NOTE

Molecular identification and virulence of three *Aeromonas hydrophila* isolates cultured from infected channel catfish during a disease outbreak in west Alabama (USA) in 2009

Julia W. Pridgeon*, Phillip H. Klesius

Aquatic Animal Health Research Unit, USDA-ARS, 990 Wire Road, Auburn, Alabama 36832, USA

ABSTRACT: Three isolates (AL09-71, AL09-72, and AL09-73) of *Aeromonas hydrophila* were cultured from infected channel catfish *Ictalurus punctatus* during a disease outbreak in west Alabama, USA, in August 2009. Sequence analysis of the 16S–23S rDNA intergenic spacer region (ISR), *cpn60*, *gyrB*, and *rpoD* genes of the 3 strains revealed that the 3 strains were closely related to each other, sharing 97 to 99% nucleotide sequence similarities. However, ISR sequences of the 3 isolates from 2009 shared only 64% nucleotide sequences with AL98-C1B, a 1998 isolate of *A. hydrophila* cultured from diseased fish in Alabama. Sequences of *cpn60*, *gyrB*, and *rpoD* from the 3 isolates from 2009 shared 91 to 95% homologies with AL98-C1B. Based on both LD₅₀ and LD₉₅ values of intraperitoneal injection assays, the virulences of the 3 isolates from 2009 were not significantly different from each other, but were at least 200-fold more virulent than AL98-C1B, indicating that the 3 west Alabama isolates of *A. hydrophila* from 2009 were highly virulent to channel catfish.

KEY WORDS: *Aeromonas hydrophila* · Molecular analysis · Virulence · Channel catfish

INTRODUCTION

Aeromonas hydrophila, a Gram-negative motile bacillus widely distributed in aquatic environments, is a causative agent of motile aeromonad septicemia (MAS) (Harikrishnan et al. 2003), also known as epizootic ulcerative syndrome (EUS) (Mastan & Qureshi 2001). The symptoms of *A. hydrophila* infections include swelling of tissues, dropsy, red sores, necrosis, ulceration, and hemorrhagic septicemia (Karunasagar et al. 1989, Azad et al. 2001). Fish species affected by MAS include tilapia (Abd-El-Rhman 2009, Tellez-Bañuelos et al. 2010), catfish (Majumdar et al. 2007, Ullal et al. 2008), goldfish (Irianto et al. 2003, Harikrishnan et al. 2009), common carp (Jeney et al. 2009, Yin et al. 2009), and eel (Esteve et al. 1994). Although usually considered as a secondary pathogen associated with disease outbreaks, *A. hydrophila* could also become a primary pathogen in some environments, causing outbreaks in fish farms with high mortality rates and severe economic losses to the aquaculture industry worldwide (Thorpe & Roberts 1972, Nielsen et al. 2001, Fang et al. 2004).

Between June and October 2009, a disease outbreak occurred in 48 catfish farms in west Alabama, USA, causing an estimated loss of more than 3 million pounds (ca. 1339 metric tons) of food size channel catfish *Ictalurus punctatus* (Hemstreet 2010). The disease produced a variety of symptoms that included sores on the skin, bulging eyes, ulcers, and bright red muscles and internal organs. Bacteria were cultured from diseased catfish, isolated, and later reported to be *Aeromonas*
hydrophila (Hemstreet 2010). However, identification evidence was not shown in that short report.

Sequencing of the 16S–23S rDNA intergenic spacer region (ISR) is now considered a robust and sensitive taxonomic tool which is widely used in bacterial taxonomy (Martínez-Murcia et al. 2005, Tazumi et al. 2009). Gene sequences of 60 kDa chaperonin (cpn60), DNA gyrase B subunit (gyrB), and RNA polymerase sigma factor (RpoD) have also been used in previous studies to identify Aeromonas species (Miñana-Galbis et al. 2010). Three A. hydrophila isolates from 2009 and isolate AL98-C1B (collected in Alabama in 1998) were compared at the molecular level using the aforementioned 4 genes. The virulence of all 4 isolates against channel catfish was also compared.

