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ABSTRACT: Uncertainty in weather conditions for the forthcoming growing season influences
farmers' decisions, based on their experience of the past climate, regarding the reduction of agri-
cultural risk. Early within-season predictions of grain yield can represent a great opportunity for
farmers to improve their management decisions and potentially increase yield and reduce poten-
tial risk. This study assessed 3 methods of within-season predictions of durum wheat yield at 10
sites across the Mediterranean Basin. To assess the value of within-season predictions, the model
SiriusQuality2 was used to calculate wheat yields over a 9 yr period. Initially, the model was run
with observed daily weather to obtain the reference yields. Then, yield predictions were calcu-
lated at a monthly time step, starting from 6 mo before harvest, by feeding the model with
observed weather from the beginning of the growing season until a specific date and then with
synthetic weather constructed using the 3 methods, historical, analogue or empirical, until the end
of the growing season. The results showed that it is possible to predict durum wheat yield over the
Mediterranean Basin with an accuracy of normalized root means squared error of <20 %, from 5
to 6 mo earlier for the historical and empirical methods and 3 mo earlier for the analogue method.
Overall, the historical method performed better than the others. Nonetheless, the analogue and
empirical methods provided better estimations for low-yielding and high-yielding years, thus indi-
cating great potential to provide more accurate predictions for years that deviate from average
conditions.
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1. INTRODUCTION

Among human activities, agriculture is probably
the most dependent on climate. Crop development
and growth are strongly related to weather behav-
iour during the growing season. Accordingly, inter-
annual climate variability is one of the main drivers
of year-to-year yield variability, especially in rain-fed
agricultural systems (Hoogenboom 2000). Crop man-
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agement is aimed at reducing such variability, and
the related economic risks, by opportunely protect-
ing crops and supplying them with nutrients and irri-
gation (Lawless & Semenov 2005). However, the un-
certainty related to weather conditions in the forth-
coming season leads farmers to adopt crop manage-
ment strategies based on their own experience of the
climate of the region. On the one hand, such strate-
gies allow farmers to reduce the economic risks

© Inter-Research 2015 - www.int-res.com



8 Clim Res 65: 7-21, 2015

related to unfavourable climatic conditions; on the
other hand, these strategies may prevent the crop
from taking advantage of more favourable conditions
(Jones et al. 2000).

Knowing in advance the climate behaviour for the
coming season might help farmers in their manage-
ment decision processes (Jones et al. 2000, Hansen &
Indeje 2004), increase profits and reduce economic
risks (Jagtap et al. 2002). Methodologies capable of
predicting crop yields, such as those based on cou-
pling weather forecasts and crop simulation models,
might allow farmers to modulate crop inputs such as
fertilizers, water and pesticides, thus maximizing the
difference between the value of expected yield and
the costs of inputs (Lawless & Semenov 2005). For in-
stance, when a low-yielding season is forecast, farm-
ers may rearrange the management of the crop so as
to reduce the costs of inputs. By contrast, they could
increase the inputs, aiming at higher vyields, in
seasons that are predicted to be more favourable for
the crop (Asseng et al. 2012, Vermeulen et al. 2012).
In addition, predicting in advance the occurrence of
specific phenological stages might be useful for plan-
ning the timing of farm activities (e.g. fertilizer and
pesticide distribution) (Lawless & Semenov 2005) and
better organizing the allocation of economic and
labour resources. Furthermore, adjusting crop man-
agement in response to expected climate variability in
the forthcoming season is considered one of the most
important and feasible adaptation options that farmers
may adopt to cope with the challenges of climate
change (Olesen et al. 2011, Vermeulen et al. 2012).

In recent years, several studies have focused on the
possibility of predicting crop phenology and yield in
the current growing season. Some have investigated
the utility of different methodologies for producing
seasonal forecasts to be used for yield predictions (Se-
menov & Doblas-Reyes 2007, Moeller et al. 2008, Shin
et al. 2010). Others have explored approaches linking
long-term forecasts with crop simulation models
(Bannayan et al. 2003, Baigorria et al. 2008, Apipat-
tanavis et al. 2010). Most of these studies were con-
ducted in the United States (Baigorria et al. 2008,
Quiring & Legates 2008, Shin et al. 2010), Australia
(Hansen et al. 2004, Wang et al. 2008, Asseng et al.
2012) and Africa (Hansen & Indeje 2004, Zinyengere
et al. 2011). In these regions, climate variability is re-
lated to some strong climate signals; thus, the capabil-
ity of producing reliable predictions of seasonal mete-
orological fluctuations is higher than in regions where
those signals are not clear or do not exist (Petersen &
Fraser 2001, Cantelaube & Terres 2005, Baigorria et
al. 2008). This, in turn, can explain why very few stud-

ies so far have been conducted over Europe at both
regional (Cantelaube & Terres 2005) and local scales
(Marletto et al. 2007, Semenov & Doblas-Reyes 2007,
Pavan & Doblas-Reyes 2013) and, in particular, over a
complex area, from the climatic point of view, such as
the Mediterranean Basin (Toscano et al. 2012).

