NOTE

Outbreaks of an ulcerative and haemorrhagic disease in Arctic char *Salvelinus alpinus* caused by *Aeromonas salmonicida* subsp. *smithia*

E. Goldschmidt-Clermont¹, O. Hochwartner², A. Demarta³, A.-P. Caminada³, J. Frey¹,*

¹Institute of Veterinary Bacteriology, Vetsuisse Faculty, Laengassstrasse 122, 3012 Berne, Switzerland
²Schwarzenhaiderstr. 41, 1230 Vienna, Austria
³Cantonal Institute of Microbiology, Via Mirasole 22A, 6500 Bellinzona, Switzerland

ABSTRACT: Arctic char *Salvelinus alpinus* farmed in different places in Austria and free of the viral diseases viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN) and infectious pancreatic necrosis (IPN) experienced disease and mortality. Diseased fish showed skin ulceration and pathological signs of sepsis. *Aeromonas* sp. was isolated as pure culture from the kidney of freshly euthanized diseased fish. Three independent isolates from outbreaks that occurred on 2 of the affected farms were analyzed phylogenetically by DNA sequence analysis of the *rrs* and *gyrB* genes and phenotypically with biochemical reactions. All 3 isolates were identified as *Aeromonas salmonicida* subsp. *smithia*. Analysis of virulence genes in these isolates revealed the presence of a Type III secretion system as well as several related virulence effector genes including *aexT*, encoding the *Aeromonas* exotoxin AexT, *aopP* and *aopH*. These genes are characteristic for virulent strains of typical and atypical subspecies of *A. salmonicida*.

KEY WORDS: *Aeromonas salmonicida* subsp. *Smithia* · Arctic char · Bacterial septicaemia · Ulcerative, haemorrhagic disease

INTRODUCTION

Arctic char *Salvelinus alpinus* has been reared under farming conditions in Austria since 1990 as a fish for consumption because of its high content of valuable polyunsaturated fatty acids such as ω-3 and ω-6 that are essential in human nutrition (Singer 2007). Eggs are imported from Sweden, disinfected (Actomar®K 30, polyvinylpyrrolidone-iodide-iodine-complex, 15 ml l⁻¹ for 20 min) and hatched locally. Fingerlings up to a market size fish of 600 g are reared in earth ponds with wooden walls. Fish are fed commercial food for salmonids enriched with cold-extruded seed oil as well as vitamin C and E. Of the 2 farms in this study, Farm A receives its water supply from a river (water temperature ranging from 4 to 16°C) and Farm B from well- and groundwater (water temperature max. 15°C). All farms were regularly checked and shown to be free of viral haemorrhagic septicaemia (VHS), infectious haematopoietic necrosis (IHN) and infectious pancreatic necrosis (IPN) using standard virological methods. During 2002 to 2008 several outbreaks of a bacterial septic disease occurred from July to October at water temperatures ranging from 8 to 16°C. Slow growing Gram-negative bacteria which produced tiny colonies on standard blood agar medium were isolated from kidney of moribund fish. *Aeromonas salmonicida* is a bacterial species known to cause various diseases including systemic infections as well as ulcerative diseases in a number of different...

MATERIALS AND METHODS

Bacterial diagnostics. Routine pathological examination of dead and euthanized moribund fish was performed. Fish were killed by immersion in a solution of buffered 3-aminobenzoic acid ethyl ether (MS-222®, Argent Chemical Laboratories). Bacterial samples were taken from the kidney and the skin lesions of freshly euthanized moribund fish, plated on tryptic soy agar plates with 5% sheep blood (Oxoid) and incubated for 4 to 5 d at 18°C. Three isolates originating from kidney of fish from 3 different outbreaks were cloned and sub-cultivated for further analysis.

