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OVERVIEW

Many species of marine megavertebrates are of pro-
found conservation concern as the result of a range of
past and ongoing impacts such as direct exploitation
(Roman & Palumbi 2003, Baum & Myers 2004), indirect
take in fisheries (NRC 1990, Hall et al. 2000) and habi-
tat degradation (e.g. Gardner et al. 2003). For effective
mitigation of direct threats, there is an acute need to
understand how these animals use dynamic seascapes.
The elaboration of an ever increasing array of tracking
technologies has transformed this field of study (Block

2005, Block et al. 2005), with satellite tracking using
the Argos system (Argos 1996) having become parti-
cularly prevalent in recent decades (Gillespie 2001).

Marine turtle life histories typically span large
temporal and spatial scales (Musick & Limpus 1997,
Plotkin 2003). Researchers have now extensively uti-
lized satellite tracking to yield a number of insights
into the spatial ecology of this group at a range of
scales. Recent highlights include demonstrating trans-
Pacific migration in leatherback turtles Dermochelys
coriacea (Benson et al. 2007a), showing high levels of
fidelity to foraging areas across multiple years in green

© Inter-Research 2007 · www.int-res.com*Email: b.j.godley@exeter.ac.uk

THEME SECTION: REVIEW

Satellite tracking of sea turtles: Where have we
been and where do we go next?

B. J. Godley1,*, J. M. Blumenthal1, 2, A. C. Broderick1, M. S. Coyne1, 3,
M. H. Godfrey4, L. A. Hawkes1, M. J. Witt1

1Marine Turtle Research Group, Centre for Ecology and Conservation, School of Biosciences, University of Exeter,
Cornwall Campus, Penryn TR10 9EZ, UK

2Department of Environment, PO Box 486, Grand Cayman KY1–1106, Cayman Islands
3SEATURTLE.org, 1 Southampton Place, Durham, North Carolina 27705, USA

4North Carolina Wildlife Resources Commission, 1507 Ann Street, Beaufort, North Carolina 28516, USA

ABSTRACT: The use of satellite tracking for the fundamental and applied study of marine turtles
began in the 1980s but has undergone rapid growth in recent years. To provide a background against
which to judge the past success and future directions of these research efforts we carried out a com-
prehensive review of over 130 scientific papers on the use of this technique in this taxon. We show
how satellite tracking has changed over time as well as outlining biases in spatial, species and life-
stage coverage. Descriptions of migration routes and other habitats have offered novel insights into
the basic life history patterns of some species, highlighted focal areas for conservation and reinforced
the multi-national nature of the stakeholders of many populations. In foraging areas, knowledge is
growing as to how animals move within dynamic seascapes, thus facilitating our understanding of 
3-dimensional habitat use and seasonal patterns of behaviour. More experimental approaches have
elucidated navigational capabilities and post-release survival following fisheries interaction and
long-term captivity. In addition, through the Internet and other media, satellite tracking appears to
have been effective in engaging public attention in many countries. Finally, we discuss why the use
of the technique has increased so markedly over time and point out key areas of concern that we feel
should be addressed by the community of researchers and donors who focus on sea turtles.

KEY WORDS:  Sea turtles · Satellite tracking · Migration · Conservation · Navigation · Tagging reflex

Resale or republication not permitted without written consent of the publisher

OPENPEN
 ACCESSCCESS

The following text is a contribution to Inter-Research Symposium 1
’Satellite Tracking for the Conservation of Migratory Vertebrates’
held in Myrtle Beach, SC, USA in February 2007



Endang Species Res Vol. 3: Preprint, 2007

turtles Chelonia mydas, loggerhead turtles Caretta
caretta and Kemp’s ridley turtles Lepidochelys kempii
(Broderick et al. 2007, Shaver & Rubio 2008, this
Theme Section [TS]), recording juvenile hibernation of
loggerhead turtles (Hochscheid et al. 2005), unlocking
the adult life histories of the more enigmatic species
(leatherback turtles: James et al. 2005a,b,c; hawksbill
turtles Eretmochelys imbricata: van Dam et al. 2008,
this TS), as well as questioning some of the established
life-history models for other better studied species
(loggerhead turtles: Hatase et al. 2002b, Hawkes et al.
2006; green turtles: Hatase et al. 2006, Seminoff et al.
2008, this TS).

There are a number of reasons why workers have
sought to track turtles using the Argos system. Firstly,
given its global coverage, satellite tracking allows us to
follow turtles in near real time and find out what routes
they take, no matter how far they go. This does not
mean to devalue the seminal work of the pioneering
turtle taggers (e.g. Hendrickson 1958, Balazs 1976,
Carr et al. 1978, Limpus et al. 1992) who discovered a
great deal about turtle dispersion using modified farm
animal markers backed up by thousands of painstaking
hours on the beach and years of patiently waiting for
results. The main problems with using flipper tags to
unlock spatial movements are that large numbers must
be deployed to ensure sufficient recaptures and biases
are present in the likelihood of recapture and reporting
(Godley et al. 2003b). Although animals can be tracked
with flipper tags over long durations, possibly up to
decades (Limpus et al. 1992, C. J. Limpus pers. comm.),
little is known of the intervening route and speed. In
contrast, satellite tagging, when carried out effectively,
yields significant information regarding each study in-
dividual, including routes and speeds and, above all,
this information can be gathered quickly, albeit for a
typical maximum duration of several months to a few
years, with a fiscally dictated sample size.

In order to provide a detailed background against
which to judge the past success and future directions of
such research efforts, we carried out a comprehensive
review of >130 peer-reviewed research publications
that have used this technique in this taxon (Appendix
1; see also reviews by Papi & Luschi 1996, Luschi et al.
2003a, 2006, Plotkin 2003, Morreale & Standora 2005).

