NOTE

Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides

Louise A. Rollins-Smith¹,²,³, Laura K. Reinert¹, Patricia A. Burrowes⁴,*

¹Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
²Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
³Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
⁴Department of Biology, University of Puerto Rico, PO Box 23360, San Juan, Puerto Rico 00931, USA

ABSTRACT: The amphibian skin fungus *Batrachochytrium dendrobatidis* (*Bd*) occurs widely in Puerto Rico and is thought to be responsible for the apparent extinction of 3 species of endemic frogs in the genus *Eleutherodactylus*, known as coquis. To examine immune defenses which may protect surviving species, we induced secretion of skin peptides from adult common coqui frogs *E. coqui* collected from upland forests at El Yunque. By matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, we were unable to detect peptide signals suggestive of antimicrobial peptides, and enriched peptides showed no capacity to inhibit growth of *Bd*. Thus, it appears that *E. coqui* depend on other skin defenses to survive in the presence of this deadly fungus.

KEY WORDS: Amphibians · Antimicrobial skin peptides · *Batrachochytrium dendrobatidis* · *Eleutherodactylus coqui* · Puerto Rico

The amphibian chytrid fungus *Batrachochytrium dendrobatidis* (*Bd*) causes the disease chytridiomycosis and poses a continuing threat to many tropical amphibians (Hoffmann et al. 2010). In Puerto Rico, it has led to the apparent extinction of 3 species, *Eleutherodactylus karlschmidtii* (last seen in 1976), *E. jasperi* (1981), and *E. eneidae* (1990), and recent declines of 6 other species (Joglar & Burrowes 1996, Burrowes et al. 2004). Previous studies have documented a strong positive correlation between the effectiveness of antimicrobial skin peptides and resistance to *Bd* in wild amphibians and in experimental infection studies (Woodhams et al. 2006a,b, 2007).

To investigate the mechanisms of resistance among surviving high-elevation frogs, we induced (via injection of norepinephrine bitartrate, 40 nmol g⁻¹ body weight) skin secretions from 15 adult males and 9 adult females of the common coqui *E. coqui* collected from El Yunque, Puerto Rico, in March 2014. At the time of collection, the frogs were swabbed for the presence of *Bd* by standard methods (Longo et al. 2013), and 8/24 (33%) were positive by PCR, with a mean infection intensity of 618.5 (range: 1–4888) *Bd* zoospore genomic equivalents. The skin secretions were enriched for hydrophobic peptides by passage over C-18 Sep-Paks (Waters) and examined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry as previously described (Rollins-Smith et al. 2006, Woodhams et al. 2006b).

Two mass signals (mass to charge, m/z) at 1225 and 1436 were observed in 8 and 6 samples, respectively, and were present equally in both males and females (Fig. 1). However, other mass signals in the range of antimicrobial peptides were not detected. When
enriched mixtures of the skin peptides were tested for their capacity to inhibit growth of *Bd* zoospores (Rollins-Smith et al. 2006), the peptides showed no inhibition of growth at concentrations as high as 200 µg ml\(^{-1}\) (Fig. 2).

The complex interactions of *Bd* with *E. coqui* are the subject of ongoing investigations. Cool temperatures and dry conditions appear to promote disease development, while warmer temperatures at other times of the year promote survival (Longo et al. 2010). In spite of an average *Bd* prevalence of 43% among highland populations, *E. coqui* survive with low to moderate infection intensities averaging 1003 *Bd* zoospore genomic equivalents, a pattern indicative of enzootic conditions (Longo & Burrowes 2010). However, the fact that these frogs die from chytridiomycosis when environmental conditions are harsh both in the lab and in the wild suggests that they are susceptible to *Bd* (Longo et al. 2010, 2013), and that a mechanism to resist high infections is effective during favorable times. Thus, *E. coqui* is an excellent model to study the evolution of defense and how environmental factors may modulate the processes involved. Given that antimicrobial peptide defenses appear to be lacking in this species, other skin defenses such as production of lysozyme, mucosal antibodies, or protective skin bacteria (Rollins-Smith et al. 2011) may play a greater role in protection. These studies are underway, and we hope that they may reveal alternative defense mechanisms that provide resistance or tolerance to this pathogen in changing environments.

**Acknowledgements.** This research was supported by National Science Foundation Grant IOS-1121758 (to L.A.R.S.). We thank Dr. Rafael Joglar, Louis A. Santiago, Andrés Rodríguez Goméz, and Michel Alejandro for assistance in collection and sampling of the frogs. We thank Dr. Alberto Sabat and the students of the Topics in Molecular Biology course at the University of Puerto Rico at Río Piedras for assistance with the collection of skin peptides.
LITERATURE CITED


Editorial responsibility: Alex Hyatt, Geelong, Victoria, Australia

Submitted: September 8, 2014; Accepted: November 11, 2014
Proofs received from author(s): January 5, 2015