All 3 strains were identified genetically to the species level using *rrs* (16S rRNA) gene sequence analysis by PCR amplification of a 1.4 kb segment of *rrs* with universal primers and DNA sequence analysis of PCR products, were performed as described (Martin-Carnahan & Joseph 2005) for all 3 field strains (JF4097, JF4439 and JF4460) as well as for the type strain for all 3 field strains biochemistry was performed as described (Munro & Hastings 1993, Bernoth 1997). Atypical *A. salmonicida* include subsp. *smithia*, subsp. *masoucida*, and subsp. *achromogenes* for the type strain (Martin-Carnahan & Joseph 2005) for all 3 field strains biochemical reactions were performed as described (Munro & Hastings 1993, Bernoth 1997). Atypical *A. salmonicida* include subsp. *smithia*, subsp. *masoucida*, and subsp. *achromogenes* and subsp. *pectinolytica* which, with the exception of *A. salmonicida* subsp. *pectinolytica*, are found as pathogens in a wide variety of fish species (Gudmundsdottir 1998).

Analysis of virulence genes. In order to study in more detail the determinants that make *Aeromonas salmonicida* subsp. *smithia* a virulent pathogen, we analyzed the 3 field strains isolated in this study by PCR for the presence of the major virulence genes that are known in *A. salmonicida* (Burr & Frey 2007). The presence of a Type III secretion system was assessed by the detection of the *ascV* gene, which encodes a consituitive protein of the inner ring of the Type III secretion apparatus. Other genes encoding effector proteins translocated via the Type III secretion system were detected by a specific PCR assay using the following primers 1sellF (GCC TTC TTG CTG TAG TCC TCT) and 1sellR (GCA GAG TCC CCT TCC ACT ATG TA). The phylogenetic tree of the *gyrB* sequences was constructed using the neighbour-joining method with genetic distances computed by employing Kimura’s 2-parameter method (MEGA version 4).

Materials and methods

Bacterial diagnostics. Routine pathological examination of dead and euthanized moribund fish was performed. Fish were killed by immersion in a solution of buffered 3-aminobenzoic acid ethyl ether (MS-222®, Argent Chemical Laboratories). Bacterial samples were taken from the kidney and the skin lesions of freshly euthanized moribund fish, plated on tryptic soy agar plates with 5% sheep blood (Oxoid) and incubated for 4 to 5 d at 18°C. Three isolates originating from kidney of fish from 3 different outbreaks were cloned and sub-cultivated for further analysis.

All 3 strains were identified genetically to the species level using *rrs* (16S rRNA) gene sequence analysis by PCR amplification of a 1.4 kb segment of *rrs* with universal primers and DNA sequence analysis of PCR products, were performed as described (Martin-Carnahan & Joseph 2005) for all 3 field strains (JF4097, JF4439 and JF4460) as well as for the type strain. Bacterial strains with the other *A. salmonicida* subsp. *salmonicida* (ATCC 27013T), *A. smithia* subsp. *smithia* JF4097, JF4439 and JF4460, *A. salmonicida* subsp. *achromogenes* NCIMB1110T, AM262161; *A. salmonicida* subsp. *pectinolytica* JF4097, JF4439 and JF4460, *A. salmonicida* subsp. *salmonicida* ATCC33658T, AY299485; *A. salmonicida* subsp. *salmonicida* A449, CP000644; *A. salmonicida* subsp. *masoucida* ATCC27013T², AM262160; *A. salmonicida* subsp. *masoucida* CECT896, AY101784; *A. salmonicida* subsp. *salmonicida* CECT894, AY987517; *A. hydrophila* hybridization group HG3 CDC0434-84, AF417624; *A. salmonicida* subsp. *pectinolytica* DSM12609T², AM262158; *A. salmonicida* subsp. *pectinolytica* DSM12609T², AY101810. A phylogenetic tree of the *gyrB* sequences was constructed using the neighbour-joining method with genetic distances computed by employing Kimura’s 2-parameter method (MEGA version 4).

