Phylogenetic analysis of Piscirickettsia salmonis by 16S, internal transcribed spacer (ITS) and 23S ribosomal DNA sequencing

M. J. Mauel*, S. J. Giovannoni, J. L. Fryer**

Department of Microbiology and The Center for Salmon Disease Research, 220 Nash Hall, Oregon State University, Corvallis, Oregon 97331-3804, USA

ABSTRACT: Piscirickettsia salmonis, the etiologic agent of piscirickettsiosis, is a systemic disease of salmonid fish. Variations in virulence and mortality have been observed during epizootics at different geographical regions and in laboratory experiments with isolates from these different locations. This raises the possibility that bio-geographical patterns of genetic variation might be a significant factor with this disease. To assess the genetic variability the 16s ribosomal DNA, the internal transcribed spacer (ITS) and the 23S ribosomal DNA of isolates from 3 different hosts and 3 geographic origins were amplified using the polymerase chain reaction (PCR). Results of this analysis confirm that P. salmonis is a member of the gamma subgroup of the Proteobacteria and show that the isolates form a tight monophyletic cluster with 16s rDNA similarities ranging from 99.7 to 98.5%. The ITS regions were 309 base pairs (bp), did not contain tRNA genes, and varied between isolates (95.2 to 99.7% similarity). Two-thirds of the 23S rRNA gene was sequenced from 5 of the isolates, yielding similarities ranging from 97.9 to 99.8%. Phylogenetic trees were constructed based on the 16S rDNA, ITS and 23S rDNA sequence data and compared. The trees were topologically similar, suggesting that the 3 types of molecules provided similar phylogenetic information. Five of the isolates are closely related (99.4% 16S rDNA similarity, 99.1 to 99.7% ITS and 99.3 to 99.8% 23S rDNA similarities). The sequence of one Chilean isolate, EM-90, was unique, with 16S rDNA similarities to the other isolates ranging from 98.5 to 98.9%, the ITS from 95.2 to 96.9% and the 23S rDNA from 97.6 to 98.5%.

KEY WORDS: Piscirickettsia salmonis · rDNA · Phylogeny

INTRODUCTION

The bacterium Piscirickettsia salmonis is an obligate intracellular parasite and the causative agent of piscirickettsiosis, a systemic disease of salmonids. The pathogen has been reported in Chile (Bravo & Compos 1989, Fryer et al. 1990), Norway (Olsen et al. 1993), Ireland (Rodger & Drinan 1993, Palmer et al. 1997) and the Atlantic and Pacific coasts of Canada (Evelyn 1992, Jones et al. 1998).

The mortality associated with piscirickettsiosis varies with geographic region and host species (Fryer & Lannon 1994). Mortalities between 30 and 90% in netpen reared coho salmon Oncorhynchus kisutch have been recorded in Chile (Bravo & Campos 1989), while those in Atlantic salmon Salmo salar from the Pacific coast of Canada, Norway and Ireland vary between 0.6 and 15% (Evelyn 1992, Olsen et al. 1993, Rodger & Drinan 1993). Differences in mortality may be due to variation in factor(s) intrinsic to the bacterium, host species resistance, vector species (if present), environmental factors or the mariculture practices that exist between the areas.

At present the molecular phylogenetic placement of Piscirickettsia salmonis has been based on the 16S rRNA gene sequence of a single isolate, LF-89T the
type strain (Fryer et al. 1992). This analysis showed that _P. salmonis_ is a member of the gamma subdivision of the Proteobacteria, as are the genera _Coxiella_ and _Francisella_. The bacteria of the genera _Neorickettsia, Rickettsia, Cowdria, Anaplasma_, and _Ehrlichia_ are members of the alpha subdivision of the Proteobacteria. Thus, _Piscirickettsia_ strains are expected to share more characteristics with _Coxiella_ and _Francisella_ than with _Neorickettsia, Rickettsia, Cowdria, Anaplasma_, and _Ehrlichia_.

