Light and electron microscopic observations of *Leptotheca koreana* n. sp. (Myxospora) in the kidney of cultured rockfish *Sebastes schlegeli*

Jae Bum Cho, Ki Hong Kim*

Department of Aquatic Life Medicine, Pukyong National University, Pusan 608-737, South Korea

ABSTRACT: The structure and sporogenesis of *Leptotheca koreana* n. sp. from cultured rockfish *Sebastes schlegeli* from South Korea were studied by light and transmission electron microscopy. Broadly oval spores and disporous pseudoplasmodia were observed in the lumen of renal tubules. Spores were 8.59 ± 1.25 µm in length, 13.42 ± 1.0 µm in width in sutural view and 8.13 ± 0.52 µm in thickness in the plane perpendicular to the suture. The width of each valve was always smaller than spore length. Two spherical polar capsules were equal in size (3.86 ± 0.45 µm in diameter) containing a polar filament with 6 to 7 turns, opening at the anterior end of the spore. Two uninucleate sporoplasm filled the spore cavity. The asynchronous division of secondary and tertiary cells and asynchronous development in spore formation of the present *Leptotheca koreana* resembled the disporous sphaerosporids. Cytoplasmic projections of pseudoplasmodia were considered to be rhizoids, as they seem to strengthen the attachment to the epithelial cells of the renal tubules. The capsulogenic cells in early sporoblast had large amounts of rough endoplasmic reticulum but had a few Golgi apparatus.

KEY WORDS: *Leptotheca koreana* n. sp. · Cultured marine fish · South Korea

INTRODUCTION

Fish-parasitic myxosporeans comprise an extraordinarily large number of species. The host specificity of the myxosporean species differs; however, it is always restricted to a well-definable circle of related hosts (Molnár 1994). Many species of the genus *Leptotheca* have been described in various fish hosts, and to our knowledge 7 species of the genus *Leptotheca* are known from wild marine fish of the genus *Sebastes*.

Ultrastructural characteristics of various developmental stages of *Leptotheca elongata* in the gall bladder of the hake *Merluccius merluccius* were reported by Desportes & Théodoridès (1982). Recently, Tun et al. (2000) described developmental stages of *L. fugu* in the intestine of cultured tiger puffer *Takifugu rubripes* based on the observations of Diff-Quick stained specimens.

The rockfish *Sebastes schlegeli* is an important cultured marine fish in Korea, and no myxosporean parasites have been reported from this fish species. In the present study, we found a *Leptotheca* species in the renal tubules of cultured rockfish for the first time, and classified it as a new species, *Leptotheca koreana*. Light microscopy and TEM were used to describe the spores and sporogenesis.

MATERIALS AND METHODS

Juvenile rockfish *Sebastes schlegeli* (10 to 15 cm in body length) were taken from commercial netcages in South Korea. Squash preparations of fresh tissues from kidney were examined by light microscope. Spores were described and measured according to the guide-
lines for species description of myxosporeans by Lom & Arthur (1989), and by using a light microscope equipped with an ocular micrometer and an image analysis software (ImageTool v2.0, UTHSCSA, San Antonio, TX, USA). Mean and standard deviations of each spore characteristic were obtained from 175 fresh mature spores.

For histological study, the kidney tissues were fixed in Bouin’s solution and embedded in paraplast. Sections 5 µm thick were stained with hematoxylin and eosin. For TEM study, portions of the kidney tissue were fixed in 2% glutaraldehyde at 4°C overnight and postfixed with OsO4 in the same buffer for 2 h. The specimens were dehydrated, embedded in resin and ultrathin-sectioned, stained with uranyl acetate and lead citrate, and examined by JEM1200 transmission electron microscope (JEOL Ltd, Tokyo, Japan).

RESULTS

Spore characteristics of *Leptotheca koreana* n. sp.

Mature spores (Figs 1 & 2) were broadly oval (sutural view), measuring 8.59 ± 1.25 µm in length, 13.42 ± 1.0 µm in width in sutural view and 8.13 ± 0.52 µm in thickness in the plane perpendicular to the suture. Valves were smooth and equal, and had an anterior notch just on the opening end of the polar capsule in each valve. The width of each valve was always smaller than spore length. Two spherical polar capsules were equal in size (3.86 ± 0.43 µm in diameter) containing a polar filament with 6 to 7 turns, opening at the anterior end of the spore. Two uninucleate sporoplasms filled the spore cavity.

Host: Rockfish *Sebastes schlegeli*
Locality: Hadong, Kyongsangnam-Do, South Korea
Site of infection: Lumen of the renal tubules
Etymology: The specific name refers to the nation, Korea
Materials deposited: Laboratory of Fish and Shellfish Parasitology, Department of Aquatic Life Medicine, Pukyong National University, South Korea. Accession number PKNU-Pmy-9912

Histology

Host tissue response to infection with *Leptotheca* sp. was minimal, although large numbers of parasites were presented in the renal tubules of fish (Fig. 3).

Transmission electron microscopy

The earliest stage observed was an oval primary cell (pseudoplasmodium) containing 2 secondary cells (Fig. 4A). Each secondary cell produced a tertiary daughter cell (Fig. 4B,C), and subsequent divisions of the daughter cell gave rise to 6 tertiary cells (Fig. 4D). The primary cell in the lumen of the kidney tubules was in close contact with the micovilli of epithelial cells (Figs 4B & 5A,B). At all junctions of tubular epithelial cells, the pseudoplasmodia sent out long finger-like pseudopodial projections between the microvilli.