MATERIALS AND METHODS

Bacterial strain isolation, identification, and growth conditions. Three isolates of Aeromonas hydrophila were collected from diseased food size channel catfish in August 2009 from west Alabama, USA. A. hydrophila isolate AL98-C1B was isolated from diseased channel catfish in Alabama in 1998. All 4 isolates were cultured on tryptic soy agar (TSA) plates according to published procedures (Panangala et al. 2007). Isolates of A. hydrophila were then determined by standard biochemical tests as described by Holt et al. (1994) and confirmed by API 20 E strip tests (BioMerieux USA) and fatty acid methyl ester analysis by the MIDI microbial identification gas chromatography system. All 4 isolates were maintained on TSA plates or in tryptic soy broth (TSB, Difco) at 28°C for 18 to 24 h.

Genomic DNA extraction and polymerase chain reaction (PCR). Genomic DNA was extracted from pure bacterial cells using a DNeasy Kit (Qiagen) and quantified on a NanoDrop ND-1000 spectrophotometer (Nanodrop Technologies). Gene-specific primers were then designed to amplify regions of 4 genes: 16S–23S rDNA ISR, cpn60, gyrB, and rpoD. Primer sequences used in PCR are listed in Table 1. PCR was performed in a 10 µl mixture consisting of 5 µl of Taq PCR Master Mix (Qiagen), 3 µl of nuclease-free H₂O, 1 µl of Aeromonas hydrophila genomic DNA (10 ng µl⁻¹), 0.5 µl of forward primer (5 µM), and 0.5 µl of reverse primer (5 µM). All PCRs were carried out in a Biometra T Gradient thermocycler. The PCR reaction conditions consisted of an initial denaturation step at 94°C for 5 min followed by 35 cycles of 30 s at 94°C, 30 s at 53°C, and 1 min at 72°C, followed by a final extension of 10 min at 72°C and maintained at 4°C.

Sequencing and sequence analysis. PCR products were verified by electrophoresis on a 1% agarose gel stained with ethidium bromide. PCR products were then purified using a PCR DNA purification kit (GE health care) according to the manufacturer’s protocol and sent to USDA-ARS Mid South Genomic Laboratory (Stoneville, MS) for sequencing with an ABI 3730 Genetic Analyzer (Applied Biosystems). The amplification primers listed in Table 1 were used for the forward and reverse sequencing. Sequences were analyzed using the National Center for Biotechnology Information (NCBI) BLAST program to search for sequence homologies.

Virulence of 4 Aeromonas hydrophila isolates to channel catfish. All 4 A. hydrophila isolates were grown in TSB (Difco) at 28°C for 18 to 24 h. The concentration (colony forming units [CFU] ml⁻¹) of A. hydrophila used in this study was determined through serial dilutions. An optical density (OD) of 1.0 of the bacterial cultures was measured at 540 nm using a thermospectronic spectrophotometer (Fisher Scientific). At least 5 different dilutions of the OD = 1.0 overnight bacterial culture for each isolate was used to inject fish. The OD = 1.0 bacterial cultures were then stored at 4°C for later plate counting. Soon after the fish were injected by different dilutions of bacteria (<1 h), serial dilutions (in triplicate) of each A. hydrophila isolate were prepared in TSB, and 100 µl of each dilution were plated onto TSA plates. After 24 h incubation at 28°C, the average number of CFU ml⁻¹ was

<table>
<thead>
<tr>
<th>Gene</th>
<th>Accession no.</th>
<th>Primer name</th>
<th>Primer sequence (5'–3')</th>
<th>Melting temp. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16S ISR</td>
<td>NC_008570</td>
<td>16S-Forward</td>
<td>CACGGTGTGTGATTCATGACTGG</td>
<td>66.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23S-Reverse</td>
<td>AAAGCATCACCACATGTACCC</td>
<td>67.00</td>
</tr>
<tr>
<td>cpn60</td>
<td>NC_008570</td>
<td>cpn60-Forward</td>
<td>AAGATGCTGGAAGGCGTAAA</td>
<td>63.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cpn60-Reverse</td>
<td>GTTGACGAAGTACGGGAGA</td>
<td>64.00</td>
</tr>
<tr>
<td>gyrB</td>
<td>NC_008570</td>
<td>gyrB-Forward</td>
<td>TACCCTGCTGCTAGCCCTCT</td>
<td>63.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gyrB-Reverse</td>
<td>AAGTCTGCTGCTAGCCCCGAG</td>
<td>63.70</td>
</tr>
<tr>
<td>rpoD</td>
<td>NC_008570</td>
<td>rpoD-Forward</td>
<td>GTGGTCTGCAGTTCCTGGAT</td>
<td>64.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>rpoD-Reverse</td>
<td>ATACGCTCACGGGTAACGTC</td>
<td>63.80</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