Comparisons of 16S rDNA sequences have become routine methodology for study of microbial phylogeny and have been used previously to classify members of the _Rickettsiaceae_ (Anderson et al. 1991, Wen et al. 1995a,b). 23S rRNA genes are larger and more variable than 16S rRNA genes and therefore may be useful for phylogenetic comparisons of closely related organisms (Ludwig & Schleifer 1994). The internal transcribed spacer (ITS) regions of rRNA operons also show a large amount of sequence and length variation that is particularly useful for differentiating within species of prokaryotic organisms (Barry et al. 1991, Navarro et al. 1992, Leblond-Bourget et al. 1996, Trevisanato et al. 1996).

To determine if genetic differences occur among isolates from different geographical locations, the 16S rRNA genes and approximately two-thirds of the 23S rRNA genes were sequenced from 5 isolates of _Piscirickettsia salmonis_ and the complete ITSs were sequenced from 6 isolates.

MATERIAL AND METHODS

Piscirickettsia salmonis isolates. _Piscirickettsia salmonis_ type strain LF-89^T^ (ATCC VR 1361) was isolated from coho salmon in Chile (Fryer et al. 1990, 1992). Chilean isolate EM-90 was cultured from Atlantic salmon and provided by E. Madrid (Marine Harvest, Puerto Montt, Chile). ATL-4-91 was isolated from Atlantic salmon collected off the east coast of Vancouver Island, British Columbia, Canada (Brocklebank et al. 1992) and was provided by G. Traxler (Pacific Biological Station, Nanaimo, BC). Norwegian isolate NOR-92 was obtained from Atlantic salmon and provided by H. P. Melby (National Veterinary Institute, Oslo, Norway). Chilean isolates SLGO-94 and C1-95 were supplied by P. Smith (University of Chile, Santiago, Chile). SLGO-94 was obtained from rainbow trout _Oncorhynchus mykiss_ and C1-95 was isolated from coho salmon.

Culture of bacteria and isolation of DNA. _Piscirickettsia salmonis_ was grown at 15°C in the chinook salmon embryo cell line CHSE-214 (Lannan et al. 1984) in antibiotic-free Eagle's minimum essential medium (MEM) with Earle's salts (Sigma Chemical Co., St. Louis, MO) supplemented with 10% fetal bovine serum (HyClone Laboratories, Inc., Logan, UT) until 90% of the cell sheet was lysed (approximately 14 d). Genomic DNA was isolated using DNA-STAT 60 (Tel-Tex, Inc., Friendswood, TX) following the manufacturer's protocol.

<table>
<thead>
<tr>
<th>Primer/location</th>
<th>Sequence (5'-3')</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS16SA (138?F)</td>
<td>GCCCTTGACAAACCGCCCT</td>
</tr>
<tr>
<td>PS16SH (1516?F)</td>
<td>CTCGCCGCTGATTACTCT</td>
</tr>
<tr>
<td>PS23SB (507?R)</td>
<td>CTTTTCCCCTACGGTCTAT</td>
</tr>
<tr>
<td>PS23SC (203?R)</td>
<td>TAGATGTTCGATTTCCCC</td>
</tr>
<tr>
<td>PS441Fb</td>
<td>GTGAACTAGTACCGTGAGGG</td>
</tr>
</tbody>
</table>

a Numbering corresponds to _Escherichia coli_ 16S rRNA gene.

b Number of bases from the 5' end of the _Piscirickettsia salmonis_ 23S rRNA gene.
45 µl of the PCR reaction mixture described above and covered with 50 µl mineral oil. The first 457 nucleotides of the 5' end of the 23S genes were amplified and sequenced with the ITS region. Another approximately 2000 nucleotides of the 23S gene were amplified in 2 sections with the primer pairs PS441F-2498R. The mixture was denatured at 94°C for 2 min and amplified with 33 cycles of 94°C for 1 min, 50°C for 2 min and 72°C for 3 min.