THE RISE OF THE SATELLITE TAG

The first published results of successful satellite
tracking of sea turtles were of post-nesting loggerhead
turtles in the USA (Stoneburner 1982, Timko & Kolz
1982) followed by that of a single leatherback turtle
tracked after nesting in French Guiana (Duron-
Dufrenne 1987). Following a gap of several years,

results were published on additional loggerhead and
green turtles tracked in Greece (Hays et al. 1991) and
Japan (Baba et al. 1992). These latter publications
marked the start of an exponential rise (Fig. 1a,
Appendix 1), with as many as 24 scientific papers util-
ising the technique in 2006 alone (at time of writing,
this total has already been surpassed for 2007). The
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Fig. 1. Growth of satellite tracking in sea turtles. (a) Number
of peer-reviewed papers involving satellite tracking pub-
lished per year (1982–2006). (b) Cumulative total number of
geopolitical units as deployment sites of satellite tracking in
the published literature (1982–2007). (c) Temporal pattern in
species-specific sample size in peer-reviewed publications
(1982–2007). (d) Temporal pattern in number of active plat-
forms for marine animals in each half year (D: 1995–2006) and
marine turtles (s: 2004–2006). PTT: platform terminal trans-
mitter. Note that Panels (a–c) have a longer timescale than (d)
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number of peer-reviewed publications, however, does
not truly reflect how prolific the use of this technique
has become for sea turtles. Further insight can be
obtained from data gathered by CLS, the company that
operates the Argos system. Tags recorded as being
deployed on marine animals (fish, turtles, pinnipeds
and cetaceans; excluding seabirds or archival fish tags)
make up approximately one third of tags tracking ani-
mals (Fig. 1d). Of these marine animal deployments,
since 2004, the 7 species of sea turtles have accounted
for approximately 20% of the total (mean number of
active sea turtle platforms per 6 mo period = 252 ±
68 (SD), range 140–355; Philippe Gros, CLS, pers.
comm.). It should be noted that some tags may have
been deployed multiple times and/or on species for
which they were not initially intended. These numbers
are, however, likely to be indicative.

Biases inherent in work to date

The number of countries of deployment of these
published studies has also grown (Fig. 1b) but signifi-
cant geographic biases remain. By the time of writing,
publications reviewed had included transmitters
deployed in only 30 geopolitical units, with an uneven
distribution across the globe. (Atlantic Ocean: Western
35%, Central 9%, Eastern 4%; Mediterranean 11%;
Indian Ocean 15%; Pacific Ocean: Western 16%, Cen-
tral 1%, Eastern 14%; Appendix 1; NB some papers
provide data on more than one species/ocean basin.
Overall species-specific datasets published: n = 141).
Much of this bias is likely related to differential fund-
ing for research among regions but is one that is grad-
ually being addressed, partly as a result of strategic
international funding by intergovernmental organisa-
tions and governments/non-governmental organisatios
in wealthier nations.

Perhaps more profound, however, are the species and
life stage biases. To date, 82% of studies have featured
only 3 species (Appendix 1: loggerhead turtle: n = 38;
green turtle: n = 39; and leatherback turtle: n = 39) with
much less effort expended thus far on 3 other species
(Appendix 1: olive ridley Lepidochelys olivacea n = 12;
Kemp’s ridley turtle n = 8; hawksbill turtle n = 6). Finally,
although there are no publications as yet on the flatback
turtle Natator depressus, studies are underway (K.
Pendoley pers. comm., S. Whiting pers. comm.). Given
the ease of access at the rookery and the fact that
their relatively large size is more conducive to device
attachment, it is perhaps not so surprising that over 75%
of the published tracking studies have featured adult
females. Even within this life stage, however, there may
be some bias in selecting individuals (see next subsec-
tion).

Tracking females at the nesting grounds

Although adult sea turtles are perhaps most vulner-
able on the nesting beach, these habitats are rela-
tively well known and, given the will and the means,
solutions to many threats are relatively more tractable
than those at sea. The inwater breeding/internesting
habitat is also a point of relatively high risk where
dense aggregations of adult turtles are found in lim-
ited areas during the periods prior to and between
multiple clutch depositions. It is, therefore, of interest
to define these areas and the level of nest site fidelity
shown by individuals during multiple breeding
attempts within the same season. However, the
internesting habitat is also one where transmitters
might fail as a result of mating, internesting resting
behaviour e.g. under rocky ledges, nesting behaviour
including sand excavation and terrestrial locomotion,
or increased fisheries risk (Georges et al. 2007, Hays
et al. 2007, Fossette et al. 2008, this TS) and many
authors, ourselves included, have often taken the
safer option and deployed transmitters in the latter
part of nesting seasons to increase the likelihood of
imminent departure, transmitter survival and thus
successful tracking of migration (e.g. Luschi et al.
1998, Hays et al. 2002, 2004c, Godley et al. 2002). As
well as having the potential to introduce artefacts into
the ecological patterns of post-nesting movements
described (e.g. if all individuals at the breeding
colony late in the season had travelled from farther
away), choosing individuals nesting at the end of the
season tells us very little about space use prior to
post-reproductive migrations. Satellite tracking stud-
ies have, however, whether by serendipitous coverage
or design, still afforded a significant body of knowl-
edge regarding behaviour in the internesting period.

Leatherback turtles have been shown to use ex-
tensive areas between successive nesting activities
(Eckert 2006, Eckert et al. 2006, Georges et al. 2007,
Hitipeuw et al. 2007). Although this usually only
encompasses waters of the continental shelf, move-
ments can be up to several hundred kilometres and
encompass nesting at various beaches across different
geopolitical units (Keinath & Musick 1993). It is clear
that the magnitude of spatial use in this species poses a
significant impediment to designing effective marine
protected areas or other mitigation measures for
threatened breeding colonies (Witt et al. in press).