Analysis of virulence genes. In order to study in more detail the determinants that make *Aeromonas salmonicida* subsp. *smithia* a virulent pathogen, we analyzed the 3 field strains isolated in this study by PCR for the presence of the major virulence genes that are known in *A. salmonicida* (Burr & Frey 2007). The presence of a Type III secretion system was assessed by the detection of the *ascV* gene, which encodes a constitutive protein of the inner ring of the Type III secretion apparatus. Other genes encoding effector proteins translocated via the Type III secretion system were detected by a specific PCR assay using the following primers 1sellF (GCC TTC TTG CTG TAG TCC TCT) and 1sellR (GCA GAG TCC CCT TCC ACT ATG TA). The phylogenetic tree of the *gyrB* sequences was constructed using the neighbour-joining method with genetic distances computed by employing Kimura’s 2-parameter method (MEGA version 4).

Materials and methods

Bacterial diagnostics. Routine pathological examination of dead and euthanized moribund fish was performed. Fish were killed by immersion in a solution of buffered 3-aminobenzoic acid ethyl ether (MS-222®, Argent Chemical Laboratories). Bacterial samples were taken from the kidney and the skin lesions of freshly euthanized moribund fish, plated on tryptic soy agar plates with 5% sheep blood (Oxoid) and incubated for 4 to 5 d at 18°C. Three isolates originating from kidney of fish from 3 different outbreaks were cloned and sub-cultivated for further analysis.

All 3 strains were identified genetically to the species level using *rrs* (16S rRNA) gene sequence analysis by PCR amplification of a 1.4 kb segment of *rrs* with universal primers and DNA sequence analysis of PCR products, were performed as described (Martin-Carnahan & Joseph 2005) for all 3 field strains (JF4097, JF4439 and JF4460) as well as for the type strain. Bacterial strains with the other *A. salmonicida* subsp. *salmonicida* (ATCC 27013T), *A. smithia* subsp. *smithia* JF4097, JF4439 and JF4460, *A. salmonicida* subsp. *achromogenes* NCIMB1110T, AM262161; *A. salmonicida* subsp. *pectinolytica* JF4097, JF4439 and JF4460, *A. salmonicida* subsp. *salmonicida* ATCC33658T, AY299485; *A. salmonicida* subsp. *salmonicida* A449, CP000644; *A. salmonicida* subsp. *masoucida* ATCC27013T², AM262160; *A. salmonicida* subsp. *masoucida* CECT896, AY101784; *A. salmonicida* subsp. *salmonicida* CECT894, AY987517; *A. hydrophila* hybridization group HG3 CDC0434-84, AF417624; *A. salmonicida* subsp. *pectinolytica* DSM12609T², AM262158; *A. salmonicida* subsp. *pectinolytica* DSM12609T², AY101810. A phylogenetic tree of the *gyrB* sequences was constructed using the neighbour-joining method with genetic distances computed by employing Kimura’s 2-parameter method (MEGA version 4).

Analysis of virulence genes. In order to study in more detail the determinants that make *Aeromonas salmonicida* subsp. *smithia* a virulent pathogen, we analyzed the 3 field strains isolated in this study by PCR for the presence of the major virulence genes that are known in *A. salmonicida* (Burr & Frey 2007). The presence of a Type III secretion system was assessed by the detection of the *ascV* gene, which encodes a constitutive protein of the inner ring of the Type III secretion apparatus. Other genes encoding effector proteins translocated via the Type III secretion system were tested: 1sellT encoding the ADP ribosylase *Aeromonas* exotoxin T (Fehr et al. 2007), 1sellP encoding the effector protein that blocks the translocation of NfxB into the host cell’s nucleus (Fehr et al. 2006), 1sellO encoding a putative serine/threonine protein kinase, and 1sellH encoding a putative tyrosine phosphatase (Dacanay et al. 2006). All genes, *ascV*, 1sellT, 1sellP, 1sellO and 1sellH were detected by a specific PCR assay using the following primers AslcrD-L (GCC CGT TTT GCC TCT CAA), AslcrD-R (GCC CGG ATA TCG GTA CCC) for *ascV*; RASEXOS-L (GGC GCT TGG GCT CTA CAC), RASEXOS-R (GAG CCC GCG CAT CTT CAG) for 1sellT; AsORF28 (GAG AGT TGG CTA
RESULTS