All amplifications were followed by an extension period of 72°C for 7 min, and the tubes held at 4°C. Negative controls with no DNA template were included whenever samples were amplified. Aliquots (10 µl) of the PCR reaction mixture were fractionated in a 2% agarose 1x TAE pH 8.0 (40 mM Tris acetate/1 mM EDTA) gel containing 10 µg/ml ethidium bromide and photographed under UV transillumination to confirm amplification of the correct size of PCR products.

Cloning of the 16S rRNA genes and the ITS regions. The PCR products were purified using the PCRquick Kit (Qiagen, Valencia, CA). The purified PCR products were cloned into the TA cloning vector pCRII® using the manufacturer's protocol (Invitrogen Corporation, San Diego, CA). Vector plasmids were digested with EcoRI (Promega) and separated by gel electrophoresis to confirm insertion of DNA fragments of the expected size.

Sequence determination. The 16S rDNA and ITS sequences were determined by sequencing PCR products inserted into the vector pCRII®. 23S rRNA gene sequences were determined by direct sequencing of the PCR products. Sequencing was carried out on an ABI 373 automated sequencer (Perkin Elmer, Applied Biosystems, Inc., Foster City, CA) using the dye-primer (T7 and SP6 primer sites on the pCRII plasmid) and dye-terminator kits supplied by Applied Biosystems, Inc.

The sequences determined in this investigation have been deposited in the GenBank nucleotide sequence data base and given the following accession numbers: 16S rDNA; LF-89 U36941, EM-90 U36940, ATL-4-91 U36915, NOR-92 U36942, SLGO-94 U55015: ITS and 23S rDNA; LF-89 U36943, EM-90 U36944, ATL-4-91 U36945, NOR-92 U36946, SLGO-94 U62104 C1-95 U62103.

Additional taxa. The 16S gene sequences of Proteobacteria representing diversity within the phylum were compared to the Piscirickettsia salmonis isolates. These organisms and the GenBank accession for the nucleotide sequences used in this study are: Rickettsia rickettsii M21293, Ehrlichia ristici M21290, Cowdria ruminantium X61659, Ehrlichia canis M73221, Anaplasma marginale M60313, Ehrlichia equi M73223, Neorickettsia helminthoeca U12457, Alloprevia landensis M69186, Bartonella quintana M11927, Brucella abortus X13695, Wolbachia persica M21292, Francisella tularensis Z21932, Coxiella burnetii M21291, Legionella pneumophila M36025, Pseudomonas aeruginosa X06684, Vibrio anguillarum X16895, and Escherichia coli rrnB operon J01695. Since chlamydial infections have been reported in fish (Evelyn 1992), Chlamydia trachomatis X06684 was included in the analysis. The Bacillus subtilis rrnB operon M10606 was used as an outgroup.

Phylogenetic analysis. Each Piscirickettsia salmonis sequence was confirmed from the 3 separate clones, each of which was obtained from a different amplification reaction. The clones were sequenced in both forward and reverse directions. Sequences were aligned manually and phylogenetic trees were constructed from the sequence data using programs in PHYLIP, phylogenetic inference package version 3.5 (Felsenstein 1989). A matrix of evolutionary distances was constructed from the aligned data by the method of Jukes & Cantor (1969), which assumes that independent changes occur at all sites with equal probability. Phylogenetic trees were inferred from distance estimates by the method of De Soete (1983). In addition, a cladistic reconstruction of the phylogenetic relationships of the taxa was performed using the parsimony program PAUP version 3.0r (Swofford 1993). Only data for sequence positions that were known to be present in all isolates used in the analysis were compared. This resulted in the use of 1527 bases from the 16S rRNA genes for comparisons among the P. salmonis isolates and 1313 bases for comparison between P. salmonis and the selected non-P. salmonis sequences. For comparisons between the P. salmonis isolates using the ITS region and the 23S rRNA genes, 309 and 1902 bases were utilized, respectively.

