Development of a polymerase chain reaction diagnostic assay for *Ceratomyxa shasta*, a myxosporean parasite of salmonid fish

Oswaldo Palenzuela1*, Grant Trobridge2, Jerri L. Bartholomew1

1Department of Microbiology, Nash Hall, Room 220, Oregon State University, Corvallis, Oregon 97331-3804, USA
2Markey Molecular Medicine Center, Mailstop 357720, University of Washington, Seattle, Washington 98195-7720, USA

ABSTRACT: A diagnostic procedure based on the polymerase chain reaction (PCR) was developed for the myxosporean parasite *Ceratomyxa shasta*. Three sets of oligonucleotide primers were designed to specifically amplify *C. shasta* ribosomal RNA genes and several parameters of the assay were tested and optimised. A simple protocol for the processing of fish tissue samples was also developed. In a single round, 20 μl volume reaction the optimised procedure allows the detection of 50 fg of purified *C. shasta* genomic DNA, or 0.01 spore from a seeded fish intestine sample. This protocol is considerably faster, cheaper and more reliable than any previous diagnostic procedure for a myxosporean parasite, and can be an invaluable tool for the monitoring of early and/or subclinical *C. shasta* infections in wild and cultured salmon populations.

KEY WORDS: Myxozoa · Diagnostics · *Ceratomyxa* · Polymerase chain reaction · Ribosomal RNA gene · rDNA

INTRODUCTION

Myxosporeans (*Myxozoa: Myxosporea*) constitute a major group of fish parasites. More than 1250 species infect fresh and saltwater fishes (Lom & Dyková 1995) and their impact on wild and cultured animals can be significant. For a number of freshwater species, it has been demonstrated that myxozoans undergo 2 developmental cycles, one of them (myxosporean) in the fish and the other (actinosporean) in an aquatic oligochaete or polychaete worm (El-Matbouli et al. 1992, Bartholomew et al. 1997). Each cycle terminates in a spore stage, which is infective for the other host. However, the routes of infection, life cycle and pathogenesis are still unknown for the vast majority of species, making their control very difficult. Although a similar model of heteroxenous life cycle is assumed for most members of the phylum Myxozoa, the identification of each putative life stage on the basis of their morphological characteristics poses important difficulties. Specific and sensitive diagnostic tools for myxozoans are thus highly desirable, and those based on conserved attributes of the parasites during this complex life cycle are currently the best choice.

Infection with *Ceratomyxa shasta* has been recognised as a serious impediment to salmonid aquaculture in the Pacific Northwest of North America since it was first observed in 1948 (Wales & Wolf 1955). The parasite invades the intestinal tract of the fish, causing tissue necrosis accompanied by a severe inflammatory reaction and subsequent death of the host (Bartholomew et al. 1989a). Presumptive diagnosis of ceratomyxosis relies on the detection of mature *C. shasta* spores, which are found only during the terminal stage of infection. The first non-morphological approach for the diagnosis of *C. shasta* and other myxosporean species was the development of immunological or lectin-based histochemical assays (Bartholomew et al. 1989b, Adams et al. 1992, Marín de Mateo et al. 1993). However, antibodies and lectins have limited diagnostic usefulness because major antigens and lectin-binding sites can change dramatically during parasite ontogeny and they can be shared by different host cell types and by other parasite species (Lumsden 1986, Jacobson & Doyle...
siderable divergence from the other sequences was found. In addition to the primers designed to be specific for C. shasta, and in order to control false-negative results caused by the absence or poor quality of template in the reactions, a set of primers designated 18SUNI were combined to amplify a conserved region of the SSU rDNA from all the species used in this study. Primers were chosen based on the considerations of Innis & Gelfand (1990), and their sequences were analysed with Gene Runner software (v 3.02, Hastings Software Inc. 1994) for strong secondary structure and dimer formation with themselves or with their corresponding reverse PCR primer. In addition, potential oligonucleotide sequences were sent to the BLAST electronic mail server (blast@ncbi.nlm.nih.gov) as queries to discard primers that had non-target gene homologies.

