NOTE

Batrachochytrium dendrobatidis: requirement for further isolate collection and archiving

Jamie Voyles1,*, Katy Richards-Hrdlicka2, Scott D. Cashins1, Erica B. Rosenblum3, Alex D. Hyatt4, Lee Berger1, Lee F. Skerratt1

1School of Public Health, Tropical Medicine and Rehabilitation Sciences, Amphibian Disease Ecology Group, James Cook University, Townsville, Queensland 4811, Australia
2School of Forestry and Environmental Sciences, Yale University, New Haven, Connecticut 06520, USA
3Department of Biological Sciences, University of Idaho, Moscow, Idaho 83844, USA
4Australian Animal Health Laboratory, CSIRO Livestock Industries, Geelong, Victoria 3220, Australia

ABSTRACT: The fungal pathogen Batrachochytrium dendrobatidis (Bd) causes the disease chytridiomycosis, which is lethal to many species of amphibians worldwide. Many studies have investigated the epidemiology of chytridiomycosis in amphibian populations, but few have considered possible host–pathogen coevolution. More specifically, investigations focused on the evolution of Bd, and the link with Bd virulence, are needed. Such studies, which may be important for conservation management of amphibians, depend on access to Bd isolates. Here we provide a summary of known Bd isolates that have been collected and archived in various locations around the world. Of 257 Bd isolates, we found that 53% originate from ranids in the United States. In many cases, detailed information on isolate origin is unavailable, and it is unknown how many isolates are cryo-archived. We suggest the creation of a centralized database of isolate information, and we urge researchers and managers to isolate and archive Bd to facilitate future research on chytridiomycosis.

KEY WORDS: Amphibian declines · Batrachochytrium dendrobatidis · Chytridiomycosis · Pathogen preservation · Wildlife disease

INTRODUCTION

Chytridiomycosis is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd; Berger et al. 1998, Longcore et al. 1999). In infected amphibians, Bd is found in the superficial layers of the epidermis and disrupts normal osmoregulatory functioning in the skin (Berger et al. 1998, Voyles et al. 2007, 2009a). Mass mortality events have coincided with the appearance of Bd in wild amphibian populations (Berger et al. 1998, Lips et al. 2006). The effect on some host species is extreme, leading to dramatic declines and possibly extinctions (Schloegel et al. 2006, Skerratt et al. 2007). Some populations that survive initial declines persist with various levels of infection (Retallick et al. 2004, Woodhams & Alford 2005), and Bd maintains at least moderate virulence in some species many years after introduction (Murray et al. 2009). These observations may be explained by factors such as variability in host resistance (Woodhams et al. 2007), host behavior (Rowley & Alford 2007), or environmental characteristics (James et al. 2009), but shifts in Bd virulence are also plausible.

Some evidence supports the possibility of differential virulence among Bd isolates. Laboratory experiments suggest that Bd virulence differs among isolates when introduced to a single susceptible amphibian species (Berger et al. 2005, Retallick & Miera 2007). In addition, phenotypic differences among isolates in proteomic signatures, morphological characteristics, and zoospore production (Fisher et al. 2009) could be associated with differences in virulence, although the mol-
ecular basis for any differences in isolate virulence has not yet been identified. There seems to be relatively low genetic variability among isolates collected from globally widespread sources (Morehouse et al. 2003, James et al. 2009), but a recent study reported differential virulence among Bd strains that were either endemic to Japanese native amphibians or associated with introduced species (Goka et al. 2009). The possibility of differential virulence among distinct isolates highlights the requirement for ongoing surveillance, continued development of diagnostic assays for Bd, and further virulence research. However, advances in chytridiomycosis research will require access to Bd isolates. The methods for isolating and purifying Bd were first established in 1999 (Longcore et al. 1999). Some Bd isolates have been cryo-archived for future research (Boyle et al. 2003), and many are actively passaged under different nutrient and temperature conditions. Here we review available information on known Bd isolates.