RESULTS

The phylogenetic relationships of Piscirickettsia salmonis and other bacteria, including Chlamydiae and members of the Rickettsiaceae, are shown in Fig. 1. Phylogenetic comparisons of the P. salmonis 16S rRNA to other bacterial genes indicated that P. salmonis is a member of the gamma subgroup of the Proteobacteria and is only distantly related to the genera Coxiella and Francisella (Table 2). Analysis by both distance and parsimony methods produced the same branching order (Fig. 1).

Comparisons among the 16S gene sequences of 5 Piscirickettsia salmonis isolates revealed high levels of similarity (98.5%) within the group (Fig. 2), and showed that they are monophyletic. Isolates LF-89 and SLGO-94 differed by only 2 nucleotides and are 99.8%
similar. LF-89 differed from the sequences of ATL-4-91 and NOR-92 by 6 and 7 nucleotides respectively (level of similarity 99.4 %). ATL-4-91 and NOR-92 differed by 5 nucleotides (99.7 % similarity). EM-90 differed from LF-89 by 22 nucleotides (98.5% similarity) and from ATL-4-91 by 20 nucleotides, NOR-92 by 19 nucleotides, and SLGO-94 by 22 nucleotides (98.7, 98.8 and 98.5 % similarity respectively). Nine of the base differences between EM-90 and the other isolates were found between bases 1003 and 1020. They corresponded to paired bases in a stem-loop structure (Fig. 3). Analysis of the 16s rRNA gene data by either distance or parsimony methods produced the same tree (Fig. 2). The bootstrap values for all nodes were 100%.

The complete ITS rDNA sequences of 6 isolates of Piscirickettsia salmonis were determined by sequencing cloned amplicons prepared with PCR primers for conserved regions in the 16s and 23s rRNA genes. Only one ITS sequence was obtained from each isolate (Fig. 4). ATL-4-91 and NOR-92 have ITS regions of 309 base pairs (bp) and LF-89, EM-90, SLGO-94 and Cl-96 have ITS regions of 308 bp in length. The similarity values used in the phylogenetic comparisons of the P. salmonis isolates were calculated from 309 nucleotide positions that were unambiguously determined for all 6 isolates. This region included insertions and deletions (Table 3). Comparison of the ITS sequence alignments of the 6 P. salmonis isolates revealed high levels of similarity (ranging from 95.2 to 99.4 %). Analysis of the ITS data by either distance or parsimony methods produced the same tree (Fig. 2). The bootstrap values for all nodes were 100%.

Approximately 2500 bp of the 23s rRNA gene was amplified and directly sequenced for all of the isolates except NOR-92, from which a 460 bp of the 5' end of the 23s gene was cloned and sequenced along with the ITS region. The 23s rRNA genes were analyzed in 2 ways. A 460 bp region of the 5' end of the gene was used in an analysis that included all 6 isolates. In addition, the 5' regions of 23s genes of 5 of the isolates were amplified and sequenced to position 2495. Similarity matrices were constructed from both datasets (Table 3) and used to infer phylogenetic relationships (Fig. 2). Overall, the phylogenetic analysis revealed high levels of similarity (ranging from 95.2 to 99.4 %). Analysis of the ITS data by either distance or parsimony methods produced the same tree (Fig. 2). The bootstrap values for all nodes were 100%.

Table 2. 16S rDNA sequence similarities between Piscirickettsia salmonis, selected rickettsiae and bacteria