For some hardshell sea turtles, females typically
remain within the vicinity of the nesting beach in the
internesting period (loggerhead turtles: Stoneburner
1982, Godley et al. 2003a; green turtles: Hays et al.
1999, Craig et al. 2004, Troëng et al. 2005b, Fuller et al.
2008, this TS; hawksbill turtles: Troëng et al. 2005a,
Whiting et al. 2006; Kemp’s ridley turtles: Seney &
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Landry 2008, this TS, Shaver & Rubio 2008). As a result
of gathering extensive, spatially explicit internesting
data in the vicinity of the rookery, Zbinden et al. (2007)
were able to make a series of recommendations re-
garding the management of the Marine Park at
Zakynthos, Greece.

Exceptions to the rule of staying nearby the nesting
sites have been found, however. Some loggerhead and
green turtles have undertaken oceanic loops during
the internesting period (Blumenthal et al. 2006). In
hawksbill turtles, subsequent nesting in the Dominican
Republic was thought to have been described in 1 out
of 7 females tracked from Puerto Rico (van Dam et al.
2008). Olive ridley turtles in Australia moved offshore
from the nesting site (McMahon et al. 2007), remaining
in neritic waters (Whiting et al. 2007). Earlier studies of
this species in Costa Rica (Plotkin et al. 1995) did not
receive sufficient locations to reconstruct tracks,
although the turtles seemed to stay in the vicinity but
may, in some cases, have moved offshore into oceanic
habitat between breeding attempts.

Post-nesting movements of adult females

Recent reviews of long distance movements in sea
turtles (Luschi et al. 2003b, Plotkin 2003) suggested
that, with exceptions, there were 2 main patterns of
movement: Firstly, departure from the breeding site,
swimming directly towards a fixed feeding area, gen-
erally in the neritic (hereafter ‘Type A’) and secondly,
departure to oceanic habitats followed by wandering
movements, often over great distance (‘Type B’).
Through satellite tracking, ever-increasing insight has
been gathered for 6 of the 7 species of sea turtle in a
relatively short period of time. This has allowed us to
suggest a 4 point classification framework (Types A1 to
A3, and Type B) to describe patterns in post-nesting
movements in adult turtles. Although we follow the
distinction between ‘oceanic’ and ‘pelagic’ as in Bolten
(2003a), our classification framework for adult move-
ment should not be confused with the 3-part classifica-
tion of development pattern proposed by Bolten
(2003b).

Type A1 — oceanic and/or coastal movements to
neritic foraging grounds

All green turtle populations so far tracked have
exhibited this pattern, at least in part, whether they
nest on islands (e.g. Pacific: Cheng 2000, Craig et al.
2004, Yasuda et al. 2006; Atlantic: Luschi et al. 1998,
Blumenthal et al. 2006; Mediterranean: Broderick et al.
2007) or the continental shelf (Kennett et al. 2004,

Troëng et al. 2005b). Routes are often relatively direct
but can involve coastal sections that mean a greater
migratory distance but perhaps afford interim foraging
possibilities en route to preferred foraging areas
(Cheng 2000, Godley et al. 2002) or may facilitate
navigation (Hays et al. 2002).

Loggerhead turtles that nest on continental nesting
beaches typically undertake coastal migrations to for-
aging grounds and in some populations appear to
demonstrate long-term residency (e.g. Limpus & Lim-
pus 2001, Luschi et al. 2006, Broderick et al. 2007),
whilst others undertake seasonal latitudinal shuttling
(see Type A2 below). Some populations nesting on
oceanic islands have demonstrated dichotomous be-
haviour with larger adult animals displaying Type A1
behaviour and smaller adult animals foraging pelagi-
cally generally in oceanic habitats (see Type B below).

Given some of the controversy that has surrounded
the ecology and status of hawksbill turtles (Mrosovsky
1997, Meylan 1998) it is somewhat surprising that very
few data have been published in only 4 studies of adult
migrations to date. In the insular Caribbean (Horrocks
et al. 2001, van Dam et al. 2008), individuals crossed
oceanic areas and moved through other neritic areas to
their final foraging grounds (Fig. 2a). In Costa Rica
(Troëng et al. 2005a) and the Gulf of Carpentaria,
Australia (Whiting et al. 2006) continentally nesting
hawksbills moved along the coastal shelf to discrete
foraging areas.

Recent studies of olive ridley turtles in Australia
(McMahon et al. 2007, Whiting et al. 2007) have high-
lighted that although some turtles do live pelagically,
others move through continental shelf waters to loca-
tions where they forage benthically, sometimes at
rather greater depths than had previously been
thought (McMahon et al. 2007). Post-nesting tracks of
Kemp’s ridley turtles took them through coastal
waters, where they established coastal home ranges
(Seney & Landry 2008, Shaver & Rubio 2008).

Type A2 — coastal shuttling between summer forag-
ing and wintering sites

For turtles at temperate latitudes, seasonal oscilla-
tions in climate may mean that it is essential or bene-
ficial to move to lower latitudes or other areas with
higher water temperatures during the winter season.
It should be noted that this is demonstrably the case
for leatherback turtles within their Type B movements
(Hays et al. 2006, James et al. 2005a, 2006b) but
within the hardshell turtles in neritic habitats, this has
only been shown in 2 species that are regularly found
in temperate waters. It is the predominant strategy
for loggerhead turtles in North America (Plotkin &
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Spotila 2002, Morreale & Standora 2005, Hawkes et
al. 2007; our Fig. 2b). Although some Kemp’s ridley
turtles that have been tracked using satellite appear
to undertake some form of seasonal shuttling (Mor-
reale & Standora 2005, Renaud & Williams 2005,
Gitschlag 1996), this does not seem to be a prevalent

pattern among adult females tracked to date (Shaver
& Rubio 2008). It should be noted that although ther-
mal conditions are not necessarily the proximate cue
for such movements, it is likely that temperature and
its ecological correlates will, in part, be the ultimate
drivers of such behaviours.