API 20E biochemical identification results of the 4 bacterial isolates revealed that all 4 isolates were *Aeromonas hydrophila*, which shared similar biochemical profiles as known *A. hydrophila* deposited into the Mini API strip reading system (Biomerieux). The 3 isolates from 2009 were positive for β-galactosidase, arginine dihydrolase, citrate utilization, indole production, acetoin production, gelatinase, glucose oxidation, mannitol oxidation, inositol oxidation, saccharose oxidation, arabinose oxidation, and cytochrome oxidase; they were negative for lysine decarboxylase, ornithine decarboxylase, H2S production, urease, tryptophane deaminase, sorbitol oxidation, rhamnose oxidation, melibiose oxidation, and amygdalin oxidation. The 1998 Alabama isolate AL98-C1B had the same biochemical profile in the API 20E strip test, except that its reading of inositol oxidation and arabinose oxidation were both negative. Fatty acid methyl ester analysis by the MIDI microbial identification gas chromatography system revealed that all 3 isolates from 2009 had high similarity indices (0.682, 0.690, 0.724, respectively, for AL09-71, AL09-72, AL09-73) with *A. hydrophila* deposited in the RCLN50 database of the microbial identification system. AL98-C1B had a lower similarity index (0.380) with *A. hydrophila* deposited in the RCLN50 database, suggesting that AL98-C1B is distantly related to the 3 isolates from 2009.

Sequencing results of PCR products obtained for 16S–23S ISR, cpn60, gyrB, and rpoD from the 4 *Aeromonas hydrophila* isolates were deposited in GenBank under accession numbers HM856359 to HM856374. Comparing the 2009 isolates and the 1998 AL98-C1B isolate with *A. hydrophila* spp. *hydrophila* ATCC7966 (accession no. NC_008570), the 2009 isolates shared the highest homology with ATCC7966 (with homologies ranging from 94 to 95% with 16S–23S ISR, 96 to 98% with cpn60, 96% with gyrB, and 97% with rpoD). Sequences of AL98-C1B shared lower homology with ATCC7966 (63% with 16S–23S ISR, 91% with cpn60, 93% with gyrB, and 95% with rpoD). The 3 Alabama isolates from 2009 shared high homology with each other (16S–23S ISR shared 97 to 98% homology, cpn60 shared 98 to 99%, and gyrB or rpoD shared 99%); however, they shared lower homology with AL98-C1B (63 to 64% with 16S–23S ISR, 90 to 91% with cpn60, 92% with gyrB, and 95% with rpoD). Pairwise homologies are given in Table 2.

Mortalities were observed as early as 6 h post injection at a dose of 1.6 × 104 CFU fish–1 or higher following IP injection of channel catfish fingerlings with the 3 isolates from 2009, and the majority of the mortalities occurred within 24 h post injection. Cultures from dead fish were all confirmed to be *Aeromonas hydrophila*. The 2009 isolates were significantly (p < 0.05) more virulent than the 1998 isolate AL98-C1B based on both LD50 and LD95 values (Table 3). Based on LD50 values,

Table 2. *Aeromonas hydrophila*. Homology (%) between sequences of different isolates. Full gene names as in Table 1
intraperitoneal (IP) injection. Different letters within columns indicate that the virulences of the different strains were significantly different from each other because the 95% confidence intervals (CI) failed to overlap.

Table 3. Aeromonas hydrophila. LD$_{50}$ and LD$_{95}$ values (in colony forming units per fish) of the 4 isolates to channel catfish by intraperitoneal (IP) injection. Different letters within columns indicate that the virulences of the A. hydrophila strains were significantly different from each other because the 95% confidence intervals (CI) failed to overlap.

