table 3. List of variables (by pressure level in hPa) available for the 12 models. See Tables 1 & 2 for abbreviations. x: available
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4.  VALIDATION METHODS

To assess GCM performance, we compared simu-
lated and observed PDFs for each grid box, using the
reliability score proposed by Perkins et al. (2007) and
Maxino et al. (2008).

For a given grid box, both ERA-40 and GCM data
were classified in 200 discrete bins, spanning the
whole range of both series. The probability density for
each class and for both simulated and observed time
series was estimated by kernel density smoothing
(Wilks 2006). In accordance with Perkins et al. (2007)
and Maxino et al. (2008), we used MatLab’s ksdensity
function for computation. Gaussian kernels and a width
parameter optimized for normal distributions were
considered. Simulated and observed probability densi-
ties were then compared for each bin, retaining each
pair’s minimum. The resulting sample of minima was
summed. The total yields a value of 1 for a perfect fit of
both PDFs and 0 in the case of no overlap:

(1)

where PDF score = GCM – performance metric, sug-
gested by Perkins et al. (2007); PDFƒi = stimulated nor-
malised probability density for the i th bin; and PDFoi =
observed normalised probability density for the i th bin.

Besides providing the summarized validation results
for the entire domain, the PDF score was mapped at
each grid box for a set of key predictor variables, per-
mitting a geographical interpretation of the results.
This ensures that different users can check the GCM
performance for a specific region of interest.

As errors along the whole distribution are taken into
account, the PDF score is preferable to classic valida-
tion measures, e.g. bias, if overall GCM performance
is to be assessed. However, because of its absolute
nature, no information is given about the ‘direction’ of
the error, i.e. if the distribution of the GCM data is dis-
placed to the left or to the right. Furthermore, the PDF
score is similar to the ‘linear error in probability space’
(Potts et al. 1996), with respect to both calculation and
interpretation. Thus, it gives very little weight to errors
committed at the tails of the distribution, which are of
crucial importance for impact studies and the corre-
sponding adaption strategies (Easterling et al. 2000).
Therefore, we recommend to use the PDF score as a
first-guess validation measure of a model’s performance
and to calculate complementary metrics (e.g. Goodess
2005), tailored to the specific purpose of the study.

To correct the raw (original) output of a given GCM,
its monthly bias was removed using the following tech-
nique. At each gridbox, the ERA-40 monthly mean was
first added to each timestep of the GCM time series.

Then, the GCM’s own monthly mean was subtracted
from each timestep of the resulting time series. PDF
scores were calculated as well for these corrected data
and the following Monte Carlo test was applied to
reveal the significance of the performance increase
after bias correction.

For a given variable, season, pressure level, and grid
box, 1000 synthetic PDF scores were generated by
bootstrapping (Efron 1982) both the observed and un -
corrected (= biased) GCM series 1000 times and then
calculating the PDF scores upon these 1000 pairs of
resampled time series. The percentage of these artifi-
cially generated PDF scores exceeding the PDF score
calculated from the corrected (unbiased) GCM data
can be interpreted as the p-value of the test. The bias-
corrected data are assumed to be significantly better
than the raw data at a 95% confidence level if this per-
centage is <5%.

When simultaneously applying individual statistical
hypothesis tests at a great number of geographical lo -
cations, the significance level to be employed is much
lower than the significance level which actually is
intended to be met (Katz 1992). To take into account
this so-called problem of ‘multiplicity’ (Tukey 1977),
we repeated the above-mentioned hypothesis test,
assuming the improvement through bias correction to
be significant if none of the above-mentioned boot-
strap estimates of the PDF score for raw data exceeded
the PDF score for the bias-corrected data. This is
equivalent to a significance level <0.01% at the grid-
box scale. As the results of both procedures were very
similar, we decided to focus on the significance level of
5% at the grid-box scale.

