Microcell parasites of molluscs: introduction to DAO Special 7

Ryan B. Carnegie1,*, Marc Y. Engelsma2

1Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, Virginia 23062, USA
2Central Veterinary Institute of Wageningen UR (CVI), PO Box 65, 8290 AB, Lelystad, The Netherlands

ABSTRACT: First discovered decades ago, microcell protistan parasites of the genera *Bonamia* and *Mikrocytos* remain relevant today for their economic impacts on growing molluscan aquaculture industries and fisheries. *Bonamia* parasites have received more attention over the years in part because they are more widespread and thus of wider concern, but there has been renewed interest in *Mikrocytos* recently with the generation of important new findings. Among these has been the surprising observation that *Mikrocytos* has phylogenetic affinities to the Rhizaria, which includes the haplosporidian protists and the genus *Bonamia*. This *Diseases of Aquatic Organisms* Special, emerging from the 5th Meeting of the Microcell Working Group held at the Central Veterinary Institute, Lelystad, the Netherlands, in February 2012, presents new insights into *Mikrocytos* and *Bonamia* diversity, distributions, diagnostics, ultrastructure, and infection dynamics, and captures major developments in the field since the last review of these genera in 2004.

KEY WORDS: *Bonamia* · *Mikrocytos* · Oyster · Aquaculture health

Global aquaculture production of molluscs continues to expand, fueling economic development of coastal communities worldwide. About a quarter of this production, 4.7 million metric tons worth $3.9 billion US dollars in 2012, represents aquaculture of oysters (FAO 2014), primarily *Crassostrea gigas* and a few other species in the genera *Crassostrea*, *Ostrea*, and *Saccostrea*. Oysters have a particularly long history of epizootic diseases (Carnegie 2012), and while new threats such as the emerging viral pathogen OsHV-1 μVar continue to appear (Segarra et al. 2010), more familiar pathogens remain relevant today. These include the microcell parasites of the genera *Bonamia* and *Mikrocytos*, pathogens that were the focus of the 5th Meeting of the Microcell Working Group held at the Central Veterinary Institute, Lelystad, the Netherlands, in February 2012, a conference which served as the impetus for this *Diseases of Aquatic Organisms* (DAO) Special.

The impacts of both of these genera of endoparasitic protists, if not the actual parasites themselves, have been known for decades. *B. ostreae* was first definitively observed in the oyster *O. edulis* from Ile-Tudy, Brittany, France, during a major oyster mortality event in 1979 (Pichot et al. 1980). Denman Island disease caused by *M. mackini* was first observed at the eponymous location (in British Columbia, Canada) in 1960 in the context of *C. gigas* mortality there (Quayle 1961), although this parasite was not formally identified until years later (Farley et al. 1988). The decades since have seen many investigations of both parasite genera. More of this research has been performed on *Bonamia*, probably for 2 reasons:

First, *Bonamia* species occur in more locations and hosts. *B. ostreae* infects *O. edulis* in a number of European countries, providing motivation for various laboratories to study this parasite–host system (e.g. Culloty & Mulcahy 1996, da Silva et al. 2005, Arzul et al. 2011; see also Laing et al. 2014, Lynch et al. 2014,
Ramilo et al. 2014a, this DAO Special). B. exitiosa naturally infects O. chilensis, O. stentina, O. lurida, O. puelchana, O. angasi, S. glomerata, and O. edulis in New Zealand and Australia, North America, South America, Europe, and North Africa (see Hill et al. 2014, this DAO Special), and observations of experimental deployments indicate that C. ariakensis is susceptible as well (Burreson et al. 2004). Research has been published by several teams working in many of these B. exitiosa systems (e.g. Hine et al. 2001, Kroeck & Montes 2005, Corbeil et al. 2006, Abollo et al. 2008, Hill et al. 2010; see also Audemard et al. 2014, Oehrens Kissner et al. 2014, Ramilo et al. 2014a, this DAO Special). Most of the work on Bonamia species has focused on either B. ostreae, B. exitiosa, or Bonamia sp. parasites that we now recognize as B. exitiosa (Carnegie et al. 2014, Hill et al. 2014).

Second, Bonamia parasite–host systems, and the B. ostreae–O. edulis system in particular, are highly tractable experimentally. A method to prepare enriched parasite cell suspensions is well established (Mialhe et al. 1988), and various lines and families of O. edulis are or have been available for laboratory and field challenges with B. ostreae. As reviewed by Engelsma et al. (2014, this DAO Special), this experimental approachability and investigators’ application of contemporary biotechnological methods to it (e.g. Cao et al. 2009, Morga et al. 2011a,b, Martín-Gómez et al. 2012, Prado-Alvarez et al. 2013) has allowed the B. ostreae–O. edulis system to rival that of Perkinsus marinus–C. virginica in the insights it has provided into interactions between protistan parasites and oyster hosts.