5

Fig. 2. Diversity of post-nesting dispersal patterns in adult female turtles. ★: tagging location; s: last known location (except in b).
(a) Type A1 — coastal and/or oceanic movements to neritic foraging grounds. Hawksbill turtles following nesting in Barbados
(Horrocks et al. 2001; n = 4; courtesy of authors and Allen Press). (b) Type A2 — coastal shuttling between summer foraging and
wintering sites. Loggerhead turtles following nesting at Bald Head Island, North Carolina, USA. Left panel: post nesting migra-
tion to summer/autumn foraging grounds (s); right panel: southward autumn migration to overwintering grounds (d) (Hawkes et
al. 2007; n = 9 with an additional 3 staying resident in southern areas; courtesy of authors and Blackwell Publishing). (c) Type
A3 — local residence. Short range movements of a female green turtle following nesting in Galapagos Islands, Ecuador (Seminoff
et al. 2008; n = 1; courtesy of authors and Inter-Research Science Publishers). (d) Type B — pelagic living. Leatherback turtles fol-
lowing nesting in Indonesia and Papua New Guinea (Benson et al. 2007a,b; n = 28, courtesy of authors and Allen Press). (e) Mixed
strategy (Type A1 and B) of loggerheads following nesting in Cape Verde (Hawkes et al. 2006; n = 9; 2 Type A1 and 7 Type B; 

courtesy of authors and Elsevier Publishing)



Endang Species Res Vol. 3: Preprint, 2007

Type A3 — local residence

Satellite tracking has confirmed past flipper tagging
results (Limpus et al. 1992, Green 1984) in that not all
individual sea turtles are profoundly migratory, with
some individuals staying in the neritic areas in the
vicinity of the nesting colony, migrating only short dis-
tances. This has been demonstrated in green turtles in
the Galapagos Islands (Seminoff et al. 2008; our Fig. 2c)
and loggerhead turtles in the Mediterranean (Broder-
ick et al. 2007), hawksbill turtles in Australia (Whiting
et al. 2006) and Kemp’s ridley turtles in USA (Shaver &
Rubio 2008). Definition of movements in this category is
confounded by the difficulty posed by a lack of a clear
threshold between Types A1 and A3. Although it is
likely to be population-specific, a putative threshold
would be the extent of normal internesting movement.

Type B — pelagic living

The leatherback turtle typifies the pelagic sea turtle,
and adult females have been shown to undertake dra-
matic transoceanic movements. Much of their time is
spent in oceanic habitats and, although neritic waters
are often used (James et al. 2005c, Eckert et al. 2006), it
is likely that they feed epipelagically (Hays et al.
2004b,c). In the eastern Pacific, females nesting in
Costa Rica (Morreale et al. 1996) and Mexico (Eckert &
Sarti 1997) were subsequently tracked southwards
across the equator into international waters and those
of the Galapagos, Peru and Chile. Morreale et al. (1996)
suggested the presence of an important migratory cor-
ridor, whilst Eckert & Sarti (1997) raised concern that
the coincidence of turtles in a global fishery hotspot
may be causal in the declines in leatherbacks observed
in the eastern Pacific. More recent tracking of stocks
nesting in the Western Pacific has demonstrated that
postnesting females undergo a variety of migration
routes, including south into the South Pacific, east into
coastal waters off North America, north into waters off
Japan, and west into waters of the Philippines and
Malaysia (Fig. 2d; Benson et al. 2007a,b). In the At-
lantic, following seminal work with limited tracking du-
ration (Duron-Dufrenne 1987, Keinath & Musick 1993),
more recent tracking has shown adult females from
western Atlantic stocks nesting in French Guiana and
Suriname (Ferraroli et al. 2004), Grenada (Hays et al.
2004c), the USA (Eckert et al. 2006) and Trinidad (Eck-
ert 2006) disperse widely throughout the north Atlantic,
often using the productive waters associated with the
Gulf Stream. In the Indian Ocean, only turtles from
South Africa have thus far been tracked (Hughes et al.
1998, Luschi et al. 2003c, 2006). These individuals have
typically stayed in oceanic habitats undertaking convo-

luted routes associated with strong current systems
within 1000 km of the African continent in both the In-
dian and Atlantic Oceans.

Although it is generally felt that post-hatchlings and
small juveniles of all sea turtle species except the flat-
back turtle use oceanic habitats (Carr 1987, Musick &
Limpus 1997, Bolten 2003a,b) it appears that adults of
several hardshell species are also to be found in the
open ocean. Limited studies of adult female olive ridley
turtles suggest that many individuals move directly to
oceanic areas following nesting (Plotkin et al. 1995,
Plotkin 1998, Pandav & Choudhury 2006) but mixed
strategies may be involved (McMahon et al. 2007,
Whiting et al. 2007) including some neritic habitat utili-
sation. Although loggerhead adults have long been
thought to be primarily benthic feeders, description of
migration routes by satellite tracking in some popula-
tions has demonstrated apparent size-related dichoto-
mous migration strategies with smaller animals under-
taking Type B lifestyles and larger individuals the more
typical Type A1 (Hatase et al. 2002b, Hawkes et al.
2006). Additionally, Luschi et al. (2003b) showed that,
following experimental displacement, adult logger-
heads could live in the open ocean. The green turtle,
long thought to be a near obligate herbivore and there-
fore tied to benthic habitats, has recently been tracked
and observed showing behaviours highly suggestive of
oceanic feeding after nesting in Japan (Hatase et al.
2006) and the Galapagos (Seminoff et al. 2008).

Finally, there appear to be some individuals who in
the midst of, or prior to, a sequence of Type A1 coastal
movements, undertake oceanic loops (green turtle:
Troëng et al. 2005b, Cheng 2000; loggerhead turtle:
Dodd & Byles 2003, Hawkes et al. 2007). Based on the
increasing records of this type of behaviour, the weight
of evidence of prevalence and timing suggests that this
might sometimes represent a form of facultative habi-
tat switching, including change of feeding mode,
rather than simply orientation behaviour (Papi et al.
1997).