Species	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
1. Piscirickettsia salmonis	75.1																		
2. Clamydia trachomatis	80.8	71.0																	
3. Rickettsia rickettsii	75.6	67.9	81.2																
4. Ehrlichia ristic	78.1	70.0	83.3	84.6															
5. Cowdria ruminacncum	76.7	69.4	82.6	84.2	97.8														
6. Ehrlichia canis	72.2	71.5	83.0	85.1	93.3	93.4													
7. Anaplasma marginale	77.6	70.6	83.2	85.0	93.5	93.0	98.1												
8. Ehrlichia equi	77.1	66.2	82.1	96.4	84.6	84.5	84.2	84.6											
9. Neorickettsia helminthoeca	80.2	69.7	83.4	78.3	79.7	78.7	80.5	80.5	78.7										
10. Alpia clevelandensis	81.6	70.8	85.3	79.8	81.2	80.9	82.1	82.1	79.7	89.6									
11. Bartotella quinata	81.9	71.3	85.5	80.1	80.9	80.1	81.2	81.5	80.5	90.6	95.5								
12. Brucella abortus	86.5	71.4	78.0	74.9	76.5	75.3	76.3	76.2	74.4	78.4	79.6	78.7							
13. Wolbachia persica	86.3	71.6	77.8	74.9	76.4	75.3	76.4	76.3	74.7	78.8	79.9	79.2	99.1						
14. Francisella tularensis	89.5	72.8	81.7	78.8	78.8	78.3	79.4	79.2	78.3	82.0	82.1	82.5	84.8	84.7					
15. Coxyiella burnetii	89.2	73.7	80.7	77.8	78.0	78.1	78.7	78.5	77.4	81.5	80.7	80.9	85.3	85.5	89.7				
16. Legionella pneumophila	86.8	71.9	78.6	75.6	77.2	76.4	78.5	78.4	75.0	78.8	79.8	80.5	84.9	84.7	88.1	88.6			
17. Pseudomonas aeruginosa	85.1	71.1	77.4	74.7	76.4	75.7	76.8	76.3	74.5	77.2	78.7	79.2	81.9	81.8	83.8	85.5	84.9		
18. Vibrio anguillarum	86.2	71.0	76.8	75.9	76.0	74.7	77.1	76.6	75.6	77.7	78.2	79.7	82.6	83.0	84.4	85.0	86.5	90.9	
19. Escherichia coli	76.1	72.2	77.7	74.8	75.9	75.7	75.9	75.0	74.8	79.0	78.8	80.1	76.3	76.1	77.5	77.5	74.2	75.8	
20. Bacillus subtilis	75.1	77.1	83.6	81.2															

*Regions of uncertain homology and ambiguity were eliminated, leaving 1313 positions for comparison. Similarities were calculated as described in 'Materials and methods'.
Phylogenetic analysis of Piscirickettsia salmonis

Mauel et al.: Phyllogenetic analysis of Piscirickettsia salmonis

119

tionships observed in the two 23S trees and
the ITS tree were alike. Analysis of the 23S
rRNA gene data by either distance or para-
simony methods produced the same topol-
ygy. The bootstrap values for all nodes
were 100%. The 23S rDNA sequence of
LF-89 was aligned and compared to the
23S rDNA sequences of the Ribosomal
Data Base (Maidak et al. 1994). LF-89 was
found to be most similar to the 23S rDNA
sequences in the gamma subunit of the
Proteobacteria, in agreement with the 16S
rDNA analysis.

DISCUSSION

The isolation of *Piscirickettsia salmonis*
from different geographical regions
prompted the examination of the 16S rRNA
gene sequences from multiple isolates. It
seemed plausible that piscirickettsiosis
might be a disease with an extended evolu-
tionary history resulting in phylogenetic di-
versity between isolates from varied geo-
graphic origins and hosts. The information
reported here shows relatively little nucleotide se-
quence variation between strains LF-89 and EM-90, but
does provide clear evidence of differences between the
isolates.