Pathological findings on affected fish included haemorrhage in the eye, opaque lens, inflammation in the ventral part of the opercula, skin erosion, fin lesion, pale gills, swelling of spleen and kidney, pale liver and serosal petechiae (Fig. 1). Diseased fish, except those used for bacteriological analyses, were treated successfully with oxytetracycline-medicated feed (8 g oxytetracycline kg$^{-1}$ feed during 12 consecutive days.

Case 1 was a moribund char without ulcers from an outbreak in Farm A in October 2007. Parasitological analysis of the skin revealed *Gyrodactylus* spp. No parasites were found on the gills. Bacteriological analysis was only made from kidney, as there were no skin lesions. It revealed a high amount of slow-growing, non-haemolytic, Gram-negative bacteria forming a nearly confluent culture of uniform colonies of up to 1 mm diameter on tryptic soy agar plates containing 5% sheep blood (Oxoid) after 4 to 5 d of incubation at 18°C. The regularity of the colonies indicated a pure culture and no other bacteria were detected. The culture was cloned, sub-cultivated and stored at –80°C as strain JF4097.

Case 2 was a moribund char with minor skin ulcerations from an outbreak in Farm B in July 2008. Parasitological analysis of skin and gills was negative. Bacteriology of the skin revealed a mixed bacterial culture including *Aeromonas hydrophila* and the same tiny Gram-negative colonies as described from kidney in Case 1 above. Bacteriological analysis of the kidney resulted in a massive growth of slow growing, non-haemolytic, Gram-negative bacteria forming uniform colonies identical to those from Case 1. From the homogenous pure primary culture strain JF4439 was cloned, sub-cultivated and stored at –80°C.

Case 3 was a moribund char with skin ulcers from Farm A in August 2008, but from a different age group that had not had any direct or water-mediated contact with Case 1. Parasitological examination of skin and kidney was negative. Skin bacteriology revealed a mixed culture including *Aeromonas hydrophila*. Bacteriological analysis of the kidney resulted in a massive growth of uniform tiny colonies after 4 to 5 d of incubation, as also seen for Cases 1 and 2, plus a small number of *A. hydrophila* colonies. A representative colony of the major population, which resembled those from Cases 1 and 2, was cloned, sub-cultivated and stored at –80°C as strain JF4460.

The strains JF4097, JF4439 and JF4460, isolated from the 3 independent cases, were identified by *rrs* (16S rRNA) gene sequencing as *Aeromonas salmonicida*. Biochemical typing performed according to *Bergey’s Manual of Systematic Bacteriology* (Martin-Carnahan & Joseph 2005) determined the identity of the strains as *A. salmonicida* subsp. *smithia* (Table 1). They were identical among each other and showed the same biochemical profile as *A. salmonicida* subsp. *smithia* type strain NCIMB 13210T, with the exception of fermentation of sucrose, which was positive in the type strain but negative in the field strains. It should be noted that the type strain of *A. salmonicida* subsp. *achromogenes* (NCIMB 1110T) was β-haemolytic, positive, tryptophanase (indole) negative
and D-mannitol fermentation positive in our analysis, which is in contradiction with the data given in Bergey’s Manual of Systematic Bacteriology.

Sequencing of the \textit{gyrB} gene revealed that the 3 strains JF4097, JF4439 and JF4460 all had the same sequence (EMBL/GenBank accession number FN394064). There was 99.89% sequence homology with the \textit{gyrB} of \textit{Aeromonas salmonicida} subsp. \textit{smithia} type strain NCIMB 13210T (EMBL/GenBank accession number AM262159). This confirmed strains JF4097, JF4439 and JF4460 as \textit{A. salmonicida} subsp. \textit{smithia}.