The genus Mikrocytos is similarly tractable to experimentation. An enrichment method analogous to the Mialhe et al. (1988) method for Bonamia has been developed for M. mackini (Joly et al. 2001), and C. gigas presents a convenient experimental host system. The narrower host and particularly geographic distribution of M. mackini, however, have limited the research interest in this parasite despite its economic significance. While we now recognize the distribution of M. mackini to extend south to California, USA, and the host range to include C. sikamea (Elston et al. 2012) as well as O. lurida, O. edulis, and C. virginica (Bower et al. 1997), this parasite has long been primarily a pathogen of C. gigas in southern British Columbia, Canada, and nearby Washington, USA, waters, and relatively few laboratories have studied it. Work in recent years, however, has produced important insight into Mikrocytos. First, novel members of the genus were observed in C. gigas in China (Wang et al. 2010), a parasite possibly identical to one observed in 2002 in O. edulis exported from Canada to France (Gagné et al. 2008); in C. gigas from the UK (M. mimicus; Hartikainen et al. 2014); in O. lurida from British Columbia (M. bowieri; Abbott et al. 2014, this DAO Special); and in the Manila clam Venerupis philippinarum (Ramilo et al. 2014b, this DAO Special). With the publication of Abbott et al. (2014), the number of accepted Mikrocytos species rises to 3 (Abbott & Meyer 2014, this DAO Special), matching that of recognized Bonamia species—B. persporea (Carnegie et al. 2006) joining B. ostreae and B. exitiosa as accepted Bonamia species, but with the identity of B. roughleyi nomen dubium now uncertain (Carnegie et al. 2014, Spiers et al. 2014, this DAO Special).

The more significant Mikrocytos development, however, was the remarkable observation that M. mackini is an amitochondriate Rhizarian with potential affinities to Haplosporidia (Burki et al. 2013), a finding supported by subsequent work by a different team (Hartikainen et al. 2014). Long after Farley et al. (1988) united Bonamia and Mikrocytos as ‘microcell’ genera based on little more than appearance at the light microscope level, a conclusion that seemed more than a little contrived, we now have cause to instead view their work as surprisingly prescient. These observations have profound implications for our understanding of the biology and ecology of haplosporidians and Mikrocytos and should ignite a new phase in the research on these groups.

Thirteen of the papers in this DAO Special, including separate reviews on both Mikrocytos (Abbott & Meyer 2014) and Bonamia (Engelsma et al. 2014), present new insights into Mikrocytos and Bonamia diversity and distributions (Abbott et al. 2014, Hill et al. 2014, Ramilo et al. 2014b), diagnostics (Flannery et al. 2014, Ramilo et al. 2014c), ultrastructure (Hine et al. 2014), and infection dynamics (Audemard et al. 2014, Laing et al. 2014, Lynch et al. 2014, Oehrens Kissner et al. 2014, Ramilo et al. 2014a), and capture major developments in the field since the last review of these genera (Carnegie & Cochennec-Laureau 2004). The fourteenth, by Spiers et al. (2014), points to continuing uncertainty concerning the identity of B. roughleyi and reminds us that ‘microcells’ may well include more taxa than Bonamia and Mikrocytos. Like the recent publications of Burki et al. (2013) and Hartikainen et al. (2014), the contributions to this DAO Special also highlight the dynamic nature of research into the microcell parasites and the emergence of new investigators in the field and suggest that the next decade of microcell research will be just as productive as the last.
Acknowledgements. We thank the participants in the 5th Meeting of the Microcell Working Group (Central Veterinary Institute, Lelystad, the Netherlands) for the thoughtful contributions to meeting discussions reflected in these publications. They included I. Arzul, K. Bateman, N. Carrasco, D. Cheslett, B. Chollet, S. Culloty, G. Flannery, C. Garcia, O. Haenen, M. Hine, M. Kroek, S. Lynch, L. Madsen, G. Mahabir, A. Villalba, M. Voorbergen-Laarman, and I. Roozenberg, who also helped to organize the meeting. We especially thank S. Culloty and A. Villalba for advocating authorship of this Special Issue as a meeting product. Steve Feist helpfully provided editorial assistance with this Special Issue. This is VIMS contribution number 3382.

LITERATURE CITED

spora n. sp. (Haplosporidioda), a parasite of the oyster Ostrea equestris, is the first Bonamia species known to produce spores. J Eukaryot Microbiol 53:232–245
Carnegie RB, Hill KM, Stokes NA, Burreson EM (2014) The haplosporidian Bonamia exitiosa is present in Australia, but the identity of the parasite described as Bonamia (formerly Mikrocytos) roughleyi is uncertain. J Invertebr Pathol 115:33–40