5.  RESULTS

Figs. 2 & 3 show a summary of the PDF scores for each
GCM, variable, and pressure level on the whole do-
main. Each subplot corresponds to a specific variable
and pressure level, e.g. Z at 500 hPa (Z500). GCMs are
displayed on the x-axes and PDF scores on the y-axes.

For a given subplot, 4 pairs of bars and error bars
were plotted for each GCM, corresponding to the vali-
dation results for winter (DJF), spring (MAM), summer
(JJA), and autumn (SON). Each bar stands for the
median of a sample of 143 PDF scores (= 143 grid
boxes) and thus describes the central tendency of the
validation results. The associated error bar corre-
sponds to the IQR of the sample and hence refers to the
spatial dispersion of the validation results. These error
bars can be interpreted as a measure of the ‘skillful
scale’ (Grotch & MacCracken 1991, Benestad et al.
2008) of the GCMs: the smaller the lower tails, the less
skillful is the GCM at the grid-box scale.
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Looking at both median values (data bars) and dis-
persions (error bars) of the PDF scores, Q was as reli-
ably or better reproduced than T and Z (Figs. 2 & 3).
GCM performance for R was, in general, lower than for
Q (Fig. 2) and was most robust for U and V (Fig. 3).

If a model performed comparatively worse for Z and
T at 850 hPa, its error grew with height. These nega-
tive-outlier models were MPEH5 and IPCM4 for Z and
BCM2, IPCM4, and IPCM4V2 for T (Figs. 2 & 3).

Besides the height dependence, performance also
varied with season, with summer results being the
worst among all seasons for most models, variables,
and pressure levels (Figs. 2 & 3). Remarkably, the
 seasonal dependence/sensitivity of the performance
with the season was most pronounced for the  just-
mentioned negative-outlier models.

MSLP and Z1000 were reproduced nearly identically
by each GCM (Fig. 4). HADCM3C, which performed
comparatively well for most middle-tropospheric pre-
dictors (Figs. 2 & 3), failed to reproduce both MSLP and
Z1000 in summer. This is consistent with the model’s
comparatively low PDF scores for Z850 (Fig. 3).

In terms of median PDF score (bars in Figs. 2 to 4),
HADGEM2 outperformed or equalled any other indi-
vidual GCM in at least 3 of 4 seasons for virtually all
variables and heights. Results for HADGEM were
comparable, but all other GCMs showed equivalent
performance only in particular cases.

However, when focusing on the range of the PDF
scores, and hence referring to the spatial dispersion of
the GCM’s reliability, results were less favorable for
HADGEM and HADGEM2, especially for the summer
season. In particular for the humidity variables, but
also for T500, T850, and V850, the performance of both
models considerably diverges towards lower values,
indicating limited reliability at individual grid boxes.
Moreover, every single GCM suffered from low out-
liers well below the 25th percentile (lower limit of the
error bars/IQR) at the grid-box scale. To visualize this
problem, the validation results for predictor variables
frequently used in SD studies (MSLP, Z500, T850, and
Q850) were mapped (Fig. 5).

Fig. 5 shows the PDF scores for the uncorrected
(original) and bias-corrected (unbiased) GCM data at
each grid box. A grid box is marked with a black dot if
the PDF score for the corrected data was significantly
(α = 5%) higher than for its uncorrected counterpart,
i.e. if the bias-correction procedure led to a significant
improvement in model performance.

Focusing on the uncorrected data (maps with ‘origi-
nal’ in Fig. 5), the lowest PDF scores have the  tendency
to cluster over southern Spain and/or northwestern
Africa. For HADGEM and HADGEM2, this clustering
is especially pronounced in summer.

Obviously, the PDF scores are spatially correlated, in
particular for Z500 and MSLP. For Z500, MSLP, and
Q850, performance roughly decreased from north to
south in all seasons. In contrast, for T850, performance
increased in the same direction during all seasons
except JJA.