<table>
<thead>
<tr>
<th>Strain</th>
<th>LD$_{50}$ (95% CI)</th>
<th>LD$_{95}$ (95% CI)</th>
<th>Slope (SE)</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL09-71</td>
<td>1.1×10^5 (6.2×10^4–2.1×10^5)(^a)</td>
<td>7.0×10^5 (3.1×10^5–2.1×10^5)(^a)</td>
<td>3.04 (0.68)</td>
<td>1.11</td>
</tr>
<tr>
<td>AL09-72</td>
<td>1.9×10^6 (1.3×10^5–2.5×10^6)(^a)</td>
<td>4.8×10^5 (4.8×10^5–1.8×10^6)(^a)</td>
<td>5.11 (0.53)</td>
<td>2.49</td>
</tr>
<tr>
<td>AL09-73</td>
<td>1.3×10^6 (8.9×10^5–1.8×10^6)(^a)</td>
<td>4.8×10^5 (3.0×10^5–1.8×10^6)(^a)</td>
<td>3.76 (0.78)</td>
<td>0.47</td>
</tr>
<tr>
<td>AL98-C1B</td>
<td>2.3×10^6 (1.2×10^7–4.2×10^6)(^b)</td>
<td>2.0×10^8 (9.1×10^7–1.6×10^8)(^b)</td>
<td>3.03 (0.49)</td>
<td>1.30</td>
</tr>
</tbody>
</table>

AL09-71 was the most virulent 2009 isolate, followed by AL09-73 and AL09-72 (Table 3). However, the difference in virulence among the 3 isolates was not significantly different.

Precise identification of pathogen is a prerequisite to successful control of disease outbreak. Identification of Aeromonas at the species level by routine procedures involves many difficulties because of the absence of a unified identification key and the lack of agreement between biochemical and genetic identification schemes (Soler et al. 2004, Ormen et al. 2005). Using biochemical identification methods, we were able to identify the 3 isolates from 2009 as A. hydrophila and confirmed that they differed from AL98-C1B, but we were unable to determine whether the 2009 isolates were the same or different by biochemical methods. Sequencing of the 16S–23S rDNA ISR of the 4 isolates revealed that the 2009 isolates were closely related to each other, but very distantly related to AL98-C1B, suggesting that AL98-C1B and the 3 isolates from 2009 are very conserved house-keeping genes, which might not be more appropriate molecular markers to differentiate closely related Aeromonas species.

Table 3. Aeromonas hydrophila. LD$_{50}$ and LD$_{95}$ values (in colony forming units per fish) of the 4 isolates to channel catfish by intraperitoneal (IP) injection. Different letters within columns indicate that the virulences of the A. hydrophila strains were significantly different from each other because the 95% confidence intervals (CI) failed to overlap.

The gyrB and rpoD sequences of the 2009 isolates also differentiated from the AL98-C1B isolate (Table 2). However, among the 2009 isolates, gyrB and rpoD shared 99% homology, suggesting that both gyrB and rpoD are very conserved house-keeping genes, which might not be more appropriate molecular markers to differentiate closely related Aeromonas species.

Our data suggested that the 2009 isolates were highly virulent to channel catfish, which might explain why so many fish were killed in the 2009 disease outbreak in west Alabama. Virulence studies of the 4 isolates revealed that most infected fish died within 24 h post exposure, suggesting that rapid-acting virulence factors might play an important role in the disease. The identities of the virulence factors and their exact roles in Aeromonas disease merit further study.

Acknowledgements. We thank D. Xu (USDA-ARS) and V. Panangala (USDA collaborator) for critical reviews of the manuscript; B. Hemstreet (Alabama Fish Farming Center), J. Terhune (Auburn University), and J. Bebak (USDA-ARS) for obtaining the 2009 isolates of Aeromonas hydrophila; B. Peterman (USDA-ARS) for technical support; and B. Scheller and F. Liu (USDA-ARS-Catfish Genetics Research Unit) for sequencing work. We also thank the management team of the Aquatic Animal Health Research Unit for daily care and management of the fish. This study was supported by the USDA/ARS CRIS project no. 6420-32000-024-00D. The use of trade, firm, or corporate names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable.

LITERATURE CITED

Thorpe JE, Roberts RJ (1972) Aeromonad epidemic in brown trout (Salmo trutta (L.)). J Fish Biol 4:441–541