The use of ITS sequence divergence between iso-
lates or strains belonging to the same species can help
to clarify relationships within a species because ITS
regions are intrinsically more variable than rRNA

![Fig. 1. Phylogenetic relationships among the 16S rRNAs of Piscirickettsia salmonis, selected rickettsias and other bacteria. The tree was inferred by the method of De Soete (1983) from evolutionary distances that were calculated by the method of Jukes & Cantor (1969). After eliminating regions of ambiguity and uncertain homology, 1313 positions were compared.](image)

![Fig. 2. Piscirickettsia salmonis. Phylogenetic relationships among isolates. (A) 16S rDNA: 1527 nucleotides compared. (B) internal transcribed spacer (ITS): 309 nucleotides compared. (C) The first 450 nucleotides of the 23S rRNA gene compared. (D) 1902 nucleotides of the 23S rRNA gene compared. Evolutionary distances were calculated by the method of Jukes & Cantor (1969) and trees inferred by the distance method of De Soete (1983).](image)
Fig. 3. *Piscitiottia salmonis*. Secondary structure model of the 16S rRNA gene of *P. salmonis* LF-89, Gutell et al. (1985). Sequence variation between LF-89 and the other strains are indicated by the following: EM-90 (O), ATL-4-91 (+), NOR-92 (O), SLGO-94 (>), 2 or more isolates (A). Circled area indicates the stem loop of greatest diversity. Numbering corresponds to that of the *Escherichia coli* 16S rRNA.
genes. However, there are limitations to the applications of ITS regions for strain differentiation. The use of ITS sequencing for the phylogenetic analysis of species that have more than 1 rRNA operon can be complicated because of sequence variation between the operons (Frothingham & Wilson 1993). However, ITS regions are well suited for comparison of slow-growing organisms that often have 1 copy of the rRNA operon (Frothingham & Wilson 1993). Only 1 ITS sequence was obtained for each of the *Piscirickettsia salmonis* isolates, suggesting the presence of a single rRNA operon.

Processing of rRNA into the ribosomal subunits involves cleavage with RNase III (Maidak et al. 1994). In *Escherichia coli* 1 position at which this cleavage occurs is downstream of the sequence GCUCACACA, 33 nucleotides from the 3' end of the 16s rRNA gene (Woese 1987). In *Piscirickettsia salmonis* this sequence is present with only 1 base change (G\U00bcUCACACA) and is located 1 position farther from the 16S rRNA gene than in *E. coli*. This sequence is also found in *Pleisomonas shigelloides* (East et al. 1992), which have RNase III cleavage sites identical to the sequence found in *P. salmonis*.

According to Leblond-Bourget et al. (1996), as an approximation, most species groups of bacteria exhibit 16s-23s sequence divergence of <13%. The maximum divergence in this study was 4.8% (Table 3). In previous research with obligate intracellular parasites differences in 16s rDNA similarity ranging from 99.9 to 84% have been used as criteria for assigning strains of novel species (Anderson et al. 1991). Wen et al. (1995b) suggested that 2 strains of *Ehrlichia risticii* may represent new species on the basis of distinct antigenic profiles and similarity values of 99.2 to 99.3% (Wen et al. 1995a). However, Fox et al. (1992) states that while 16S rDNA data is a powerful tool for determining what spe-

Table 3. Sequence similarities of the internal transcribed spacer (ITS; 309 nucleotide positions were used for the comparison after elimination of ambiguous nucleotides), the first 457 nucleotides of the 5' end of the 23s rDNA (450) and 1902 nucleotides of the 23s rDNA (1902) sequence between 6 isolates of *Piscirickettsia salmonis*

<table>
<thead>
<tr>
<th>Isolate</th>
<th>LF-89</th>
<th>EM-90</th>
<th>ATL-4-91</th>
<th>C1-95</th>
<th>SLGO-94</th>
<th>NOR-92</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF-89(^T)</td>
<td>96.5/99.6/99.9</td>
<td>96.5/99.6/99.9</td>
<td>95.2/98.5/98.5</td>
<td>97.8/98.9/98.5</td>
<td>97.8/98.9/98.5</td>
<td>97.8/98.9/98.5</td>
</tr>
<tr>
<td>EM-90</td>
<td>97.8/98.7/98.5</td>
<td>97.8/98.7/98.5</td>
<td>96.5/98.9/98.9</td>
<td>98.6/95.8/95.8</td>
<td>99.7/99.8/99.8</td>
<td>98.1/99.1/NA</td>
</tr>
</tbody>
</table>