In general, bias correction significantly enhanced
model performance (maps marked ‘unbiased’ in Fig. 5).
However, this is not the case if the GCM errors lie
in higher-order moments, which can be shown by
 comparing the JJA results for Z500, as simulated by
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Fig. 5. (Next 4 pages) Mapped probability density function (PDF) score for uncorrected (original) and monthly bias-corrected (un-
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MPEH5 and MPEH5C, to those simulated by CNCM3
and CNCM33 (Fig. 5b). The former models lacked per-
formance in the southern part of the domain, while the
latter had problems in the northern and western parts.
After bias correction, the PDF scores in these problem-
atic zones can be significantly improved for MPEH5
and MPEH5C. However, this was not the case for
CNCM3 and CNCM33, indicating that they erroneously
simulate higher-order moments.

Another example is shown in Fig. 6, which shows
the PDFs of Z500 for ERA-40, HADGEM, IPCM4, and
CNCM33 at the northeastern extreme of the domain, for
both original and bias-corrected data. While bias correc-
tion improved the fit of IPCM4’s PDF, its effect was neg-
ligible for CNCM33 and HADGEM: the former overesti-
mates the kurtosis and underestimates the variance,
while the latter shows a good fit for the uncorrected data
that cannot be improved by removing the bias.
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Consequently, if scientists decide to correct GCM
output, removing the bias is not sufficient in every
case, and more complex correction methods, like
‘quantile mapping’ (Themeßl et al. 2011), should be
taken into account.

To compare the overall reliability of a given GCM,
PDF scores of Z, T, Q, U, and V at 850, 700, and
500 hPa, as well as of MSLP, were calculated for each
grid box and then joined into a single sample for both
original and unbiased data. The medians and IQRs of
these joined samples are visualized in Fig. 7.

In terms of median PDF score, and considering the
uncorrected data (data bars in Fig. 7 upper panel),
HADGEM2 performed best and CNCM33 worst in all
seasons. In summer, performance was worst and nega-
tive deviations towards low PDF values (error bars in
Fig. 7 upper panel) were most pronounced for all mod-
els. For that season, negative deviations were highest
for IPCM4, followed by MPEH5 and IPCM 4V2, and
lowest for HADGEM2. With median and IQR values
for the PDF scores being almost identical, results for
EGMAM and EGMAM2 were very similar in every
season of the year.

When compared to the performance of the original
(uncorrected) data, the performance of the unbiased
data (Fig. 7 lower panel) generally improves, which
leads to more uniform PDF scores across the models.
However, due to the errors in higher-order moments
that could not be corrected by bias removal, CNCM3,
CNCM33 and, to a lesser degree, BCM2 exhibit poorer
overall performances.

In 2 out of 4 cases, the Stream 1 version of a given
model performed better than its Stream 2 correspon-
dent (MPEH5 vs. MPEH5C and CNCM3 vs. CNCM33),
while in the remaining 2 cases (EGMAM vs. EGMAM2
and IPCM4 vs. IPCM4V2), nearly identical values are
yielded (Fig. 7 upper panel). However, in order to state
a general conclusion about the ‘added value’ of the
Stream 2 GCM generation, model intercomparison
should be based on a wider range of regions and vali-
dation measures.

6.  DISCUSSION AND CONCLUSIONS

In the present study, the ability of ENSEMBLES
GCMs to reproduce the PDFs of observed predictor
variables used in SD studies was assessed for south-
western Europe.

The PDF score suggested by Perkins et al. (2007) and
Maxino et al. (2008) has proven to be applicable for the
validation of a wide range of GCM variables/distribu-
tions. In spite of its limited sensitivity for errors at the
extreme tails of the PDF, the PDF score detects gross
errors in the distribution’s form and consequently can
be recommended as a measure of overall model per-
formance.

As a first result, Q was as reliably simulated as Z and
T. As a predictor in SD studies, Q should be preferred
to R, as the  latter suffers from data-quality problems,
such as negative values and values well above 100
percent, and is less reliably reproduced. The inferior
performance for R, when compared to Q, can be
explained by R’s dependence on T, described by the
Clausius-Clapeyron equation. Thus, if a model lacks
performance for T, it will equally do for R (see Fig. 2).