Durum wheat, Triticum turgidum L. subsp. durum
(Desf.) Husn. is a rain-fed crop that is widely culti-
vated over the Mediterranean Basin. This area con-
tributes more than half of the 36 million tonnes of
durum wheat produced globally. The peculiar grain
protein concentration and composition makes durum
wheat suitable for several food products, such as
pasta, couscous, bulgur and flatbread. These repre-
sent an important dietary component for many popu-
lations living on the shores of the Mediterranean Sea
but are also niche products for European, North
American and former USSR markets (Lidon et al.
2014). Accordingly, durum wheat is an economically
important crop for Mediterranean countries. In these
countries, durum wheat yield, in terms of both quan-
tity and quality, is greatly affected by the variability
of the weather pattern characterizing Mediterranean
environments (Diacono et al. 2012). In particular, low
and irregular rainfall distribution as well as high tem-
peratures during sensitive phenological stages, such
as flowering and grain filling, may alter the final
yield and its quality. A system capable of producing
early yield forecasts for durum wheat is, therefore, a
desirable tool for more effective crop management
(Dalla Marta et al. 2015).

In this study we compared the quality of within-
season predictions of durum wheat yield based on a
wheat simulation model and 3 different methods for
producing estimates of weather parameters up to
6 mo ahead of time over the Mediterranean Basin.
The main aims of the study were to evaluate whether
it is possible to produce within-season predictions of
durum wheat yield across the Mediterranean Basin
as well as exploring whether there are differences in
levels of skill in prediction depending on the method,
the climatic conditions of the area considered or the
period in which the forecasts are produced.

2. MATERIALS AND METHODS

The crop simulation model SiriusQuality2 (SQ2)
was applied across the Mediterranean Basin to pro-
duce predictions of yield at a monthly time step using
3 different methods for generating weather parame-
ters from the date of prediction to the end of the
growing season.
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2.1. Study area

With the aim of exploring the aptitude of the 3
methods in predicting yields under different climatic
conditions, the forecasting exercise was conducted at
10 different sites across the Mediterranean Basin
(Fig. 1), where durum wheat is usually cultivated.
According to the environmental classification pro-
duced by Metzger et al. (2005), 8 out of 10 of the se-
lected sites are classified as Mediterranean, with typ-
ically hot and dry summers and mild and wet winters.
The exceptions are the 2 sites located in Central and
Southern France, in which the climate is character-
ized by relatively low summer temperatures, winter
temperatures not far below 0°C and precipitation
much more evenly distributed during the vyear,
although maintaining a somewhat Mediterranean-
like distribution (i.e. with maximum in winter).

2.2. Meteorological data

For each of the selected sites, a complete series of
observed meteorological data was extracted from the
Crop Growth Monitoring System (CGMS) of the Joint
Research Centre (JRC) archive (http://mars.jrc.ec.
europa.eu). This is an observational interpolated
meteorological dataset, specifically created for agri-
cultural modelling purposes. Site-specific daily
weather data, collected from more than 3000 sites in
Europe since 1975, have been interpolated into a reg-
ular grid with a spatial resolution of 25 km. The inter-
polation procedure adopted (van der Goot & Orlandi
2003) accounts for the agricultural areas within a cell
and makes these data representative of an agricul-
tural site typical of a cell (Semenov et al. 2010). For
this study, the meteorological variables extracted
were minimum and maximum temperature, rainfall
and global radiation covering the period from 1975 to

2010. For the calibration of the forecasting method-
ologies (see Section 2.5), the years from 1975 to 2000
were adopted as a common baseline. Although this
period is a bit shorter than usual climatological refer-
ence periods (i.e. 30 yr), it allowed us to test the fore-
casting methods over a longer period, i.e. from 2001
to 2010 (testing period).

2.3. Crop simulation model

For the simulation of durum wheat phenology and
yield, the model SQ2 was adopted. SQ2 is the latest
version of a process-based wheat simulation model
that is able to reproduce crop development and
growth in response to weather and crop manage-
ment. The model simulates crop phenology based on
the phyllochron and the final leaf number as esti-
mated from daylength and vernalization require-
ments. Crop growth is calculated on a daily time step
from intercepted solar radiation and radiation use
efficiency. The potential growth is then limited
depending on nitrogen and water availability. Simple
partitioning rules determine the accumulation of bio-
mass and nitrogen into the grain after anthesis. The
model allows users to specify soil properties, cultivar-
specific parameters and crop management options.
For an in-depth description of the model, the reader
is referred to Martre et al. (2006).

SQ2 has been extensively used to simulate wheat
phenology and yield in several environments and cli-
mates (Martre et al. 2007, Asseng et al. 2013). The
model was calibrated for simulating phenology and
yield of a medium-cycle durum wheat variety using
data from a field experiment conducted in Central
Italy (Ferrise et al. 2010). The ability of the model to
reproduce observed durum wheat yields at local and
regional scale across the Mediterranean Basin was
tested against independent data, showing good

agreement between simulated and ob-
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served yields in diverse environments
(Ferrise et al. 2011).

2.4. Crop model input data

Crop vyield is the result of complex
interactions between environment,
genotype and management. This
study was aimed at investigating the
utility of the 3 forecasting methods in

Fig. 1. Map of the Mediterranean Basin showing the 10 study locations

predicting yield under diverse climatic
conditions. Accordingly, with the aim
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of isolating the effect of climate from other factors
and allowing direct comparison across the sites, the
same soil, cultivar and management parameters
were assumed for the crop model at all sites.