Unifying patterns

As tracking studies increase in the number of popu-
lations covered and individuals tracked, a number of
general patterns are becoming clear.

Firstly, patterns of dispersal in adults of every hard-
shell turtle population thus far studied appear to
encompass only a relatively discrete part of an ocean
basin, e.g. green turtles from Costa Rica (Troëng et al.
2005b) and hawksbill turtles from Puerto Rico (van
Dam et al. 2008) appear confined to the Caribbean.
Loggerhead turtles from the Cayman Islands (Blumen-
thal et al. 2006) and Cape Verde (Hawkes et al. 2006)
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were tracked only to their proximate region of the
Atlantic. This was also true in studies of loggerhead
turtles tracked from nesting sites in the USA, where
further substructuring is apparent when multiple sites
are compared (Plotkin & Spotila 2002, Dodd & Byles
2003, Hawkes et al. 2007). This informs the generalised
life history model for hardshell turtles where hatch-
lings are thought to disperse at the level of oceanic
gyres (Musick & Limpus 1997). The first phase of
hatchlings and small juveniles is an oceanic one; this is
typically followed by settling out into one of a series of
neritic foraging habitats. Upon maturation, adult tur-
tles undertake cyclical reproductive migrations from
the foraging ground to the rookery of origin (Bowen &
Karl 1997, Musick & Limpus 1997). Molecular evidence
(Bowen et al. 2004, Bolker et al. 2007) suggests sub-
regional natal homing in larger juveniles that we
suggest is mirrored by adult distribution patterns as
demonstrated by tracking. Indeed, Nichols et al. (2000)
and Cejudo et al. (2006) appear to illustrate homing to
the natal region in animals following captivity.

Secondly, it is becoming clear that there can be a di-
versity of strategies used by individuals within popula-
tions. There is more behavioural plasticity in sea turtles
than might previously have been imagined. Clear ex-
amples of mixed strategies include those demonstrated
by loggerhead turtles nesting in Japan (Type A1/B;
Hatase et al. 2002b), the USA (Type A1/A2/B; our
Fig. 2b; Hawkes et al. 2007) and Cape Verde (Type
A1/B; our Fig. 2e; Hawkes et al. 2006); green turtles in
Japan (Type A1/B; Hatase et al. 2006) and Galapagos
(Type A1/A3/B; Seminoff et al. 2008); olive ridley tur-
tles nesting in Northern Australia (Type A1/B; Whiting
et al. 2007). Perhaps less clear are the differences
within Type B movement patterns made by leather-
backs in the Western Atlantic (Ferraroli et al. 2004,
Hays et al. 2004b, Eckert 2006, Eckert et al. 2006). Al-
though there may be a degree of subregional fidelity
shown by individuals to areas such as north, northeast
or tropical Atlantic (James et al. 2005b, Hays et al.
2006), leatherbacks appear to generally disperse
widely across most of the ocean basin but have not yet
been tracked across the equator. Time and additional
studies with larger sample sizes and of longer duration
will further elaborate the ecological correlates of the
different strategies used by females and also allow us to
compare how closely these patterns of movement com-
pare with conspecific adult males from the same popu-
lations.

Tracking of adult females in the foraging grounds

Description of behaviour of adults in foraging
grounds is a fundamental part of most post-nesting

tracking studies, although this is often achieved with
limited success, typically with simple descriptions of the
endpoint of tracks. This is particularly true when ani-
mals reach neritic locations and are thought to damage
their transmitters, thus ending transmissions (logger-
head turtles: Stoneburner 1982, Godley et al. 2003a;
green turtles: Luschi et al. 1998, Cheng 2000, Hays et
al. 2002, Kennett et al. 2004). In addition, biofouling
may also play a role in transmitter failure or intermit-
tent function (Troëng et al. 2006, Broderick et al. 2007,
Hays et al. 2007). Nevertheless, a growing body of stud-
ies can boast tracking datasets with durations in the for-
aging sites approaching a year or more, thereby yield-
ing significant insights into aspects such as variable
levels of foraging site fidelity among populations (e.g.
loggerhead turtles: Blumenthal et al. 2006 vs. Broderick
et al. 2007; green turtles: Troëng et al. 2005b, Broderick
et al. 2007). Additionally, wintering patterns and Type
A2 movements have now been described in great de-
tail as a result of these long-term tracking studies
(Hawkes et al. 2007). For leatherbacks, tremendous in-
sights have been gained into foraging ground usage
and seasonal shuttling (James et al. 2005b, Eckert et al.
2006, Hays et al. 2006, Seminoff & Dutton 2007).

Tracking migration to nesting grounds

How sea turtles relocate their nesting grounds, par-
ticularly at remote insular locations, is one of the great
mysteries of animal navigation, and experimentally
testing hypotheses as to how they undertake their trav-
els has become a focussed area of research (see ‘Expe-
rimentation’ below). So far, few transmitters deployed
in the nesting grounds have lasted sufficiently long to
have demonstrated return migrations, as this is typi-
cally a period in excess of 2 yr. Some individuals, how-
ever, have been tracked on their return migration after
an interval of ca. 1 yr (loggerhead turtles to each of
Cape Verde and Northern Cyprus: Godley et al.
unpubl. data; Kemp’s ridley turtles: Shaver & Rubio
2008). Transmitters have been deployed in the forag-
ing grounds and allowed females to be tracked to the
nesting sites (loggerhead turtle: Limpus & Limpus
2001; Kemp’s ridley turtle: Renaud et al. 1996). In these
cases, animals moved through coastal habitats to nest-
ing sites in parallel with post-nesting migration strat-
egy typical for each species.