The phylogenetic tree of the \textit{gyrB} sequences obtained by multiple sequence alignments is shown in Fig. 2. It shows that the \textit{A. salmonicida} subsp. \textit{smithia} strains isolated from the 3 different outbreaks in Arctic char have a common origin and form a tight cluster with the \textit{A. salmonicida} subsp. \textit{smithia} type strain (NCIMB 13210T), that is distinctly separated from the other \textit{A. salmonicida} species.

Results of the PCR assay for Type III protein secretion genes are shown in Table 2. Two of the 3 field strains of \textit{A. salmonicida} subsp. \textit{smithia} (JF4097 and JF4439) harboured the gene \textit{ascV}. All 3 strains possessed the toxin gene \textit{aexT} and the 2 virulence effector genes \textit{aopP} and \textit{aopH} but none of them harboured the effector gene \textit{aopO}. The virulence gene profiles of strains JF4097 and JF4439 correspond to that of the type strain NCIMB13210T previously determined (Burr & Frey 2007).

Table 1. Biochemical properties of \textit{Aeromonas salmonicida} subspecies type strains and field isolates.

| | \textit{A. salmonicida} ATCC 33658T | \textit{A. salmonicida} NCIMB 1110T | \textit{A. masoucida} ATCC 27913T | \textit{A. smithia} JF4097 | \textit{A. smithia} JF4439 | \textit{A. smithia} JF4460 |
|----------------|--|--|--------------------------------|
| \textbf{β-haemolysis} | + | +a | + | – | – | – |
| \textbf{Oxidase} | + | + | + | + | + | + |
| \textbf{Aesculin hydrolysis} | + | – | – | – | – | – |
| \textbf{Fermentation of D-glucose} | + | + | + | + | + | + |
| \textbf{Gas from D-glucose} | + | – | – | – | – | – |
| \textbf{Fermentation of sucrose} | – | + | + | + | + | + |
| \textbf{Fermentation of D-mannitol} | + | +a | + | – | – | – |
| \textbf{Tryptophanase (indole)} | – | –a | – | – | – | – |
| \textbf{Brown diffusible pigment} | + | + | – | – | – | – |

aAccording to Bergey’s Manual of Systematic Bacteriology (Martin-Carnahan & Joseph 2005), \textit{A. salmonicida} subsp. \textit{achromogenes} should be non-haemolytic, indole positive, and it should not be able to ferment D-mannitol.

![Fig. 2. Unrooted phylogenetic tree based on a fragment of 963 bp of the \textit{gyrB} gene showing the relationship of strains JF4097, JF4439 and JF4460 with other \textit{Aeromonas salmonicida} strains. Numbers at nodes indicate bootstrap values (percentages of 1000 replicates). Sequence accession numbers are given in ‘Materials and methods’. Scale bar = 0.2 changes per 100 positions. ATCC: American Type Culture Collection (Manassas, VA, USA); CDC: Centers for Disease Control (Atlanta, GA, USA); CECT: Colección Española de Cultivos Tipo (Valencia, Spain); DSM: Deutsche Sammlung von Mikroorganismen und Zellkulturen (Braunschweig, Germany); NCIMB: National Collection of Industrial, Food and Marine Bacteria (Aberdeen, UK).](image-url)
Table 2. Presence of virulence factors in *Aeromonas salmonicida* subsp. *smithia*, tested by PCR. The ascV gene encodes an inner membrane component of the Type III secretion system (TTSS). Genes aexT, aopP, aopO and aoph code for effector proteins that are secreted via the TTSS. *A. salmonicida* subsp. *salmonicida* strain JF2267 (Braun et al. 2002) was used as positive control and *A. salmonicida* subsp. *pectinolytica* strain JF3120 (DSM 12609) as negative control.