In all the simulations, the cultivar parameters
adopted were those representing durum wheat culti-
var Creso (Ferrise et al. 2010). The crop management
consisted of a sowing date of 15 November using
500 seeds m~2 and a single nitrogen fertilization of
50 kg N ha! distributed at sowing. The soil was 1 m
deep with a moisture content of 47 % at saturation,
26% at field capacity and 13% at wilting point,
resulting in an available water content of 130 mm.
Organic N content was set to 8 t ha™! with a mineral-
ization rate constant of 0.3 kg mineral N t™! organic
N ha™! d '. To avoid any carryover effects from the
previous year, the model was re-initialized at the
beginning of each growing season. Specifically, the
initial inorganic N was set to 20 kg ha™! split over the
entire soil profile (560 % in the top third and 40 % in
the middle third of the profile), and the soil water
deficit was set to 0.

2.5. Forecasting methods

Three different methods for producing the meteor-
ological data needed to feed the crop simulation
model from the moment of estimation to the end of
the growing season were compared.

2.5.1. Historical climatology (H)

This first methodology is based on the use of a
weather generator. This is a tool capable of creating
synthetic time series of meteorological variables with
statistical properties similar to the observed climate
at a site (Wilks & Wilby 1999). In this study, the LARS
Weather Generator (LARS-WG, Semenov & Barrow
1997, Semenov et al. 1998) was used to simulate pos-
sible meteorological trends during the season ac-
cording to historic climate in a stochastic fashion. The
procedure for generating the data includes, firstly,
a calibration phase. During calibration, LARS-WG
analyses observed daily weather data of a specific
site, thus providing a statistical characterization of
the observed time series. This implies the calculation
of a set of parameters describing the probability dis-
tributions of atmospheric variables and the relevant
correlations between them. This set of parameters is
then used to stochastically produce synthetic meteor-
ological time series for the selected site.

Following this procedure, in this study, LARS-WG
was firstly calibrated at each site using a common
baseline (1975-2000). Then, 100 yr of synthetic daily
weather data were produced and used to feed the
crop model on each prediction date.

2.5.2. Analogue methodology (A)

The analogue methodology has already been ana-
lysed and studied in the past both for weather fore-
casting and for analysis and seasonal forecasts
(Lorenz 1969, Livezey & Barnston 1988). This metho-
dology is based on the assumption that the atmos-
pheric pattern for the coming days in the current year
reproduces what has already happened in the past.
Thus, the methodology aims to identify patterns of
rainfall and temperature similar to those of the cur-
rent year in the weather history.

The performance of this methodology is dependent
upon how much similarity is quantified. Thus, de-
pending on the size and complexity of the region
under consideration, as well the aim of the applica-
tion, an extensive archive of historical weather obser-
vations is required for successful implementation
(Hamill & Whitaker 2006). However, this methodo-
logy is easily applicable and presents 2 further ad-
vantages for yield forecast applications: the conser-
vation of spatial covariance structure of local-scale
weather in the simulated fields due to the use of
observed weather; and the possibility of building sce-
narios for variables that are not normally distributed,
such as daily precipitation (Matulla et al. 2008).

In this study, an easy selection process in which the
specific similarity measures are computed over the
common baseline (1975-2000) was applied. Among
the baseline, the year most similar to the current one
was identified through the calculation of the Euclidean
distances (Kruizinga & Murphy 1983, Martin et al.
1996, Ribalaygua et al. 2013). At each specified loca-
tion, the values of the leading principal components
(PCs) of the joint monthly rainfall and monthly aver-
age temperature were calculated. The resulting scores
were used as elements of a metric providing informa-
tion about the similarity between the current period
before a specific prediction date and all other similar
periods within the common baseline. To identify and
select the closest year, the minimum Euclidean dis-
tance for PC scores was then used. This procedure
was applied 6 times per year in an iterative way for
any given prediction date: in January, the observed
monthly rainfall and monthly average temperatures
from September to December were compared with all
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the series of the baseline archive; in February,
January values were also included, and in March,
February values were also included and so on until
the last process included the entire period from Sep-
tember to May.

Based on this procedure, the pattern from the his-
torical data most similar to that of the current year
was found and was designated as the most likely
meteorological sequence for the remainder of the
current year, thus providing site-specific atmospheric
scenarios.

2.5.3. Empirical forecasting model (E)

Climate variability, from monthly to quarterly time
scales, is often captured by relevant spatio-temporal
low-frequency features, such as empirical orthogonal
functions (Barnston & Livezey 1987). Accordingly,
global circulation atmospheric and oceanic indices
can be used as predictors to build up seasonal fore-
casting statistical models (Kim et al. 2007, Kim & Kim
2010, Magno et al. 2014).

In the present study, a multi-regressive approach
based on a linear combination of atmospheric and
oceanic observed indices (predictors) was used to
forecast monthly temperature and precipitation
anomalies (predictands) with respect to the common
baseline (1975-2000). The empirical model adopted
is of the form:

ay (s,t>= By(s, t)Pred; + B(s,t)Pred, + ...