MATERIALS AND METHODS

Isolate records were gathered from personal lists (L. Berger, James Cook University; A. Hyatt, CSIRO Australian Animal Health Laboratories; J. Longcore, University of Maine) and peer-reviewed papers (Morehouse et al. 2003, Berger et al. 2005, Morgan et al. 2007, Rosenblum et al. 2008, Symonds et al. 2008, Fisher et al. 2009, James et al. 2009). The database is comprised of information for 257 isolates, which probably represent a subset of all existing isolates (i.e. information on additional isolates may not be currently available in the published literature). We collected as much information as possible on isolate origin (host species, date, life stage, location, disease status), isolate storage history (passage history, location, current storage conditions), and contact information for researchers working with isolates.

RESULTS

The majority of Bd isolates, approximately 53%, originate from ranids in the USA. However, a disproportionate number of origin from Rana muscosa (44 isolates) and R. sierrae (57 isolates) that were collected for a population genetics study in California (Morgan et al. 2007). Only 2 isolates come from caudates (Fig. 1). Most of the isolates (156) are from amphibian populations in the United States, which again is a reflection of the large number of isolates collected from R. muscosa and R. sierrae in California (Morgan et al. 2007).

Additional information on these isolates such as isolate origin (host species, date, life stage, location, disease status) and isolate storage history (passage history, location, current storage conditions) was collected whenever possible. Detailed information was difficult to obtain from the published literature, and in some cases no details were available. Of the identified isolates, little to no information was available about which isolates have been cryo-archived and are thus available for future research. Additionally, our analysis of available Bd isolates suggests that very few isolates are being collected and archived from important regions where Bd-associated amphibian declines have occurred, or may be currently taking place (e.g. Central America: Republic of Panama, Woodhams et al. 2008; Montserrat, G. Garcia pers. comm.; Southeast Asia: Indonesia, Kusrini et al. 2008; Philippines, R. Brown pers. comm.).

DISCUSSION

Confronting disease-related declines requires addressing a specific set of problems: identifying the etiological agent and possible point of origin, developing diagnostic assays and sampling protocols, and understanding the mechanisms of pathogenesis, transmission, and evolution of host–pathogen dynamics. Many of these challenges have been successfully addressed (e.g. Berger et al. 1998, Boyle et al. 2003, Hyatt et al. 2007, James et al. 2009, Voyles et al. 2009a), but others are still being investigated. To facilitate projects that will meet these challenges, we recommend that additional Bd isolates be collected and cryo-archived.
Priority targets for Bd collection and cryo-preservation have been suggested (Voyles et al. 2009b), and recording detailed information on any additional isolates will be important for basic disease research.

Although protocols for isolating (Longcore et al. 1999) and cryo-archiving (Boyle et al. 2003) Bd are readily available, some of the required skills are not standard for medical microbiology labs. Obtaining isolates can be difficult, requiring some technical skills and persistence. A tutorial on basic techniques is available in multiple languages (see www.bdbank.org) and can be used in conjunction with the published literature, regional training courses, and consultation with a World Organization for Animal Health (OIE) reference laboratory for chytridiomycosis (e.g. the Australian Animal Health Laboratory, Geelong). The Bdbank website provides an online forum to facilitate virulence research on Bd. To that end, we hope to collate and standardize data on global isolates into a single database where information can be shared and accessed by chytridiomycosis researchers. Although isolate information can be cataloged on this website, there is, as yet, no formal arrangement for physical storage of isolates. Isolates can be archived at any laboratory, but for long-term storage and access, isolates should also be cryo-archived at the Australian Animal Health Laboratory, Geelong, Victoria.

Acknowledgements. We thank J. E. Longcore and D. Boyle for their contributions on isolate information. We also thank R. Brown, G. Garcia, J. Lopez, and Q. Bloxam for providing information on frog declines.
LITERATURE CITED

Skerratt LF, Berger L, Speare R, Cashins S and others (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134

Submitted: September 2, 2009; Accepted: February 10, 2010
Proofs received from author(s): April 23, 2010

Editorial responsibility: Cynthia Carey, Boulder, Colorado, USA