Herpes simplex-like infection in a bottlenose dolphin stranded in the Canary Islands

F. Esperón¹*, A. Fernández², J. M. Sánchez-Vizcaíno³

¹Animal Health Research Centre (CISA-INIA), Ctra Algés a El Casar s/n, Madrid, Spain
²Institute for Animal Health, Veterinary School, University of Las Palmas de Gran Canaria, Las Palmas, Canary Islands
³Department of Animal Health, Faculty of Veterinary Medicine, UCM Madrid, Avda Puería de Hierro s/n, Madrid

ABSTRACT: A bottlenose dolphin, stranded in the Canary Islands in 2001 exhibited non-suppurative encephalitis. No molecular detection of cetacean morbillivirus (CeMV) was found, but a herpesviral-specific band of 250 bp was detected in the lung and brain. The sequenced herpesviral PCR product was compared with GenBank sequences, obtaining 98% homology (p-distance of 0.02) with Human herpesvirus 1 (herpes simplex virus 1 or HSV-1). This is the first report of a herpes simplex-like infection in a stranded dolphin.

KEY WORDS: Bottlenose dolphin · Herpesvirus · Herpes simplex virus · Infectious diseases · Zoonosis

INTRODUCTION

Herpesviral infections are very common in a wide variety of hosts, mainly vertebrates, including birds, reptiles and mammals (McGeoch et al. 2006). Herpesviruses are double-stranded DNA viruses, with an icosahedral form and a genome length that varies from 120 to 230 kbp (Roizman 1996).

There are few reports of herpesviral infections in marine mammals. Most reports are morphological, where the diagnosis is based on gross pathology (Baker 1992), histopathology and immunohistochemistry (Kennedy et al. 1992) or transmission electron microscopy (TEM) (Martino et al. 1988, Van Bressem et al. 1994). So far, no cetacean herpesviruses have been isolated with cell culture; thus, molecular diagnostic tools are essential to establish their taxonomic classification. Amplification of conserved DNA regions within the herpesvirus polymerase gene (VanDevanter et al. 1999) and terminase gene (Hargis et al. 1999) has been possible using universal PCRs. Further sequencing of the resultant amplicons has provided new reports of alphaherpesvirus in the bottlenose dolphin Tursiops truncatus (Blanchard et al. 2001, Manire et al. 2006, Smolarek-Benson et al. 2006), and gammaherpesvirus in bottlenose dolphin, Risso's dolphin Grampus griseus, the dwarf sperm whale Kogia sima and Blainville's beaked whale Mesoplodon densirostris (Saliki et al. 2006, Smolarek-Benson et al. 2006).

The Canary Islands are a privileged coastal system in terms of cetacean diversity and abundance, with more than 30 cetacean species (Stephanis & Urkiola 2007). This is due to their strategic location in the migratory routes and their oceanographic characteristics. The short continental shelf of the islands favours a close approach to the coast and the establishment of resident populations such as bottlenose dolphin, the short-finned pilot whale Globicephala macrorhynchus and the sperm whale Physeter macrocephalus. As a consequence, cetaceans can be observed close to the coast and are exposed to industrial, agricultural and urban sewage sources.

A retrospective study was performed to detect herpesviral sequences in banked tissue of stranded dolphins in the Canary Islands. The present report describes the first case of a herpes simplex-like infection in a bottlenose dolphin.

MATERIALS AND METHODS

Samples. An adult male bottlenose dolphin stranded dead on Tenerife (Canary Islands) in 2001 was analyzed in this study. Gross pathology showed emacia-
tion and the main histopathology finding was mild, non-suppurative encephalitis. The lung showed verminous pneumonia. Samples from brain, liver and lung were frozen at –80°C until further analysis. In order to determine the presence of viral agents related to encephalitis in marine mammals, an RT-PCR for morbillivirus and a PCR for herpesvirus were performed on brain, liver and lung samples.