+ Ba(s t)Pred, + € (s,t) (1)

where a is the monthly anomaly of temperature or
precipitation for the kth month after the prediction
date (t) at a specific site (s); P is the coefficient of
the predictor (Pred) computed for the specific site
(s) and prediction date (t); and € is the independent,
identically distributed error associated with the
model. A complete list along with a brief descrip-
tion of the predictors adopted is shown in Table S1
in the Supplement (see www.int-res.com/articles/
suppl/c065p007_supp.pdf).

For each prediction date, a specific set of predictors
(Table S2 in the Supplement) was identified based on
the evaluation of corrected R-squared and Fisher's
test metrics. The latter were calculated, over the ref-
erence period, between the predictands and the
whole set of predictors. To prevent intrinsic correla-
tions, each time series was detrended by subtracting
its pure linear time regression component from the
original signal. Further, to increase its Gaussian dis-
tribution form, the precipitation field was processed

using an analytical Box-Cox transformation (Box &
Cox 1964) with a power law formulation with an ex-
ponent of 0.5.

Finally, for each location and prediction date, the
coefficients of the predictors in the multi-regressive
model (summarized in Tables S3 & S4 in the Supple-
ment) were computed using an ordinary least squares
algorithm and chosen with a best-fit procedure be-
tween observed and hindcast rainfall and tempera-
ture anomalies over the reference baseline (1975-
2000). The LARS-WG model was forced by the com-
puted anomalies to generate 100 yr of daily weather.

2.6. Creating input meteorological data for
yield predictions

To simulate crop development and growth, SQ2
needs weather inputs for the whole growing season.
To allow the model to provide estimates of yield dur-
ing the growing season (i.e. with incomplete meteor-
ological inputs) on a specific prediction date, sets of
mixed observed/forecast daily weather data must be
generated. The first part of these data coincides with
the observed values, while the remaining part repre-
sents the possible continuation for the site.

Depending on the forecasting methodology, dif-
ferent procedures were used to produce mixed
weather data. The analogue methodology identifies
a specific year in the past with characteristics simi-
lar to those of the current year. In this case, the
input meteorological data constituted a single real-
ization, in which the daily weather for the remain-
der of the season is the relevant data for the ‘ana-
logue' year. For the other 2 methodologies,
LARS-WG was used to create an ensemble of syn-
thetic site-specific weather scenarios representing
samples of possible future outcomes (Lawless &
Semenov 2005). In the historical methodology,
LARS-WG was adopted to generate synthetic data
with characteristics similar to those of the reference
climatology (1975-2000). In the empirical model
forecasting methodology, LARS-WG was forced
with monthly anomalies forecast by the empirical
model to generate synthetic series of daily weather
data deviating from the reference climatology, as
predicted by the empirical model. In both cases,
LARS-WG was used to generate probabilistic
ensembles of 100 yr of possible future meteorologi-
cal series. Thus, SQ2 was run for each year in the
ensemble and the average yield was calculated and
used as an estimator of the expected yield
(Semenov & Doblas-Reyes 2007).
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2.7. Evaluating the performance of forecasts

To assess the value of forecasts, the approach de-
scribed in Semenov & Doblas-Reyes (2007) was
adopted. The approach is based on the assumption
that a crop simulation model can correctly simulate
crop development and growth once complete input
information is provided. Based on this premise, SQ2
was first used to generate a vector of reference
yields over the testing period. Reference vyields
were calculated by feeding the model with observed
weather data for the whole growing season (i.e.
from sowing date to maturity). Then, predictions of
yield were produced at a monthly time step, from 1
January to 1 June, using mixed observed/synthetic
daily weather data as model inputs.

At each site and on each prediction date, the esti-
mated yields were compared to the reference yields
(i.e. those produced with observed meteorological
data for the whole growing season) to assess the per-
formance of the forecasting methodologies in pre-
dicting yield. To this end, 3 different statistics were
adopted, as they provide different information on the
quality of predictions. More specifically, the normal-
ized root means squared error (nRMSE) of yield esti-
mates (Sim) from reference yields (Ref) accumulated
over testing years was calculated as:

nRMSE = 20 Jl Y (Sim; — Ref;)? (2)
Ref )

This is a measure of the relative difference (as a
percentage of the reference average yield at a site) of
simulated versus reference yield data. The lower the
value of nRMSE, the higher the ability of the method-
ology in capturing the interannual variability of
yields. Assuming that deviations of simulated yields
from the reference ones are mainly related to the
effect of climatic uncertainty due to
the forecast weather, this statistic
may be used to give a measure of

The relative absolute error (RAE) between reference
(Ref) and estimated (Sim) yields was calculated as:
RAE, = 100 ISim; — Ref;l 3)
Ref;
where RAE; is the relative absolute error for a predic-
tion i, Ref; is the reference yield value and Sim; is the
estimated yield. The MRAE accumulated over years
in the testing period was computed and was used to
evaluate how much closer the estimated yields were
to the reference yields.

These metrics provide information about the size of
the error but not about the prediction method behav-
iour. Information about the efficiency of the forecast-
ing method in estimating reference yields was then
provided by calculating the Pearson's correlation
coefficient (r) according to the following:

r= 211(Ref1- —Ref)(Sim; —Sim)
\/Z?=1(Refi - R_ef)2 \/Zil(Simi - ﬁ)z

To provide a measure of the variability of reference
yields at a site, the coefficient of variation (CV, %)
was calculated as the percentage of the ratio be-
tween the standard deviation and the mean of refer-
ence vields at each site.