DNA extraction. All the reagents and materials used were nuclease-free. Special care was used to avoid false-positives and contamination of samples during the extraction and PCRs as proposed by Yap et al. (1994). Appropriate controls were included in every experiment, and dissecting tools were either disposable or contaminating DNA was destroyed between samples by immersion in 10% bleach for 1 min (Prince & Andrus 1992).

For the initial development of the assay, DNA was generated from spores of Ceratomyxa shasta, 4 other myxosporeans (Heneguya salminicola, Myxobolus arcticus, M. squamalis and Kudoa sp.) and from rainbow trout tissues, by digestion with proteinase K and phenol/chloroform extraction. Briefly, samples were digested in DNA extraction buffer (100 mM NaCl, 10 mM Tris-HCl, 25 mM EDTA, 1% w/v SDS pH 8) with 200 μg ml⁻¹ proteinase K, overnight at 37°C on a rocking platform. Samples were further digested with 100 μg ml⁻¹ RNase A for 30 min at 37°C, and the DNA was purified by standard phenol/chloroform extraction and ethanol precipitation (Sambrook et al. 1989). Eventually, to ensure the release of DNA from resistant spores, 4 freeze-thaw cycles were added to this protocol after the initial digestion, followed by a second proteinase K treatment (2 h at 37°C).

To optimise the procedure, 4 different DNA extraction methods were tested using intestinal tissues with varying intensities of Ceratomyxa shasta infection, as diagnosed by light microscopy (LM), in fresh smears of the tissue. Two small pieces of intestinal tissue (25 to 100 mg each) were removed from each fish and placed in 1.5 ml microtubes. The content of 1 microtube was homogenised in 10 μl of TE buffer (10 mM Tris, 1 mM EDTA pH 8.0) per mg of tissue, using a disposable plastic pestle. An aliquot of this homogenate was used as a 'crude sample' (C) for the PCR and the remainder was boiled for 5 min, after which it was designated as

MATERIALS AND METHODS

PCR primer selection. The Ceratomyxa shasta SSU rDNA sequence (GenBank accession no. AF001579) was manually aligned with homologous sequences of the following: 3 teleosts, Oncorhynchus mykiss (R. P. Hedrick pers. comm.), Fundulus heteroclitus (M91180) and Sebastolobus altivelis (M91182); a polychaete worm, Lanceolochile (X79873); a cnidarian, Anemonia sulcata (X53498); and 3 myxosporean parasites, Myxobolus cerebralis (U96492), Myxobolus squamalis (U96495) and Heneguya doori (HDU37549) using the Genetic Data Environment software (GDE, v 2.2) included in the GCG Wisconsin package v 9.0 (Genetics Computer Group, Madison, WI, USA). Primers were designed from regions within the C. shasta sequence where correct alignment was unambiguous and considerable divergence from the other sequences was
Palenzuela et al.: PCR diagnostics of *Ceratomyxa shasta*

47

'boiled-crude sample' (BC). Tissue in the second microtube was digested with DNA extraction buffer (10 μl mg⁻¹ tissue), proteinase K and RNase as described above. An aliquot of this digested tissue was boiled for 5 min to inactivate the proteinase K and used as 'boiled-digested sample' (BD). Finally, the DNA of the remaining digested tissue was purified by phenol/chloroform extraction and ethanol precipitation, after which it was resuspended in 50 μl TE and labelled as 'extracted-digested sample' (ED).

To determine the potential sensitivity of the optimised extraction method and PCR assay for infected fish, a *Ceratomyxa shasta* infection was simulated by adding dilutions of Percoll® (Pharmacia Biotech, Uppsala, Sweden) purified spores (Bartholomew et al. 1989b) to uninfected rainbow trout tissue. Fish gut pieces (50 to 90 mg each) in 500 μl of DNA extraction buffer were seeded with *C. shasta* spores, for final 10-fold decreasing concentrations of 10⁶ to 0 spores per ml of sample. Two replicate pieces of tissue were seeded with each dose of spores, and then digested and processed as for the BD samples (see above).

The DNA content of all the samples was determined with a fluorometer (Hoefer, San Francisco, CA, USA). Samples were stored at −20°C until used, and diluted with HPLC-grade H₂O (Sigma, St Louis, MO, USA) as needed.