RNA and DNA extraction. Prior to nucleic acid extraction, 1 g of tissue was manually macerated in 10 ml of sterile phosphate-buffered saline (PBS) and subsequently centrifuged at 900 × g for 15 min. Supernatants from the macerates were collected. RNA extraction was carried out from a 100 µl macerated sample using the TriPure Reagent (Roche Diagnostics) method, following the manufacturer’s instructions. DNA extraction was performed with High Pure Template Preparation Kit (Roche Diagnostics), following the manufacturer’s instructions. Extracted DNA was eluted in 50 µl of sterile water.

PCR. Molecular detection of cetacean morbillivirus (CeMV) was performed by 1-step RT-PCR, which amplifies 426 bp within a conserved region in the phosphoprotein gene (Reidarson et al. 1998). Two negative controls and a positive control of dolphin morbillivirus (DMV), MUC strain, provided by T. Barrett (Institute for Animal Health, Pirbright Laboratory, UK) were included. A universal nested PCR previously developed (VanDevanter et al. 1996) that amplifies a conserved region within the polymerase gene of the *Herpesviridae* family was applied. To prevent carryover contamination, 2 negative controls were added for each reaction, one for DNA extraction and the other for PCR reaction. A positive control of *Human herpesvirus 1* strain F, was provided by S. Gómez-Sebastián (National Institute for Agriculture and Food Scientific Research and Technology, INIA, Madrid, Spain). The expected size of the amplicon for herpesvirus ranged between 215 and 315 bp.

Products of both PCRs were electrophoresed in 2% agarose gels, stained with Sybr® Green. The specific bands were excised and sequenced. Purification of DNA products in positive samples was performed using a GFX PCR DNA and Gel Band Purification Kit (Amerham Biosciences), following the manufacturer’s instructions. Sequencing was done in triplicate using an ABI Prism 3100 sequencer (Applied Biosystems).

Sequenced products were compared with sequences available in GenBank using the BLAST search. The sequence obtained was aligned using the Clustal W software. Phylogenetic analysis was performed using MEGA 4.0 software (Tamura et al. 2007). Neighbor-joining was employed to infer the tree topology. The reliability of the trees was tested by bootstrapping 1000 replicates generated with a random seed. The matrix distances were calculated based on p-distance. The consensus tree is represented in Fig. 1.

RESULTS AND DISCUSSION

A specific band was not observed in the RT-PCR for morbillivirus. In contrast, a herpesviral specific band of 250 bp was detected in lung and brain. The product was sequenced and compared with GenBank published sequences, obtaining 98% homology (p-distance of 0.02) with *Human herpesvirus 1* (herpes simplex virus 1 or HSV-1). Other similarities occurred with *Human herpesvirus 2* (herpes simplex virus 2 or HSV-2) and positive control (F strain of HSV-1), with p-distances of 0.13 and 0.14, respectively. The PCR method used in this study for herpesvirus detection was developed from a conserved fragment of herpesvirus polymerase gene, and the sequences from this region have been found to be unique to each herpesvirus species (VanDevanter et al. 1996). In addition, this PCR method has been used to detect and classify novel sequences of herpesvirus in different hosts such as...
organisms through urban sewage also increases, as has been demonstrated for enterovirus and norovirus (Payment et al. 2001, Haramoto et al. 2006). This could be a potential risk for cetacean populations. In addition, the role of faecal bacteria from Hong Kong’s human sewage as the cause of death of stranding dolphins has been described previously (Parsons & Jefferson 2000).

Although an HSV-like sequence has been detected in the brain of a stranded bottlenose dolphin, the role of this virus as an etiologic agent of mild non-suppurative encephalitis has not yet been determined. To resolve this question, immunohistochemical or TEM detection should be performed; unfortunately there was not adequate sample to perform these assays. The presence of herpesviruses in stranded cetaceans from the Canary Islands and their role in cetacean health status and stranding causes will be evaluated in further studies.

Acknowledgements. The authors thank R. Cabrera and E. Neves for their technical support. This study was financed by the project of the National Researching Plan, REN 2002-04162-C02-02.

LITERATURE CITED

Editorial responsibility: Michael Moore, Woods Hole, Massachusetts, USA