3. RESULTS AND DISCUSSION

The main climatic characteristics of the selected
sites calculated over the period adopted for the cali-
bration of the 3 methods (1975-2000) are reported in
Table 1. Mean annual temperatures span a wide
range, from more than 17°C in the southwestern sites
to ca. 15°C in the central-eastern regions and less
than 13°C in the northwestern locations. The spatial

Table 1. Location of the selected sites and main climatic characteristics. Climatic
indices were calculated over the period 1975-2000

the ability of the forecasting meth-

odologies in predicting weather Site Latitude Longitude Altitude Mean annual Mean annual
e . ° °E .s.1. ipitati

conditions for the remainder of the N) (°E) (masl) temf()f(rjf)iture pre(ig)lﬁlé;tlon

growing season.

However, this index does not Tunisia 37.06 9.63 10 18.2 553
provide specific information on the Morocco 34.60 5.57 150 17.7 620
size of the deviation from reference Algeria 35.01 1.25 350 17.3 320

. . Southern Spain 37.05 4.69 400 17.0 442
yields. Accordingly, we used the Southern Italy 4143  15.56 75 15.8 458
median of the cumulative distribu- Central Ttaly 42.72 11.13 10 15.0 636
tion of the relative absolute errors Greece 41.07 2542 50 14.2 480

: " : Central France 46.91 1.67 150 12.6 749

MRAE) to give quantitative infor-

( . ) g d'g b Northern Spain 42.15 0.69 420 11.9 557
mation on the differences between Southern France 43.64  0.59 130 11.1 757
simulated and reference vyields.
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distribution of mean annual precipitation presents a
similar pattern. The southwestern part of the basin is
the driest (on average 480 mm), and the northwest-
ern the wettest (690 mm, on average). The central
and eastern sites are medium rainfall sites with ca.
525 mm of annual rainfall.

On average, nRMSE in January ranged from
17.0% with the H methodology to 19.0 % with the E
methodology and 24.1% with the A methodology
(Fig. 2). Regardless of site and forecasting methodol-
ogy, nRMSE progressively decreased as the predic-
tion date approached crop maturity, thus indicating
an increasing accuracy of yield estimates. The accu-
racy of the forecasting methodologies in estimating
yield as measured by nRMSE varied across sites and
prediction dates. At the southwestern sites (Morocco,
Tunisia, Algeria and Southern Spain), the H and E
methodologies provided very similar results. From
January, yield estimations produced with these
methodologies presented good accuracy, with
nRMSE usually lower than 20%. In contrast, the A
methodology gave less accurate estimates on the first
3 prediction dates, for which nRMSE tended to be
higher than 25%. Starting from March-April, the
predictions with A became comparable to those of
the other methodologies. At the other sites, the differ-
ences between the methodologies were not so clear,
although the H methodology performed better than
the others overall. In some sites, such as Central Italy
and the Southern France, the A and E methodologies
produced values for nRMSE that were clearly higher
than (almost double) those of the H methodology on
each prediction date. At the remaining sites, the per-
formance of the empirical model was comparable to
that of the H methodology, with values of nRMSE
that were similar (Greece and Central France) or just
a bit higher (Southern Italy and Northern Spain). At
these sites, up to March, the A methodology pro-
duced values of nRMSE higher than those of the
other 2 methods; then its accuracy increased and lev-
eled up with the other methodologies or even over-
took them, such as in Southern Italy.

Similar patterns were observed for the evolution of
the Pearson's correlation coefficient (r) (Fig. 3). H and
E produced comparable results except in the Southern
France, where r-values produced with E were lower.
Overall, H and E always produced positive values of r.
From the earliest prediction dates, r was higher than
0.5 at most of the selected sites. Only in Tunisia, Alge-
ria, Southern Spain and Southern Italy was r lower for
yield estimates produced in January. Compared with
H and E, predictions performed with A gave analo-
gous results in Morocco, Central Italy and Southern

Spain. At the earliest prediction dates, results pro-
duced with A clearly diverged from those of the other
2 methods at the other sites, sometime showing nega-
tive values (Tunisia, Southern Spain, Southern Italy,
Greece and Southern France). At all of the sites,
values of r increased as the season progressed. As a
result, from March to April the performance of the 3
methodologies became comparable.

MRAE varied across prediction dates, sites and
methodologies (Fig. 4). At 5 to 6 mo before harvest,
MRAE ranged, on average, from 17.6% with A to
13.7 % with E and 12.5 % with H. The MRAE was pro-
gressively reduced as the season went on, to less than
5% on the last 2 prediction dates. At some sites, such
as Morocco, Tunisia, Southern Spain, Greece and
Central France, the H and E methodologies produced
very similar values for MRAE that were generally
lower than those of the A methodology. In Algeria, al-
though the values for MRAE of the 3 methodologies
were quite similar, methodologies A and E produced
results that were always lower than those of H. In
Central Italy, A and H produced the same results,
while E performed worst. In Southern Italy, results for
H and E were similar, except in April when the MRAE
produced with E was lower. The MRAE produced
with A initially increased to 35% in March and then
decreased, being the lowest in May and June. In
Southern France and Northern Spain, values for
MRAE produced with H were, overall, lower than
with the other 2 methodologies, although these 2
showed a certain level of variability and in some cases
gave better results.

