INTRODUCTION

Systemic infections with high mortality caused by the flagellate *Spironucleus barkhanus* (family: Hexamitidae) were reported in Norwegian sea caged Atlantic salmon *Salmo salar* L. (Salmonidae) (Mo et al. 1990, Poppe et al. 1992, Poppe & Mo 1993, Sterud et al. 1997). Since the outbreaks were natural infections, methods for detection and quantification of parasites and clinical diagnosis of the disease were not properly standardized. Our experimental study (Guo & Woo 2004, this issue) indicates that there are blood and tissue phases in the infected Atlantic salmon and that *S. barkhanus* are not detectable in the blood during the tissue phase. If detection solely relied on blood examination, for example during routine surveys, then many infections would not be detected.

The present study explores the use of 3 parasitological and 1 immunological technique to detect *Spironucleus barkhanus* in experimentally infected Atlantic salmon to more accurately detect infections in fish. These techniques are commonly used for detecting haemoflagellate infections (*Cryptobia* and *Trypanosoma*) in vertebrates (e.g. Woo 1970, Woo & Kauffman 1971, Woo & Wehnert 1983, Sitja-Bobadilla & Woo 1994, Uilenberg 1998, Chin et al. 2004).

MATERIALS AND METHODS

Spironucleus barkhanus. The parasite strain was from the American Type Culture Collection (Rockville, Maryland, USA), ATCC 50377 (originated from muscle abscess in Atlantic salmon from Norway) and was subsequently maintained in our laboratory by intraperitoneal inoculation of live parasite in Atlantic salmon.

Atlantic salmon and infections. Hatchery raised juvenile Atlantic salmon were from the Ontario Ministry of Natural Resources and raised in the laboratory to sub-adult size (about 300 g). Fish were kept in a circular tank with flow-through well water (temperature 10 to 11°C) with continuous aeration, an equatorial lighting regime and were fed daily to satiation with commercial salmon feed (Martin’s Feed).
At 0 wk, fish were anaesthetized with 2-phenoxy-ethanol (Acro Organics) before being injected with 50,000 (5 fish), or 100,000 (5 fish) live *Spironucleus barkhanus* in 0.2 ml phosphate buffered saline (PBS, pH 7.2) (Expt A), and 60,000 live *S. barkhanus* in 0.1 ml PBS (Expt B, 4 fish). Mucus and blood samples were taken every week; mucus was always sampled before caudal blood sampling. About 0.1 ml of blood was taken from the caudal vein using a heparinized needle and syringe. Mucus and blood were kept on ice until parasitaemias were determined. Dead fish were removed promptly from the tank and examined.

Parasitological techniques for parasite detection and quantification. Three techniques were used: (1) Fish blood was dispensed from a syringe into an Eppendorf brand 500 µl centrifuge tube and the blood was drawn into heparinized 75 mm capillary tubes with one end sealed with Châ-seal (Chase Instruments), and centrifuged in a cold IEC MB centrifuge (Damon/IEC Division) at 13,600 × g for 2 min. The ‘buffy layer’ (junction of the white cells and plasma) was observed under a microscope (100×, 10× ocular and 10× objective) for motile parasites. The technique, called the Hematocrit Centrifuge Technique (HCT), was first described by Woo (1969) and was used for detecting *Trypanosoma* in mammalian blood (Woo 1970, Woo & Kauffman 1971, Uilenberg 1998). The estimated number of parasites in the buffy layer determined whether the Wet Mount Examination (WME) or Hemocytometer (HCM) would be used for a more accurate parasite count. If fewer than 20 parasites were counted in the buffy layer, WME was used, while the HCM was used if over 20 parasites were counted. Briefly, for WME, 5 µl of blood were pipetted onto a clean glass slide and a cover slip (18 × 18 mm²) with 4 sides edged with petroleum gel was carefully pressed against the blood to create a monolayer of cells. The entire monolayer was scanned at 100× for parasites. Triplicate counts were performed. Briefly, for the HCM technique, a known volume of blood was diluted (up to 20 times by volume) with cold PBS, and 20 µl of the diluted blood was loaded onto a hemocytometer (Improved Neubauer, Hauser Scientific). Parasite numbers were determined by counting the total numbers of live parasite in the white blood cell squares (Archer 1965) at a 100× magnification; 3 counts were performed for each fish, the number of parasites counted was multiplied by a dilution factor and expressed as number ml⁻¹ of blood. (2) One drop of mucus (about 25 µl) was gently scraped from the fish body (above the lateral line) using a disposable wooden stick and loaded onto a chilled clean glass slide with the addition of 25 µl of cold PBS. It was covered with a cover slip (18 × 18 mm²) with 4 sides edged with petroleum gel. Parasite detection and quantification in the mucus followed the WME technique used for blood. The parasite number was expressed as number ml⁻¹ of mucus. (3) Caseous necrotic fluid in skin ulcers was removed using a pipette. A known volume of cold PBS was added if necessary and WME or HCM was used to quantify the number of parasites in the resulting fluid. If organ nodules were found, the whole organ was dissected from the fish and weighed. An equivalent volume of cold PBS was added (e.g. 1 g of tissue was added to 1 ml of PBS), the tissue squashed and ground, and the parasites counted using WME or the HCM directly or diluted further with PBS. The number of parasites was expressed as number g⁻¹ of tissue or organ.