Polymerase chain reaction. All reactions were performed in 20 μl final volumes, with Promega (Madison, WI, USA) Taq polymerase reaction buffer (50 mM KCl, 10 mM Tris-HCl pH 9.0 and 0.1% v/v triton X-100) containing 0.2 mM of each dNTP, 2 mM MgCl₂, 0.5 μM of each primer and 1 U of Taq DNA polymerase (Promega). One microlitre of template DNA at variable concentrations in H₂O was used in each reaction. The components were overlaid with mineral oil, and the amplification reactions were carried out in an Ampliton II thermal cycler (Barnstead-Thermolyne, IA, USA). The mixtures were denatured for 3 min at 95°C and amplification was performed with 35 cycles consisting of: 1 min for denaturation at 94°C, then 30 s for primers annealing at 55, 58, 60 or 65°C and finally 1 min for Taq extension at 72°C. Ten microlitres of each reaction product were electrophoresed in 1 to 1.5% (w/v) 1× TAE (40 mM Tris acetate, 1 mM EDTA pH 8.3) agarose gels containing ethidium bromide and visualised under UV transillumination.

RESULTS

Three sets of primers (Table 1) were designed to specifically amplify *Ceratomyxa shasta* SSUrDNA. Most possible combinations of these primers were tested for specificity, product size and unique conspicuous bands in the PCR products. All the primer sets resulted in specific detection of *C. shasta* DNA, yielding amplicons of the predicted size (Figs. 1 & 2). The identity of the products amplified with primers Cs1 & Cs3, Cs1 & Cs4 and Cs2 & Cs4 was confirmed as *C. shasta* SSUrRNA gene fragments by direct sequencing (data not shown). Reactions using 'universal' 18SUNI

<table>
<thead>
<tr>
<th>Primer name</th>
<th>5’-3’ Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>gggcccttaaaacccagtag</td>
</tr>
<tr>
<td>C2</td>
<td>attacaagggtcaatactttgc</td>
</tr>
<tr>
<td>R</td>
<td>ttgtatagcgtgccttgaat</td>
</tr>
<tr>
<td>C3</td>
<td>ccgtttcaggttagttacttg</td>
</tr>
<tr>
<td>C4</td>
<td>tctcagtagaacgacaaatgc</td>
</tr>
<tr>
<td>C5</td>
<td>ggagagaccaacttggctc</td>
</tr>
<tr>
<td>18SUNI(f)</td>
<td>ttaatttgactcaacacggg</td>
</tr>
<tr>
<td>18SUNI(r)</td>
<td>gggcatacacagacccg</td>
</tr>
</tbody>
</table>

Table 1. Oligonucleotide primers designed

![Fig. 1. Ceratomyxa shasta small subunit ribosomal RNA gene primer map. Predicted amplicon sizes obtained with different combinations of the oligonucleotides are given in base pairs](image-url)
Dis Aquat Org 36: 45–51, 1999

Fig. 2. Specificity of some combinations of the *Ceratomyxa shasta* primers with purified DNA from: *C. shasta* spores (lanes a, d, g, j, m), rainbow trout (lanes b, e, h, k, n) and *Henneguya salminicola* (lanes c, f, i, l, o). Primer sets used are Csl & Cs5 (lanes a–c); Csl & Cs3 (lanes d–f); Cs2 & Cs5 (lanes g–i); R & Cs4 (lanes j–l) and R & Cs5 (lanes m–o). PCRs were carried out as described in the text, with temperature = 55°C and template DNA at 50 pg per reaction. One percent agarose gel, ethidium-bromide stained.

Fig. 3. Specificity of primers Csl & Cs3 (top) and 18SUN1(f) & 18SUN1(r) (bottom) with purified DNA from: *Ceratomyxa shasta* (lane a), *Myxobolus squamalis* (b), *Myxobolus arcticus* (c), *Henneguya salminicola* (d), *Kudoa* sp. (e) and rainbow trout (f). PCRs were carried out with template DNA at 500 pg (a, b, c, f), 10 ng (d) and 30 ng (e) per reaction, and temperature = 58°C. One percent agarose gel, ethidium-bromide stained.

oligonucleotides (Table 1) yielded variable size ampli-
cons with all the different templates used in this study
(258 to 442 base pairs, bp), consistent with the size of
the rDNA of each organism in the target region. The
18SUN1 primers were subsequently used as controls
for the presence of template DNA in the reactions, thus
demonstrating suitability for PCR amplification.
Primers Csl & Cs3 were chosen for further tests on
sensitivity, specificity and optimisation of the assay.