The under-represented majority

What, however, of the under-represented majority
of sea turtles i.e. the males and the far more numer-
ous juveniles? Slowly the number of studies of adult
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males of 6 species has been building. With slight vari-
ations, it appears that one generality is that males dis-
play migration patterns broadly similar to those
observed in adult female conspecifics and could be
classified according to the 4 part classification de-
tailed above. Reproductively active male olive ridley
turtles tagged off Costa Rica dispersed to oceanic
habitats upon the completion of reproduction (Plotkin
et al. 1996) in a manner comparable with, albeit ear-
lier than, females from the same site. An additional
male olive ridley turtle collected in the Eastern
Tropical Pacific was tracked for several months in the
open ocean (Beavers & Cassano 1996). Adult male
green turtles at Ascension tracked using experimental
transmitters with internal antennae (Hays et al. 2001c)
provided enough data to suggest an extended mating
period followed by a post-breeding migration pattern
broadly similar to that previously described for con-
specific females from the site (Luschi et al. 1998). The
first published studies on the movements of male
hawksbill turtles (van Dam et al. 2008) showed that
although both sexes of the same population stayed
within the same region, males travelled to more prox-
imate foraging areas. Additionally, 2 males were
recorded as returning to the breeding site within 1 yr
in comparison to the multi-year inter-breeding inter-
vals typically demonstrated by conspecific females.
Tracking of male Kemp’s ridley turtles captured off
the main nesting site for the species suggested that
males did not disperse as far as conspecific females,
generally residing in the vicinity of the nesting beach,
and all stayed within Gulf of Mexico waters (Shaver et
al. 2005). For the loggerhead turtle, limited tracking of
males in the Pacific (Sakamoto et al. 1997, Hatase
et al. 2002a) suggests the possibility of neritic and
oceanic habitat use. Tracking of male leatherback tur-
tles from high latitude foraging grounds (James et al.
2005a,b,c) has demonstrated that males also travel
south to breeding grounds across a similarly diffuse
range of paths as females; possibly with a greater fre-
quency. Once in the vicinity of breeding sites, they
remain closer to shore than internesting females.

We also have a long way to go before we have an
adequate understanding of juvenile movement pat-
terns. All leatherbacks tracked to date have been
adult or near adult sized, likely related to the relative
lack of observations and captures of live juvenile
leatherbacks in the wild (Eckert 2002). Despite phys-
ical size constraints there is a small but slowly build-
ing literature on the movements of juveniles of all
hardshell species apart from the flatback turtle.

Within oceanic habitats, loggerhead turtles have so
far received the most attention. Cardona et al. (2005)
and Revelles et al. (2007a,b) suggested that pelagic
juvenile loggerheads in the Mediterranean generally

avoided coastal areas and remained resident in rela-
tively discrete oceanic areas for considerably longer
than predicted by simulations based on passive drift-
ing in ocean currents. Cejudo et al. (2006) showed near
transatlantic movement of juveniles released at the
Straits of Gibraltar. In the Pacific, Polovina et al. (2000,
2004, 2006) and Swimmer et al. (2002, 2006) have
tracked relatively large numbers of juvenile logger-
head and olive ridley turtles, demonstrating clear
inter-specific differences in habitat utilisation, associa-
tion with specific oceanic features and active swim-
ming against currents.

For large juvenile loggerhead turtles, movements
have ranged from extensive (Bentivegna. 2002, Hoch-
scheid et al. 2005) to relatively short range (Renaud &
Carpenter 1994) with individuals, although spending a
majority of the time in the neritic, having the potential
to move into oceanic habitats (Morreale & Standora
2005, McClellan & Read 2007). Tracking of juvenile
green turtles (Godley et al. 2003b) demonstrated a
range of behaviours from extreme site fidelity to move-
ments over extended areas of coastline. Whiting &
Koch (2006) demonstrated the facultative shift of a
juvenile hawksbill turtle in the Cocos Islands between
habitats >1000 km apart. Juvenile Kemp’s ridley tur-
tles have been shown to undertake seasonal migra-
tions (Schmid & Witzell 2006).

There is clearly room for much additional informa-
tion to be gathered through further satellite tracking of
males and immatures, particularly those juveniles in
oceanic habitats where it is difficult to gather data by
other means. Specifically, tracking of increased num-
bers of wild juveniles that are likely to be free from any
anthropogenic influence is recommended, because
although satellite tracking of rehabilitated or longline
captured animals is a valid method of testing fates of
these individuals, it is questionable how typical the
behaviour of these animals is likely to be. Technology
has yet to offer effective mechanisms of tracking indi-
vidual hatchlings and other early life stages for
extended periods, but in the terrestrial realm animals
as small as dragonflies have been subject to radio
tracking (Wikelski et al. 2006). Although aspirational,
it seems plausible that technology may be developed
that would allow tracking turtles in their first few
years. This would seem a worthy target for future tech-
nological innovation.

TECHNOLOGICAL ADVANCES

As outlined above, a great deal has been uncovered
from analysis of horizontal movement of marine turtles.
These data have been significantly augmented by 2
major spheres of development: (1) the advancement of
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dive logging capability and (2) the integration of move-
ments with oceanographic data.

Time-space specific dive logging

Rather than having to infer submergence patterns
from Argos data (Hatase & Sakamoto 2004) or simple
dive summary data (Hays et al. 1999, Godley et al.
2002), incorporation of complex dive logging capabili-
ties has now allowed individual dive profiles to be
transmitted. Satellite-linked dive data are often sent in
concatenated format (Fedak et al. 2001) and this sys-
tem has recently been validated in sea turtles using
traditional time depth recorders (Myers et al. 2006).
Findings have shown how animals use the water col-
umn (Hays et al. 2004b,c, Sale et al. 2006, McMahon et
al. 2007) and allowed elaboration of seasonal patterns
in behaviour such as hibernation (Godley et al. 2002,
Hochscheid et al. 2005, 2007, Broderick et al. 2007,
Hawkes et al. 2007). Such data have allowed the sug-
gestion of fisheries bycatch mitigation steps (Polovina
et al. 2003). Linkage of dives with thermal profiles has
facilitated postulation as to the thermal niche and pos-
sible future range under scenarios of climate change
(James et al. 2006a, McMahon & Hays 2006), and dive
durations have even been used to infer field metabolic
rates (Bradshaw et al. 2007).