Sporogenesis was asynchronous, and 2 spores were formed inside the same primary cell. In immature spores, 2 valvogenic cells, 2 capsulogenic cells and 2 uninucleated sporoplasms were observed (Fig. 5B). Valvogenic cells occupied an external position in relation to other sporogenic cells. They became elongated and flattened as the development of spores progressed and formed finely striated valves (Figs 5C,D & 6B). Large capsulogenic cells occupied most of the spore volume (Fig. 5D). The cytoplasm of the capsulogenic cells contained high amounts of rough endoplasmic reticulum, several mitochondria and lipid droplets (Fig. 5B,D). Polar capsules were spherical and had a projection at the apical end (Fig. 5D). Three layers of different electron density were present in the capsule. Each mature polar capsule contained a 6 to 7 turns of the polar filament (Fig. 6A,B).
DISCUSSION

More than 40 species of myxosporeans in the genus *Leptotheca* have been described from fishes (Lom & Dyková 1992), and among them, 7 species—*L. macrospora*, *L. informis*, *L. longipes*, *L. sebasta*, *L. macroformis*, *L. kovaljovae* and *L. adeli*—were found from the wild fish species of the genus *Sebastes* (Moser et al. 1976, Gaevskaya & Kovaleva 1984, Love et al. 1984, Bakay & Grudnev 1998, Kalavati & MacKenzie 1999). *Leptotheca koreana* n. sp. in the present study was easily differentiated from the above *Leptotheca* species by combination of the following characters: spore size, spore shape, number of polar filament coils and sporoplasm condition. The length of the spore and the diameter of the polar capsule of *L. koreana* resembled that of *L. informis* in the gall bladder of several fish families including Anoplopomatidae, Gadidae,

Fig. 2. *Leptotheca koreana* n. sp. infecting *Sebastes schlegeli*. (A,B) Mature spores from fresh preparations. Arrows indicate anterior notches. Scale bar = 5 µm. (C,D) Disporous pseudoplasmodia from fresh preparations. Scale bar = 5 µm

Fig. 3. *Leptotheca koreana* n. sp. infecting *Sebastes schlegeli*. Disporous plasmodia and mature spores have accumulated in the lumen of the kidney tubules
Macrouridae and Scorpaenidae (Moser & Noble 1976, Moser et al. 1976, Love et al. 1984, Kalavati & Mackenzie 1999). However, *L. koreana* was clearly differentiated from *L. informis* by having 2 uninucleate sporoplasms, which was confirmed by TEM observation and distinctly smaller spore thickness.

According to Lom & Dyková (1988), in myxosporean genera that have small mono- or disporic trophozoites,
spores seem to be produced without pansporoblast formation. Rather, they are in the form of pseudoplasmodia with 1 vegetative nucleus, without the association of 2 generative cells. This has been well demonstrated in several species of *Sphaerospora* and *Leptotheca* (Desportes & Théodoridès 1982, Desser et al.)

The cytoplasmic projections of pseudoplamodia formed in *Leptotheca koreana* were considered to be holdfast rhizoids, as they seem to strengthen the attachment to the epithelial cells of the renal tubules. These cytoplasmic outgrowths were also observed in *Zschokkella mugilis* in the lumen of the bile and gall bladder of mullets (Sitjà-Bobadilla & Alvarez-Pellitero 1993b), *Sinuolinea tetraodoni* in kidney tubules of pufferfish (El-Matbouli & Hoffmann 1994), *Ceratomyxa* spp. from the gall bladder of Mediterranean sea bass (Alvarez-Pellitero & Sitjà-Bobadilla 1993) and *Myxidium giardi* in the urinary bladder of eels (Paperna et al. 1987).

Although infection with *Leptotheca koreana* had no apparent histological effects on the renal tubules, a finding consistent with other renal myxosporeans (Dyková & Lom 1982, Fischer-Scherl et al. 1986, El-Matbouli & Hoffmann 1992), occlusion of renal tubules by heavy infection with the parasites had detrimental effects on renal function.

Acknowledgements. This study was supported in part by the Academic Research Fund of Korea Science & Engineering Foundation (981-0614-073-2), Republic of Korea.

LITERATURE CITED

Fig. 6. *Leptotheca koreana* n. sp. infecting *Sebastes schlegeli*. (A) Disporous pseudoplasmodium showing asynchronous development. Pc: Polar capsule. ×3000, bar = 2 µm. (B) Coiled polar filament (Pf) in a transverse section of a polar capsule. Arrowheads indicate fine striation in spore valve. ×6000, scale bar = 2 µm
Cho & Kim: Leptotheca koreana n. sp. in the kidney of cultured rockfish 195

Editorial responsibility: Wolfgang Körting, Hannover, Germany

Proofs received from author(s): September 20, 2001

Submitted: January 30, 2001; Accepted: May 4, 2001

El-Matbouli M, Hoffmann RW (1994) Comments on the host, organ and tissue specificity of fish myxosporeans and on the types of their intrapiscine development. Parasitol Hung 27:5–20

Fischer-Scherl T, El-Matbouli M, Hoffmann R (1986) A new Sphaerospora sp. in brown trout (Salmo trutta m. fario) in Germany. Bull Eur Assoc Fish Pathol 6:16–19

myxa Thélohan, 1892 (Myxospora: Bivalvulida) in gadid fish of the Northeast Atlantic. Syst Parasitol 43:209–216

Kudoa lunata (Myxospora, Multivalvulida). Parasitol Res 74:521–530

Molnár K (1994) Comments on the host, organ and tissue specificity of fish myxosporeans and on the types of their intrapiscine development. Parasitol Hung 27:5–20

Molnár K (1994) Comments on the host, organ and tissue specificity of fish myxosporeans and on the types of their intrapiscine development. Parasitol Hung 27:5–20