Immunological techniques. A blood sample from the caudal vein was blotted onto filter paper (No. 5, Whatman International), dried at room temperature for 3 h and stored at −20°C until antibody detection using ELISA (enzyme-linked immunosorbent assay). One day before the assay, 1 disk (5.4 mm in diameter) was punched out from each blood blot and soaked in 75 µl of dilution buffer (PBS with 0.1% BSA [Sigma A7030]) in a well of a microplate (96 well, round bottom, Sarstedt) overnight at 4°C. Three blots (triplicates) were analyzed for each fish. The ELISA was performed in flat bottom microplates (96 well, high binding polystyrene, Costar). Each well in the plate was coated with 50 µl of coating buffer (0.429 g Na₂CO₃ × 10 H₂O, 0.293 g NaHCO₃ in 100 ml double distilled water, pH 9.6) containing 50 µg ml⁻¹ of sonicated *Spironucleus barkhanus* antigen (from axenic cultures of *S. barkhanus* in a modified Diamond’s TYI-S-33 medium) (Diamond et al. 1978, Sterud 1998). Total protein content was measured using the Bio-Rad Protein Assay and incubated at 37°C for 60 min. The plate was washed 5 times with PBST (PBS with 0.3% Tween-20, Bio-Rad). Blocking buffer (200 µl of 5% non-fat dry milk in PBS) was added (to block uncoated sites) for 30 min at 37°C. The plate was washed 5 times with PBST and then, 50 µl of eluant (1st antibody) from the blood blot were added to a well and incubated for 60 min at 37°C. The plate was washed 5 times with PBST and then, 50 µl of eluant (1st antibody) from the blood blot were added to a well and incubated for 60 min at 37°C. The plate was washed 5 times with PBST and 50 µl of rabbit anti-salmon IgG (2nd antibody, diluted 1:1000, courtesy of Dr. K. Buchmann, The Royal Veterinary and Agricultural University, Denmark) were added and incubated for 30 min at 37°C. The plate was washed 5 times with PBST and then, 50 µl of eluant (1st antibody) from the blood blot were added to a well and incubated for 60 min at 37°C. The plate was washed 5 times with PBST and 50 µl of rabbit anti-salmon IgG (2nd antibody, diluted 1:1000, courtesy of Dr. K. Buchmann, The Royal Veterinary and Agricultural University, Denmark) were added and incubated for 30 min at 37°C. The plate was washed 5 times with PBST and 50 µl of enzyme substrate (Orthophenylenediamine, Sigma P5412) were added and the plate was kept in the dark for 15 to 20 min. The reaction was stopped by the addition of 25 µl of 9 M H₂SO₄ to each well and the color intensity was mea-
RESULTS AND DISCUSSION

Parasitological techniques

Spironucleus barkhanus was detected in the blood using the HCT in 3 fish (out of 10, Expt A) at 1 wk post infection (wpi) and 4 fish at 2 wpi, but WME did not detect any *S. barkhanus* at 1 and 2 wpi. At 3 wpi, 8 fish were positive using WME and the HCT, and parasitaemias ranged from 57 to 1700 ml−1 blood. All 10 fish were positive using the HCT and WME at 4 wpi, and parasitaemias ranged from 20 to 118 000 ml−1 blood. By 6 wpi, 6 fish became negative for *S. barkhanus* in the blood using the HCT and WME, and average parasitaemia increased to 175 627 ml−1 blood (counted using the HCM). By 7 wpi, only 2 fish were positive, the average parasitaemia peaked (221 964 ml−1 blood using the HCM), and at 8 wpi only 1 fish had detectable *S. barkhanus* with only 133 parasites ml−1 blood (counted using WME). From 9 wpi onwards, no *S. barkhanus* was detected in the blood using either the HCT or WME.

The HCT is a well-established technique for the detection of haemoflagellates such as *Trypanosoma* in mammals (Woo 1970, Woo & Kauffman 1971, Uilenberg 1998) or *Cryptobia* in salmonids (Woo 1979, Woo & Wehnert 1983, Ardelli & Woo 2002). In the present study, the HCT was found to be useful for the detection of the blood phase of *Spironucleus barkhanus*. Woo (1979) initially reported a higher sensitivity with WME than the HCT in detecting *Cryptobia salmositica*; however, the sensitivity of the HCT was significantly better than WME if the centrifugation was at 5°C as the haemoflagellate is a parasite of cold water fish (Woo & Wehnert 1983).