<table>
<thead>
<tr>
<th></th>
<th>ascV</th>
<th>aexT</th>
<th>aopP</th>
<th>aopO</th>
<th>aoph</th>
</tr>
</thead>
<tbody>
<tr>
<td>JF2267</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>JF4097</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>JF4439</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>JF4460</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>JF3120</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
</tr>
</tbody>
</table>

DISCUSSION

Aeromonas salmonicida subsp. *smithia* was originally classified as a member of the family Pasteurellaceae (probably because of its very slow growth, as it takes 4 to 5 d for the colonies to appear on the plates, whereas other aeromonads usually grow within 1 to 2 d) and named *Haemophilus piscium* (Snieszko et al. 1950). It is now classified into the genus *Aeromonas* as *A. salmonicida* subsp. *smithia* (Paterson et al. 1980, Austin et al. 1989, 1998, Thornton et al. 1999). In spite of taxonomic uncertainties among the subspecies of *A. salmonicida* given by phenotypic identifications, genotypic methods based on *rrs*, *gyrB* and *rpoB* sequence analysis revealed reliable groupings of strains that are consistent with the taxonomic organization of *Aeromonas* species and have a high capacity to differentiate between species and subspecies (Váñez et al. 2003, Küpler et al. 2006). However, infections or epizootics caused by *A. salmonicida* subsp. *smithia* have rarely been reported (Wiklund & Dalsgaard 1998), which might be due to the former misclassification and the delayed appearance of bacterial colonies on culture medium.

The current report describes 3 cases of bacterial septicaemia in Arctic char, from outbreaks in which *A. salmonicida* subsp. *smithia* was regularly detectable in high amounts in the kidneys. It was isolated as a pure culture in 2 cases and accompanied by a low amount of *A. hydrophila* in one case. Since no viral infection and no particular common parasite were identified as causative agent for the outbreaks, and due to the heavy colonization of kidney of diseased fish by *A. salmonicida* subsp. *smithia*, expected to result from septicaemia, we conclude that *A. salmonicida* subsp. *smithia* is the etiological agent of the ulcerative haemorrhagic disease. Phenotypic characterization of the 3 strains from these outbreaks revealed a discrepancy with the type strain of *A. salmonicida* subsp. *smithia* NCIMB 13210\(^T\) concerning sucrose fermentation. However, all 3 field strains were unambiguously identified as *A. salmonicida* subsp. *smithia* by genotypic methods, indicating that sucrose fermentation does not discriminate this subspecies since both sucrose fermentation positive and negative strains might be encountered.

The PCR results showed that the isolated strains possessed virulence genes and associated genes encoding a Type III protein secretion system. The presence of these virulence genes is a further criterion underlining the role of *Aeromonas salmonicida* subsp. *smithia* as an aetiological agent in these ulcerative and haemorrhagic disease outbreaks. The lack of ascV in one strain (JF4460) is surprising in the light of the presence of aexT, aopP and aoph genes that encode virulence factors requiring Type III secretion and translocation for their activity. We expect that the ascV gene, potentially residing on a mobile genetic element, was lost during transport of the strain during summer 2008, when temperatures were above 18°C, as it was previously shown for Type III secretion genes of certain strains of *A. salmonicida* subsp. *salmonicida* (Stuber et al. 2003).

In summary, virulent strains of *Aeromonas salmonicida* subsp. *smithia*, carrying Type III secretion and effector genes, were isolated as pure or almost pure cultures from diseased Arctic char. *Aeromonas salmonicida* subsp. *smithia* must therefore be considered as primary pathogens causing ulcerative and haemorrhagic disease in *Salvelinus alpinus*. Its slow growth parameters under culture conditions require particular attention in bacteriological diagnostics.

Acknowledgements. This work was supported by the Swiss National Science Foundation, grant no. 3100A0-101595.

LITERATURE CITED

Burr SE, Frey J (2007) Analysis of type III effector genes in...
typical and atypical Aeromonas salmonicida. J Fish Dis 30: 711–714

Editorial responsibility: David Bruno, Aberdeen, UK

Submitted: March 10, 2009; Accepted: June 28, 2009

Proofs received from author(s): August 31, 2009