Fig. 4. *Piscirickettsia salmonis*. Comparison of the nucleotide sequences of the internal transcribed spacers (ITS) located between the 16s and 23s genes for 6 isolates. Regions indicated by boxes show homology with sequences in *Escherichia coli* which are thought to be involved in processing of rRNA molecules (Young et al. 1979). Points indicate nucleotide identity with LF-89\(^T\), LF, LF-89\(^T\), EM, EM-90, ATL, ATL-4-91, C1, C1-95, SL, SLGO-94, NOR, NOR-92.
cies a strain belongs to, it may not by itself be enough to define a species. According to Stackebrandt & Goebel (1994) a polyphasic approach is needed to separate a bacterial species from its phylogenetic neighbors and DNA reassociation is the superior method when separating bacteria at the species level. The strength of 16S rRNA sequence analysis is to determine if the organisms are related enough (similarities >97%) that DNA reassociation studies need to be performed.

The diversity within the 16S, ITS and 23S rDNAs reported here is not sufficient to split the genus *Piscirickettsia* into several species, although additional research on the biology and biochemistry of the bacterium might eventually support such a taxonomic change. Systematic studies often link DNA reassociation, virulence, phenotypic, biochemical and antigenic characteristics with 16S rDNA data as criteria in establishing a novel species; information on the genus *Piscirickettsia* is still emerging.

The sequence differences between EM-90 and the other 4 *Piscirickettsia salmonis* sequences are of practical value. These data allowed the development of isolate-specific PCR assays that were used to differentiate EM-90 from LF-89, ATL-4-91, NOR-92 and SLGO-94 (Mauel et al. 1996). It was also found that EcoRI and PsI restriction sites located in the variable stem-loop region permitted the use of restriction fragment length polymorphism to differentiate EM-90 from the other strains (Mauel et al. 1996).

In conclusion, comparative 16S, ITS, and 23S rDNA sequence analyses of *Piscirickettsia salmonis* indicate that all isolates form a monophyletic group within the gamma Proteobacteria, and that isolate EM-90 has diverged genetically from the other *P. salmonis* isolates. While variation between isolates from the different geographic regions was observed it is based on single isolates from 2 of the regions (Norway and British Columbia, Canada). Sequences from additional isolates should be determined and compared before phylogenetic conclusions can be reached concerning regional variation within *P. salmonis*.

Acknowledgements The authors thank P. Caswell-Reno and M. Whipple, Oregon State University, Hatfield Marine Science Center, for maintaining the stocks of *Piscirickettsia salmonis* cultures. We also thank Drs D. Mounch, J. Leong, and D. Gordon, Department of Microbiology, Oregon State University for their comments and advice and P. Peterson for editorial assistance. This work was supported by grant no NA36RG0451 from the National Oceanic and Atmospheric Administration to the Oregon State University Sea Grant College Program and by appropriations made by the Oregon State legislature. The views expressed herein are those of the author(s) and do not necessary reflect the views of NOAA or any of its subagencies. This is Oregon Agricultural Experiment Station Technical Paper Number 11130.

LITERATURE CITED

Fryer JL, Lannan CN, Garces LH, Larenas JJ, Smith PA (1990) Isolation of a rickettsia-like organism from diseased coho salmon (*Oncorhynchus kisutch*) in Chile. Fish Pathol 25:107–114

bacterial systematics. John Wiley and Sons, New York, p 115–176

Lannan CN, Winton JR, Fryer JL (1984) Fish cell lines: establishment and characterization of nine cell lines from salmonids. In Vitro 20:671–676

Swofford D (1993) PAUP: phylogenetic analysis using parsimony. ver 3.1.1. Illinois Natural History Survey, Champaign

Editorial responsibility: Larry Vaughan, Arlington, Massachusetts, USA

Submitted: March 3, 1998; Accepted: October 27, 1998
Proofs received from author(s): January 22, 1999