By using WME, *Spironucleus barkhanus* was found in the mucus of an infected fish (Expt B) with non-obvious skin lesions and parasitaemias were 80 and 160 ml−1 of mucus at 9 and 10 wpi, respectively. WME was used to detect parasites in the ascites fluid and followed by using the HCM to obtain the parasitaemia (e.g. 4.2 × 10⁶ *S. barkhanus* ml−1 of ascites fluid in a 12 wpi fish, Expt A). WME and HCM were used simultaneously to detect and quantitate parasites in the tissue phase, such as granulomatous lesions (white nodules) of liver and spleen (1 fish died at 14 wpi in Expt A with liver and spleen lesions; parasitaemias were 3.3 × 10⁶ and 4.8 × 10⁶ g⁻¹, respectively), exophthalmia (1 fish died at 12 wpi in Expt A with 4.4 × 10⁶ ml⁻¹ of *S. barkhanus* in the eye socket and 0.2 × 10⁶ ml⁻¹ in the vitreous humor) and skin ulcers (1 fish in Expt A died at 20 wpi with a parasitaemia of 2.8 × 10⁶ ml⁻¹ in the ground muscle tissue from the ulcer).

The 3 parasitological techniques were found to be useful in detecting and enumerating parasites in the blood, mucus, ascites fluid, lesion/ulcer nodules and bulged eyeball, during blood and tissue phases of *Spironucleus barkhanus* infection. For the blood phase, it was convenient to start with the HCT because packed cell volume can also be obtained, followed by WME or the HCM depending on the number estimated from the buffy layer. For the tissue phase, WME was the first choice. If parasite number was over 10 000 ml⁻¹, the HCM was adopted because it was less time consuming than WME.

Immunological technique (Fig. 1)

The EV formula provided relative values, which were obtained by comparing the sample OD readings with OD readings of naïve and infected fish. EVs of less than 25 were regarded as background (the value was derived from a control group of 10 fish, which had EVs of 25 or less; these readings were probably due to non-specific binding). By using WME, *Spironucleus barkhanus* was found in the mucus of an infected fish (Expt B) with non-obvious skin lesions and parasitaemias were 80 and 160 ml−1 of mucus at 9 and 10 wpi, respectively. WME was used to detect parasites in the ascites fluid and followed by using the HCM to obtain the parasitaemia (e.g. 4.2 × 10⁶ *S. barkhanus* ml−1 of ascites fluid in a 12 wpi fish, Expt A). WME and HCM were used simultaneously to detect and quantitate parasites in the tissue phase, such as granulomatous lesions (white nodules) of liver and spleen (1 fish died at 14 wpi in Expt A with liver and spleen lesions; parasitaemias were 3.3 × 10⁶ and 4.8 × 10⁶ g⁻¹, respectively), exophthalmia (1 fish died at 12 wpi in Expt A with 4.4 × 10⁶ ml⁻¹ of *S. barkhanus* in the eye socket and 0.2 × 10⁶ ml⁻¹ in the vitreous humor) and skin ulcers (1 fish in Expt A died at 20 wpi with a parasitaemia of 2.8 × 10⁶ ml⁻¹ in the ground muscle tissue from the ulcer).

The ELISA was sensitive in detecting significant increases of antibody production (p < 0.05) at 7, 8, 9 and 11 wpi. Antibody titer was highest 1 wk after peak parasitaemia. There was a second peak (11 wpi) of antibody production and this probably correlated to the peak of tissue phase infection as mortality was high (Fig. 1). ELISA can be used to detect *Spironucleus barkhanus* infection during the periods (8, 9 and 11 wpi) when the parasites are not detectable in the blood. It is sensitive and reproducible. This immunological technique has another advantage as it uses...
Dried blood samples on filter paper and would be useful for large epidemiological surveys for \(S. \) barkhanus infection in Atlantic salmon or in carrier fish, especially when fish do not have clinical signs of spironucleosis. Obviously, further work is required to test the reliability of this technique under field conditions.

Acknowledgements. This study was supported by a grant from the Natural Sciences and Engineering Research Council (Canada) to P.T.K.W.

LITERATURE CITED

Archer RK (1965) Haematological techniques for use on animals. Blackwell, Oxford

Sitja-Bobadilla A, Woo PTK (1994) An enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against the pathogenic haemoflagellate, Cryptobia salmositica Katz and protection against cryptobiosis in juvenile \(Oncorhynchus mykiss \) (Walbaum) inoculated with a live Cryptobia vaccine. J Fish Dis 17:399–408

Sterud E, Mo TA, Poppe TT (1997) Ultrastructure of Spironucleus barkhanus n. sp. (Diplomonadida: Hexamitidae) from grayling \(Thymallus thymallus \) (L.) (Salmonidae) and Atlantic salmon \(Salmo salar \) L. (Salmonidae). J Eukaryot Microbiol 44:399–407

Woo PTK (1979) Trypanoplasma salmositica: experimental infections in rainbow trout, \(Salmo gairdneri \). Exp Parasitol 47:36–48

Submitted: March 30, 2004; Accepted: July 5, 2004

Proofs received from author(s): September 1, 2004