Integration with oceanography

Inferences from movement patterns can be taken to
a higher level once incorporation of oceanographic
information starts to yield information as to how ani-
mals move within dynamic seascapes. Analysis of cur-
rents has given significant insights into oceanic move-
ments of sea turtles (Polovina et al. 2000, Luschi et al.
2003a,c, Gaspar et al. 2006, Hawkes et al. 2006, 2007,
Sasamal & Panigraphy 2006, Bentivegna et al. 2007,
Revelles et al. 2007b). Inferred chlorophyll levels have
shown how some populations are feeding in relation
to oceanic productive zones (Polovina et al. 2000,
Hawkes et al. 2006, Seminoff et al. 2008). For an inte-
grated view including sea turtles and fisheries see
Polovina et al. (2001). Interpretation of thermal condi-
tions experienced by individual animals has facilitated
a growing understanding of the physiological ecology
of overwintering (Godley et al. 2002, Hochscheid et al.
2005, 2007, Broderick et al. 2007, Hawkes et al. 2007)
and also the conditions that may trigger migration
(Sherrill-Mix et al. in press) or be experienced during
extended movements (Hays et al. 2001d, Seminoff et
al. 2008). In a recent analysis of a long-term data series
of gelatinous zooplankton across the North Atlantic it

became clear that areas used by leatherback turtles
tracked in previous published studies were among the
clear hotspots of potential prey (Witt et al. 2007). A sig-
nificant point in the consideration of past studies of
movements and oceanographic variables is that com-
parisons have been largely qualitative; there is signifi-
cant room for the development of techniques to allow
more quantitative and dynamic comparisons. Further,
the potentially exciting role of animal-borne sensors
has been advocated within operational oceanography
(Fedak 2004), and McMahon et al. (2005) have
recently demonstrated that thermal data gathered by
diving leatherbacks were reliable when compared
with those gathered using the ARGO buoy system.

ADDITIONAL AREAS OF ADVANCEMENT

Several additional spheres of activity are worthy of
highlighting as growing areas within the field.

Experimentation

Although the majority of studies to date have been
descriptive, some studies, however, have taken a more
experimental approach yielding significant insights
into navigational capabilities of loggerhead (Papi et al.
1997, Luschi et al. 2003b) and green turtles (Papi et al.
1995, 2000, Luschi et al. 1996, 2001, 2007, Papi & Luschi
1996, Åkesson et al. 2001, 2003, Hays et al. 2003a,
Girard et al. 2006). Attaching high resolution time
depth recorders to experimentally displaced individu-
als tracked by satellite facilitated the first detailed
analysis of dive profiles during oceanic movement
(Hays et al. 2001a).

Inferring fates

Hays et al. (2003b) reviewed a number of studies and
data from previously unpublished tracks and sug-
gested that satellite tracking could be used to infer
capture in fisheries and thus generate an index of at-
sea survivorship, although this met with some contro-
versy (Chaloupka et al. 2004b, Hays et al. 2004a). Oth-
ers have used satellite tracking to describe the
behaviour of animals immediately following bycatch
(Swimmer et al. 2002, 2006, Chaloupka et al. 2004a,
Revelles et al. 2007a,b), following rehabilitation and
release (Bentivegna 2002, Cejudo et al. 2006) or after
extended periods in captivity (Pelletier et al. 2003,
Polovina et al. 2006). This includes the year-long,
transpacific tracking of the captive-raised loggerhead
turtle from Mexico to Japan (Nichols et al. 2000) and a
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comparison of wild adult females and those which had
been headstarted (Shaver & Rubio 2008).

Sharing science

There is tremendous public interest in marine verte-
brates, especially taxa that exhibit spectacular migra-
tions. Through near real-time tracking on the Internet,
often associated with a media campaign, a number of
organizations including our own have been highly suc-
cessful in engaging large numbers of the public in tur-
tle tracking projects (Coyne & Godley 2005, Halpin et
al. 2006). It is not possible to track the true impact of
this interest, but as a value-added aspect of research
efforts it must be considered positive.

CATALYSIS

There has been an acceleration of the use of satellite
tracking of sea turtles, but how has this come about?
We suggest that this development has been multi fac-
torial. Over the last 25 yr, the technology has moved
from an experimental to a far more operational phase.
Transmitters and attachment methods have improved,
with durations well in excess of a year no longer
uncommon (Hays et al. 2006, Broderick et al. 2007,
Hawkes et al. 2007, van Dam et al. 2008). Argos itself
has improved, with the initiation of Argos service plus
and improved global satellite coverage. Complemen-

tary tools have also developed in parallel enabling eas-
ier handling and interpretation of data (Geographic
Information Systems, remote sensing technologies and
the Internet).

Although initially designed for turtle researchers,
the Satellite Tracking and Analysis Tool (STAT; Coyne
& Godley 2005) has sought to bring all these electronic
technologies together in an open access format for
researchers of all taxa. Providing standard tools and
formats, automated downloading and effective data
preservation to maximize value from tracking data,
STAT aims to foster collaboration and data sharing.
This is especially powerful when combined with the
open-access mapping suite Maptool (www.seaturtle.
org/maptool/). The number of platforms stored within
STAT continues to rise (n = 1976, as of 1 Aug 2007) as
do the taxa included: marine turtles, 7 spp.; sharks,
1 sp.; birds, 18 spp. (11 marine, 7 terrestrial); marine
mammals, 6 spp. The global footprint of these endeav-
ours has also increased with sea turtle deployments in
41 geopolitical units (Fig. 3). These include 25 nations
not yet represented in the published literature.