Specificity

The specificity of primer set Csl & Cs3 was evaluated
with genomic DNA from 4 different myxosporean
species and from rainbow trout (Fig. 3). These oligonu-
cleotides specifically primed *Ceratomyxa shasta* rRNA
genes, but none of the other templates tested. When
primers 18SUN1(f) & 18SUN1(r) were used in the reac-
tions, it was clear that all the myxosporean and rain-
bow trout samples tested contained amplifiable
SSUrDNA (Fig. 3). Primer sets Csl & Cs3 and Csl &
Cs4 were also used in PCRs with samples of *C. shasta-
infected tissues from different sites throughout the
geographic range of this parasite. Infected samples
from Idaho, California, Oregon (USA) and British
Columbia (Canada) were positive by PCR, yielding
amplicons of the expected size (data not shown).

DNA extraction method

‘Crude’ and ‘boiled-crude’ fish tissue-preparation
methods produced inconsistent amplifications includ-
ing false-negatives and contradictory results at differ-
ent dilutions of the samples (not shown). In contrast,
template DNA generated by digestion of the tissues
followed by either phenol/chloroform extraction or a
5 min boiling was equally suitable for PCR as deter-
mined by the presence of consistently amplified *Cer-
atomyxa shasta* DNA fragments on ethidium bromide-
stained agarose gels. Comparison of the sensitivity of
the PCR assay using template DNA generated by both
techniques is illustrated in Fig. 4. It must be noted that
BD-generated samples had to be diluted at least 1:50
in water to produce repeatable PCR results, while the
fully extracted samples were suitable undiluted.

Sensitivity

The sensitivity of the PCR with primers Csl & Cs3
was evaluated using phenol/chloroform-extracted
Ceratomyxa shasta DNA from Percoll® purified spores.
Under the optimum conditions for the assay (58°C
annealing temperature and reaction components as
described in ‘Materials and methods’), as low as 50 fg
Fig. 4. Comparison of 'boiled-digested' and 'extracted-digested' sample preparation methods. Genomic DNA from Percoll® purified Ceratomyxa shasta spores was obtained by proteinase K digestion, followed by phenol/chloroform extraction (left) or 5 min incubation at 100°C (right). PCRs were carried out with primers C1 & C3 and temperature = 58°C. Template DNA was used in 10-fold decreasing concentrations, from 50 pg (lane 1) to 0.5 fg (lane 6) per reaction. One percent agarose gel, ethidium-bromide stained of DNA were detected (Fig. 4). When template DNA was obtained from naturally infected fish intestines with different intensities of infection by C. shasta, all infected samples, regardless of their intensities (evaluated by light microscopy), were positive by PCR. Furthermore, several samples diagnosed as uninfected by the visual examination were found positive by PCR. No visually positive samples were found uninfected by PCR.

In uninfected tissue samples seeded with purified Ceratomyxa shasta spores, the limit of sensitivity was achieved with those samples containing 10^3 spores ml$^{-1}$ (Fig. 5). Given that these samples were diluted 1:100 and 1 μl of sample was used for each amplification reaction, the assay detection limit was 0.01 spores per 20 μl PCR mixture.