A particular case was observed in Central France.
Here, in January all 3 methods already resulted in
good predictions with approximately 10 % error, and
later in the season the level of skill in prediction re-
mained unchanged. This may be attributed to the
lower climate variability observed at this site. In fact,
the range of variability and the spread of ensemble
model outputs are a direct result of the variance in
the model inputs (i.e. in this study, observed atmos-
pheric data) and reflect the climatic conditions that
characterize the development and growth of the
crop. This is particularly true for durum wheat over
the Mediterranean environments, for which high
temperatures and drought are the major climatic
constraints (Porter & Semenov 2005, Garcia del
Moral et al. 2003). During the years 1975 to 2000,
adopted for the calibration of the forecasting method-
ologies, the Central France study area registered the
lowest variability in terms of accumulated precipita-
tion (CV = 25.9%, data not shown) and a low vari-
ability in terms of thermal summation (CV = 6.6 %,
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Fig. 2. Normalized root mean squared errors (nRMSE). Errors were calculated as the difference between predicted and refer-
ence yields for each of the 10 study locations at monthly time steps from January to June
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Fig. 3. Pearson's correlation coefficient of simulated versus reference yields for each of the 10 study locations at monthly time
steps from January to June
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Fig. 4. Medians of the relative absolute errors (MRAE). Errors were calculated as the difference between predicted and reference
yields for each of the 10 study locations at monthly time steps from January to June
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data not shown). This turns into a reduced variability
in the input data for the scenario generation that re-
sults in an even more marked reduction in the cumu-
lative rainfall variability recorded during the 9 yr of
simulation (CV = 15.1%, data not shown), during
which water and thermal requirements were, how-
ever, fully satisfied. In terms of predictability, this
translates into a very low nRMSE as early as January
(Fig. 2) for Central France, with the 3 methodologies
able to estimate the yield with high accuracy, con-
trasting with the results across the other sites, where
a greater interannual variability of the weather con-
ditions greatly affected the forecast accuracy.

The H methodology provided the best accuracies
overall. Nonetheless, a detailed analysis of the per-
formances of the methodologies in years with the

highest yield deviations from the site-specific refer-
ence mean revealed that the other 2 methodologies
can provide more accurate forecasts. Assuming that
the final yield is the result of the weather conditions
occurring during the growing season (Lawless & Se-
menov 2005) at each site, we selected the years with
the highest and the lowest reference yields. In each
specific area, these years are supposed to be those in
which the best and the worst weather conditions for
durum wheat growth occurred. The deviations of es-
timated yields in such extreme years were then ana-
lysed to evaluate the methodologies. In years with the
lowest yields, although all forecasts provided by the 3
methodologies tend to overestimate the reference
yield (Table 2), the predictions based on the A
methodology appear to be more accurate. After all

Table 2. Relative deviation (%) of predicted yields in years with the lowest and highest reference yield

Jan Feb Mar Apr May Jun
Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest Lowest Highest

Historical

Tunisia 5.1 -3.2 9.8 -0.1 7.4 4.4 14.2 7 9.5 1.1 7.6 0
Morocco 357 -23.9 2.0 -27.8 6.3 -24.8 48 -19.2 1.4 0.4 1.9 -2.6
Algeria 62.0 -15 43.7 -20.6 40.0 -27.5 172  -38.1 4.6 -8.8 -1.3 0.7
Southern Spain 29.1 -17.1 109 -13 172 -23.8 15.6 -4.1 -3.6 3.9 -7.9 -0.9
Southern Italy 356 -21.1 31.5 -16 28.4 -6 22.0 2 21.7 9.2 2.5 -2.2
Central Italy 346 -14.6 412 -18.8 30.1 -12.6 146 -11.3 9.8 -2.8 -0.7 6.8
Greece 15.5 -1.9 4.9 -6.6 103 -11.9 10.9 0.1 -59 -126 -8.1 2.1
Central France 59.7 -10.9 654 -13.4 64.5 -14.5 46.1 -6.5 25.6 -4.4 13.0 10.4
Northern Spain  72.2 -214 26.2 -34.6 212 -24.2 21.6 -20.6 26.9 -2.1 2.5 -0.9
Southern France 13.8 -24 14 -21.9 89 -16 8.5 -13.1 15.7 -5.3 1.9 -7.8
Mean 36.3 -153 23.7 -17.3 234 =157 176 -104 10.6 -2.1 1.1 0.6
Empirical