Performance for MSLP and Z1000 was very similar
and comparatively high. Consequently, these vari-
ables are mutually interchangeable. The variables Z,
T, Q, and MSLP cannot be unrestrictedly recom-
mended for downscaling from GCM scenario runs, as
particularly worse-performing ‘outlier’ models are pre-
sent for each of them, at least for some seasons of the
year and/or pressure levels. In turn, for U and V, per-
formance was comparatively robust throughout all
GCMs.

Badly performing grid boxes clustered in northwest-
ern Africa and southern Spain, especially in the case of
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MSLP. This may reflect serious problems in the models’
capacity to reproduce the Saharan Heat Low, a key
synoptic feature for the region under study. A more
detailed assessment of the physical causes of this error
is recommended for future research.

For the region under study, in an overall comparison,
HADGEM2, followed by MPEH5, yielded the best
 performance. CNCM3 and CNCM33 performed worst
and suffered from frequent errors in higher-order
moments. This highlights the need for GCM validation
studies on a daily timescale and indicates that, for
some models and/or geographical areas, and from the
PDF point of view, bias correction alone is not suffi-
cient to significantly enhance model performance.

As an update to Grotch & MacCracken (1991), even
the best overall performing models are not robustly
skillful at their smallest scale, which underlines the
importance of validating, and optionally correcting,
GCM data before downscaling it. This issue is of par-
ticular importance for downscaling techniques work-
ing with a single or only a few grid boxes in the context
of climate change.

In comparison to Perkins et al. (2007), who validated
GCM precipitation and maximum and minimum tem-
perature for 12 regions over Australia with essentially
the same PDF score, our results neither support the
notable performance of ECHO-G (EGMAM in the pre-
sent study), nor that of IPSL (IPCM4 in the present
study). Comparison to Maxino et al. (2008), who con-
ducted a study similar to Perkins et al. (2007), leads to
a similar conclusion: IPCM4, showing notable perfor-
mance over Australia, is not outstanding at all over
southwestern Europe. This underlines the well-known
sensitivity of GCM performance to the area under
study, an issue which has already been stated by
Perkins et al. (2007), Maxino et al. (2008), Gleckler et
al. (2008), and Knutti et al. (2010).

In comparison to Errasti et al. (2010), who validated
the PDF of monthly mean values with essentially the
same score for a very similar geographical domain, our
results support the outstanding mean performance of
HADGEM and MPEH5, as well as the only-moderate
performance of CNCM3. In addition, our validation
results for MPEH5 show remarkable spatial spread,
leading to substantial performance decreases at indi-
vidual grid boxes.

In contrast to Errasti et al. (2010), BCM2 was not
found to have outstanding performance in our study.
First, this may be explained by the different time reso-
lution underlying the validation. In our study (daily
timescale), errors of higher-order moments were
detected for BCM2 (e.g. for Q850), which cannot be
identified by validating monthly mean values (Errasti
et al. 2010). Second, surface variables, e.g. 2 m air tem-
peratures, which were validated by Errasti et al.

(2010), are highly dependent on the reanalysis’ and
GCM’s surface orography and land-sea mask. There-
fore, they may be substituted by pressure-level vari-
ables like temperatures at 1000 hPa. Third, and most
important, the overall ranking is highly sensitive to the
choice of variables (Gleckler et al. 2008, Knutti et al.
2010). This is a crucial point, since a general agree-
ment on the most important variables (and pressure
levels) to be validated, as well as on how to reduce
redundant information, is still lacking (Knutti et al.
2010). Thus, while the comparatively high PDF scores
for BCM2 in simulating MSLP found by Errasti et al.
(2010) do match our results (Fig. 5), the same model’s
performance is not outstanding at all for most variables
of the free troposphere (Figs. 2 & 3).
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