DISCUSSION

An increasing number of PCR-based protocols have been developed for the detection and identification of fish and shellfish pathogens (Leong 1995, Kent et al. 1996). These assays are particularly useful for the diagnosis of fastidious organisms which cannot be grown in culture or for those whose morphology does not permit confident visual identification (Weiss 1995, McManus & Bowles 1996), as is the case for myxosporeans. When compared to morphological, immunological or chemical methods, PCR is in general much more specific, sensitive and reliable. However, many pathology laboratories are still reticent in the use of these new technologies (Leong 1995). Most published PCR protocols involve time-consuming and expensive steps, like protein extraction with organic solvents, and ambiguous results can be obtained when these assays are performed by non-experienced personnel. Our purpose was to produce a sensitive and simple assay for the diagnosis of Ceratomyxa shasta, based on the SSUrDNA of this parasite. In addition to the increased sensitivity achieved with oligonucleotide primers targeted to a multiple copy gene, the availability of a large and continuously growing number of related and unrelated sequences allows the design of highly specific probes. Furthermore, the SSUrDNA displays significant inter- and intrageneric variability in the Myxozoa (Andree et al. 1999, authors' unpubl. data); thus, it is relatively simple to design probes for the discrimination of closely related myxosporean species.

Probably the main constraint of PCR diagnostic methods is the time-consuming, relatively expensive and hazardous traditional DNA extraction methods. Alternative protocols, based on commercial DNA-binding resins and spin-columns are an easy and safe alternative, but their cost and the need for centrifugation are limiting factors. For the Ceratomyxa shasta PCR, we found the extraction and precipitation steps which typically follow digestion of tissues (Sambrook et al. 1989) to be unnecessary. Comparable results were obtained with 5 min incubation in boiling water, allowing the procedure to be completed in one tube and without centrifugation. This simple procedure not
only reduces dramatically the chances of cross-contamination between samples and the time and expense of the procedure, but it also allows simultaneous processing of a large number of samples.

Using primers Cs1&Cs3 and the simplified tissue preparation procedure, as low as 50 fg of phenol/chloroform-extracted DNA was detected from purified Ceratomyxa shasta spores, or 1/100th of a spore from C. shasta-seeded, uninfected fish tissue. A similar sensitivity limit has previously been reported in a diagnostic assay for the microsporidian Loma salmonae (Docker et al. 1997). Although a gross estimation, these data suggest the existence of a minimum of 100 rDNA gene copies per C. shasta spore. To produce consistent results boiled samples had to be diluted at least 1:50, and a 1:100 dilution is routinely used in our laboratory. Thus, the overall sensitivity achieved with these samples is lower than the potential detection limit obtained with fully extracted samples. However, this level is sufficient for most purposes and the simplification of the procedure is worth the loss in sensitivity. The inconsistency of the PCR with more concentrated BD samples is probably caused by the presence of Taq inhibitors (Rosen et al. 1992), or by residual activity of proteinase K.

Only 2 PCR-based assays for the detection of myxozoans have been reported to date. The procedure for Myxobolus cerebralis can detect 1 parasitic cell in a single, 50 μl volume reaction, though results may become equivocal at a very low parasite to host DNA ratio (Andree et al. 1998). These authors also developed a nested approach, more sensitive and robust under all levels of infection examined. The sensitivity reported for the PKX-specific PCR is lower, about 5 cells per 100 μl reaction (Saulnier & de Kinkelin 1997). However, the latter presents the advantage of an extremely simple tissue-processing method, a single boiling step without any enzymatic digestion. Nevertheless, in our hands this procedure was inconsistent for the detection of Ceratomyxa shasta at low infection levels.

By PCR, Ceratomyxa shasta infections in gut tissue were diagnosed from experimentally infected trout, as soon as 5 d following exposure (data not shown). Although the procedure has been extensively tested on intestinal tissue, it can be easily adapted for different biological samples. Parasite DNA was detected from whole gill arches and from pieces of skin and muscle, as early as 2 d after exposure to C. shasta actinospores. C. shasta stages have also been detected by PCR in water samples and from tissues of the polychaete host, Manayunkia speciosa (Bartholomew et al. 1997). The PCR for C. shasta has been demonstrated a powerful tool for detecting all the stages of this parasite in the fish and in a variety of biological samples. The increased sensitivity afforded by the PCR is invaluable for monitoring early or subclinical infections, allowing the development of prophylactic policies for the introduction of fish to parasite-free areas. The development of similar assays for other myxozoans can contribute to a better understanding of their biology and epidemiology, and could contribute to strategies for reducing the impact of these parasites on wild and cultured fish populations.