Tunisia -99 -189 12.7 -5.7 -2.5 1.2 6.8 5.6 19.1 3 7.6 0
Morocco 36.8 -20.7 -2.6 -285 -1.5 -23 34  -23 0.2 2.9 1.9 -2.6
Algeria 664 -17.8 50.5 -23.3 51.3 -26.7 224 -404 09 -103 -1.3 0.7
Southern Spain 32.8 -16.1 9.4 -2.4 6.0 -11.8 11.3 -1.1 2.9 1.5 -7.9 -0.9
Southern Italy -4.6 -20.2 348 -18.5 7.2 -5.4 4.3 6.5 14.7 7.9 4.7 -2.3
Central Italy 294 -1.9 56.1 -1.6 45.1 -8.1 30.1 -2.5 2.0 6.9 -0.8 8.8
Greece 18.9 11.1 7.0 2.3 8.2 4.9 53 4.9 -10.3 -216 -7.8 3
Central France 784  -13.3 81.4 -4.4 62.3 -12 93.1 -1.6 -2.0 -7.8 20.1 13.6
Northern Spain  99.1  -10.6 39.3 -304 139 -16.6 -6.2 -134 19.8 6.1 1.5 8.6
Southern France 3.9 -13.7 -4.1 =201 3.0 -20.7 99 -18.2 15.9 -6.7 5.8 -9.4
Mean 351 122 28.5 -133 19.3 -11.8 18.0 -8.3 6.3 -1.8 2.4 2.0
Analogue

Tunisia -3.6 18.2 42 -13.2 -2.5 -5.5 15.1 14.6 18.3 7.6 0.0 0
Morocco 346 -41.3 24.3 -3%.3 -53 -259 23.9 -6.7 -0.6 10.9 0.0 0
Algeria 415 =527 74.7 2 36.0 -47.9 -2.8 -38.3 3.3 4.4 0.0 0
Southern Spain -26.7 -6.6 342 -322 237 -38.2 -0.2 -0.1 11.3 7.9 0.0 -0.4
Southern Italy 25.7 -18.7 39.3 -326 36.8 19.7 6.7 -8.6 -4.0 10.1 0.0 -1.4
Central Italy 409 -129 39.5 -136 12.5 -19.8 422 -20.1 23 -17.9 1.7 5.2
Greece 22.2 17.6 -3.5 -174 -26.4 -1.4 -9.0 3.6 -19.9 1.5 -4.9 1.1
Central France 103.5 -8.4 372 -121 98.3 -2.2 444 -216 488 -11.2 4.6 -4.6
Northern Spain  25.1  -19.2 40.6 -31 -8.2 34.5 3.8 -30.5 -3.8 -6.2 1.9 -8.2
Southern France 16.4 -22.6 -5.8 =315 0.8 -26 -23.8 -21.4 19.2  -12.6 -4.0 -11
Mean 28.0 -14.7 28.5 -21.9 16.6 -11.3 10.0 -12.9 7.5 -0.6 -0.1 -1.9
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the years characterized by minimum vyield for all case
studies were aggregated, A emerged as the first to re-
turn a prediction with a margin of error lower than
10% 1 mo in advance (April) compared with the H
and E methodologies. By contrast, during the years
with maximum yield, the forecasts provided by the 3
methodologies have a tendency to underestimate the
yield (Table 2); under these conditions the predictions
based on the E methodology appear to be the most
accurate, on average, with a 13% absolute error in
January that falls below 10% in April. In those ex-
treme years, the analysis of thermal accumulation
(i.e. the sum of mean daily temperature) and total
rainfall from January to June did not reveal any clear
pattern that could explain such separated behaviour.
This is likely due to the combined effect on crop de-
velopment and growth of temperature and precipita-
tion anomaly patterns both acting, as atmospheric
forcing, at sub-monthly time scales. The performance
of the E methodology was probably related to a better
identification of large-scale dynamic forcing leading
to emerging atmospheric regimes in the synoptic
variability range but with a marked bias highlighted
by the difficulty of correctly identifying critical
periods leading to low yields. In contrast, the difficul-
ties of the A methodology in identifying the better
conditions for high yield may be ascribed to a low
probability of finding in the past analogue year with
similar weather patterns.

This study provides evidence that, even if seasonal
forecasting skills in the Mediterranean Basin are still
limited, the chance of providing useful information
on durum wheat yield several months in advance is
real, even on a monthly time scale, with a clear ten-
dency towards skill improvement as the forecast lead
time shortens. Such useful information is not limited
to a single option among the methods shown; in-
stead, our results highlight some prevalent perform-
ance behaviour for each method, regardless of the
geographical location. The historical methodology
provided good predictive power in years with month-
ly to seasonal anomalies closer to their long-term
mean values and thus with a low level of potential
yield hazard. The empirical method, in turn, illus-
trated positive skill levels when climatic anomalies
generated high levels of wheat yield, that is, in good
years with a marginal to negligible level of low yield
risk. In contrast, the analogue method showed posi-
tive skill levels in years with low yields, that is, years
with a potentially high level of risk. Results reveal
that there is useful information embedded among all
of the forecast options provided by the different
methodologies. Accordingly, it could be possible to

build a simple multi-option approach for providing
potential scenarios for wheat production several
months in advance. This potential skillful prediction
behaviour is particularly important in years when no
strong atmospheric/oceanic forcing is present and
thus no clear mechanism is acting.