Acknowledgements. The authors thank Jason Weitmann for his assistance in the fish sampling and PCRs. Ken Peters (Bozeman Fish Health Center, MT, USA) for providing blind samples and testing the assay in his lab, and the staff at the Salmon Disease Laboratory (Oregon State University). Harriet Lortz, Don Stevens and Margaret Whipple for their assistance. We also thank Dr Michael Kent and Dr Ronald Hedrick for providing C. shasta-infected samples from Canada and California. O.P. was recipient of a fellowship from the Departamento de Educacion, Universidad de Experimen del Gobierno Vasco. This work was partially supported by grant no. NA36RG0451 (project no. R/FSD-26) from the National Oceanic and Atmospheric Administration of the Oregon State University Sea Grant College Program and by appropriations made by the Oregon State Legislature. The views expressed herein are those of the authors and do not necessarily reflect the views of NOAA or any of its subagencies. The U.S. Department of Agriculture provided additional support for this project under the Animal Health and Disease CRIS project no. ORE00038 and the National Research Initiative Competitive Grants Program, award no. 95-37204-2350. This is Oregon Agricultural Station Technical paper no. 11346.

LITERATURE CITED

Sensitive and specific polymerase chain reaction for
detection of Loma salmonae (Microsporea). Dis Aquat Org
29:41–48
El-Matbouli M, Fischer-Scherl T, Hoffmann RW (1992) Pre-
sent knowledge on the life cycle, taxonomy, pathology,
and therapy of some Myxosporea spp. important for fresh-
water fish. In: Faisal M, Hetrick FM (eds) Annual review
Hedrick RP, Marin de Mateo M, Castagnaro M, Monge D, de
Kinkelin P (1992) Rapid lectin-based staining procedure
for the detection of the myxosporean causing proliferative
kidney disease in salmonid fish. Dis Aquat Org 13:
129–132
MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR proto-
cols: a guide to methods and applications. Academic
Press, San Diego, p 3–12
Parasitol Today 12(2):55–61
Kent ML, Hervio DML, Docker MP, Devlin RH (1996) Taxon-
omy studies and diagnostic tests for myxosporean and
microsporian pathogens of salmonid fishes utilising
985–998
Leong JC (1995) Molecular biological tools to detect fish
pathogens. J Fish Biol 47:51–73
Lom J, Dyková I (1995) Myxosporea (Phylum Myxozoa). In:
Woo PTK (ed) Fish diseases and disorders, Vol 1. Proto-
zoan and metazoan infections. University Press, Cam-
bridge, p 97–148
Lumsden WHR (1986) Application of immunological methods
in protozoology. In: Weir DW (ed) Handbook of experi-
mental immunology, Vol 4. Applications of immunologi-
cal methods in biomedical sciences, 4th edn. Blackwell
Scientific Publications, Oxford, p 1–19
Marin de Mateo M, Adams A, Richards RH, Castagnaro M,
Hedrick RP (1993) Monoclonal antibody and lectin probes
recognize developmental and sporogonic stages of PKX,
the causative agent of proliferative kidney disease in
European and North American salmonid fish. Dis Aquat
Org 15:23–29
McManus DP, Bowles J (1996) Molecular genetic approaches
to parasite identification: their value in diagnostic para-
Prince AM, Andrus L (1992) PCR: how to kill unwanted DNA
BioTechniques 12(3):358–360
Inhibition of PCR by components of food samples, micro-
bial diagnostic assays and DNA-extraction solutions. Int J
Food Microbiol 17:37–45
A laboratory manual, 2nd edn. Cold Spring Harbor Lab-
oratory Press, New York
Saulnier D, de Kinkelin P (1997) Polymerase chain reaction
primers for investigations on the causative agent of prolif-
erative kidney disease of salmonids. J Fish Dis 20:467–470
Wales JH, Wolf H (1955) Three protozoan parasites of trout in
California. Calif Fish Game 41:183–187
Weiss JB (1995) DNA probes and PCR for diagnosis of para-
Yap EPH, Lo YMO, Fleming KA, McGee JO'D (1994) False-
positives and contamination in PCR. Int J Parasitol 24:
249–258

Editorial responsibility: Wolfgang Könting,
Hannover, Germany

Submitted: May 19, 1998. Accepted: September 30, 1998
Proofs received from author(s): March 25, 1999