The results confirmed the need to further develop
the methods presented here to better account for ad-
verse weather events, especially in the context of cli-
mate change that predicts an increase in frequency
and magnitude of adverse weather events affecting
crop production (Moriondo et al. 2010, 2011, Trnka
et al. 2014). The A methodology can be further im-
proved by introducing additional parameters (e.g.
precipitable water, Toscano et al. 2014) and indices
(e.g. North Atlantic Oscillation and El Nino-Southern
Oscillation, Gimeno et al. 2002) defining similarity of
weather patterns in the historical time series. Further,
implementing different classification and selection
techniques instead of the conventional Euclidean
norm can be a way to improve skill in prediction (Ak-
bari et al. 2011, Crochet 2013). Improvements of the
E methodology could be achieved by applying local
calibration, e.g. using a site-specific selection of pre-
dictors instead of the same list of predictors for differ-
ent sites and prediction dates. Defining a site-specific
list of predictors by eliminating those that have only a
marginal impact on climate variability of a specific
geographical region is expected to result in a reduc-
tion of noise as well as an improvement of the signal-
to-noise ratio, with improved overall performance.

The 3 methodologies analysed were able to pro-
vide yield forecasts with good accuracy, with a lead
time that, in some cases, is sufficient to allow inter-
vention (with a view to reducing losses) and planning
strategy. From the earliest prediction dates, the met-
rics indicated a good overall ability of the H and E
methodologies to reproduce the interannual variabil-
ity of yields. In contrast, the A methodology gave
poorer estimations for the first prediction dates, but
tended to level up with the results of the other
methodologies from March—April onwards. As ex-
pected, as the season progressed, the increasing pro-
portion of observed weather constituting the mixed
meteorological data allowed the estimates to become
much more accurate. Nonetheless, with very few
exceptions, from January (i.e. 5 to 6 mo earlier than
maturity) the trueness of the estimations is notable,
as can be seen by comparing the MRAE with the CV
of the reference yields at each site (Table 3). At each
specific site, the MRAE was generally lower than the
CV, thus indicating that all the methodologies can
provide reliable results in predicting durum wheat
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Table 3. Coefficient of variation (CV) of the distribution of

reference yields. Reference yields were those obtained by

running the crop model with observed meteorological data
for the whole growing season

Site CV (%)
Tunisia 15.9
Morocco 11.2
Algeria 211
Southern Spain 18.3
Southern Italy 20.4
Central Italy 16.5
Greece 12.1
Central France 13.3
Northern Spain 254
Southern France 20.2

yield over the Mediterranean Basin well in advance
of maturity.

Such results support the idea that applying these
methods to gain within-season yield predictions may
provide end-users with useful information, thus al-
lowing them to make or plan tactical changes during
the crop year. For instance, an important contribution
can be provided for modulating the distribution of
nitrogen fertilizer, in terms of timing and quantity. In
this respect, due to their higher lead times, the H and
E methodologies might be useful for optimizing the
quantity of fertilizer that could be distributed at the
beginning of stem elongation (3—-4 mo before har-
vest), avoiding over-fertilization in low-yielding
years or providing the crop with adequate nitrogen
supply in potential high-yielding years. All the
methodologies tested may provide useful indications
for late nitrogen applications such those distributed
around anthesis (1-2 mo before harvest), with the
aim to increase the protein content. Similarly, due to
their higher accuracy, predictions of yield produced
2-3 mo ahead of harvest may be used for planning
supplemental irrigation to avoid detrimental
droughts during grain filling.

In this paper, our analysis has only focused on the
utility of the 3 forecasting methods for predicting
yield. We made 2 main theoretical assumptions: (1)
the crop model is able to reproduce crop growth and
yield once a complete set of input data are provided,
and (2) deviations of simulated yields from the refer-
ence yields are mainly related to the effect of climatic
uncertainty due to the forecast weather. These 2
assumptions allowed us to isolate the effect of climate
from all other sources of uncertainty and variability,
and, in the end, investigate the predictive power of
the forecasting methodologies as dependent only on
local climate.

With the aim of incorporating these methods in a
decision support system to be used for practical farm-
ing, the effect of other sources of uncertainty affect-
ing yield predictions should be considered. For in-
stance, although mechanistic, crop models may
contain several empirical assumptions that do not
completely represent actual plant processes. In addi-
tion, the process-based algorithms used for simulat-
ing crop growth dynamics as well as water and nutri-
ent balance in the soil-plant system may differ and
can produce different responses. Several other fac-
tors affecting yield, such as weeds, pests and extreme
climate events, are not considered or are roughly
simulated, thus representing another source of un-
certainty. Exploring such uncertainties, considering
the adoption of several crop models as well as the
coupling with pest and disease models, would be an
interesting topic for further studies.

4. CONCLUSIONS

In this study, the performances of 3 methodologies
to calculate within-season yield estimates of durum
wheat over the Mediterranean Basin were evaluated.
Yield estimates produced at specific dates during the
growing season at 10 sites were compared to the ref-
erence yields calculated using the observed weather
for the whole growing season. The results showed
that it is possible to predict durum wheat yield over
the Mediterranean Basin with an accuracy of nRMSE
<20%, from 5 to 6 mo earlier for the H and E method-
ologies and 3 mo earlier for the A methodology.
Although the H methodology performed better over-
all than the others, the A and E methodologies pro-
vided better estimations for both low- and high-
yielding years. This indicates that the A and E
methodologies have great potential as they can pro-
vide more accurate predictions for those years that
deviate from average conditions.
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