Additional exciting innovations in the STAT portfolio
are a new data-clearing house mechanism and geo-
graphically explicit viewing tools that allow managers
to view all data within a geopolitical region from all
data-sharing projects within the system (Coyne & God-
ley 2007). Although the sample size in some studies
has increased in recent years (Fig. 1c), given that
>68% of studies to date have involved species-specific
sample sizes <10 and only 10% of studies were based
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on sample sizes >20, there is clear need to extend our
work into collaborative data-sharing and meta-analy-
ses. It is hoped that innovations such as this nascent
clearing house will greatly facilitate needed progress.

A 21ST CENTURY (SATELLITE) TAGGING REFLEX?

Intrinsically, satellite tracking is exciting and the
arguments for potential research dividends outlined
above are compelling, while the benefits in terms of
public relations and education can also be substan-
tial. The technology has improved and is now available
to all workers with access to an online computer and
sufficient fiscal resources to buy transmitters, limited
consumables and satellite time (ca. US$5000–10 000
per unit depending on transmitter model and
longevity). If sea turtle researchers are deploying in
the order of 250 to 500 transmitters per year (see
Fig. 1d), at the estimated costs above, the costs of the
high-tech consumables are between US$1.25–5.0 mil-
lion per annum. On top of this are a great deal of asso-
ciated salary and travel costs that, if they could be cal-
culated, would likely dwarf the above figure. Is sea
turtle biology and conservation benefiting enough
from this investment? Are we now partaking in a 21st
century version of Mrosovsky’s (1983) ‘tagging reflex’?
We must be more self-reflective on a number of issues
to ensure that limited resources are used most effec-
tively.

Animal welfare

Several workers have correctly highlighted the need
for a strong ethical standpoint in studies such as animal
tracking (Frazier 2000, Hawkins 2004, Wilson &
McMahon 2006, Cooke 2008, this TS). Some questions
must be continually asked. Are deployment package
compactness and attachment methods sufficient to
minimise hydrodynamic drag (cf. Watson & Granger
1998), weight, buoyancy, physical damage or impinge-
ment of natural movement or mating? Are we sure we
are not increasing chances of entanglement? Is there
potential for magnetic interference e.g. from transmit-
ters placed on the head? We need to share both our
failures and successes as we improve our methodolo-
gies.

In general, leatherback tracking has proven difficult
as one cannot attach transmitters using the standard
techniques for hardshell turtles (cf. Renaud et al.
1993); hence the development of a variety of tethers
(Morreale et al. 1996), harnesses (Eckert & Eckert
1986) and direct carapacial attachment procedures
(Lutcavage et al. 1999, Fossette et al. 2008, Doyle et

al. 2008, this TS). Techniques have clearly improved
over the years (for an early example of an excessive
transmitter package, see illustration in Duron-
Dufrenne 1987) but given recent concern expressed
regarding harnesses (Troëng et al. 2006), it is timely
that Fossette et al. (2008) show that, albeit based on a
very small sample size, turtles equipped using direct
attachment techniques may swim faster and dive
deeper than conspecifics equipped with harnesses.
Sherrill-Mix & James (2008, this TS) also investigate
potential tagging effects. Given the ever-increasing
number of leatherbacks being tracked, this is a topic
worthy of much more attention. Although turtle work-
ers have sought to minimize deleterious impacts from
the start, we are now entering a phase in our disci-
pline where we can start to empirically test for even
quite subtle impacts on our study animals and we
must join forces to adequately test for these possibili-
ties.

Scientific rigour

The topics of experimental design and data analysis
and interpretation have been highlighted as concerns
that should be given close attention (Frazier 2000). We
must constantly ask ourselves whether our sample
sizes are sufficient to generate meaningful results.
Authors have begun to explicitly target transmission
performance and accuracy (Plotkin 1998, Hays et al.
2001b, 2007) and the array of statistical techniques and
treatments to improve the robustness of data interpre-
tation is increasing (Flemming et al. 2006, Jonsen et al.
2006, 2007). There is, however, a clear need for more
easily accessible and reliable techniques to help work-
ers describe home ranges and key areas of occupancy
that will allow satellite tracking to feed more easily
into spatially relevant management. Additionally, tools
to allow the quantitative comparison of movement with
oceanographic variables need to be refined and made
accessible before maximal benefit will be extracted
from tracking data.

Is satellite tracking the best technique?

Although the technique has offered much, it is not a
panacea for research needs. It has not yet matured to
the point that we can track the smallest of turtles and
there is still much to be gained from direct observation,
molecular and other forensic methods and oceano-
graphic modeling approaches. For many neritic juve-
niles, who move short distances for long periods and do
not generate many high quality locations (e.g. Godley
et al. 2003b), satellite tracking may not be the best
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technique. Indeed, sonic and radio tracking in addition
to traditional mark and recapture methods offer
greater insight and value for money in some cases
(Seminoff et al. 2002, Avens et al. 2003). Standard GPS
tracking offers potential but requires reliability of
recapture (Schofield et al. 2007). Developing satellite-
linked GPS capabilities (Yasuda & Arai 2005) will
hopefully provide significant insights into the move-
ment of all animals, including those that move only
short distances without the need for recapture. This is
especially true for tags using Fastloc technology that
have recently been trialed on loggerhead turtles off
North America (M. S. Coyne et al. unpubl.) and shows
great promise for the remote gathering of high pre-
cision location data. Although not satellite linked,
another technique which offers promise is geolocation
(GLS) using light levels which, although offering lower
spatial resolution and requiring recapture, is relatively
inexpensive per animal and may allow the tracking of
larger sample sizes (Fuller et al. 2008). Additionally,
although currently necessitating recapture, datalog-
ging technologies are now reaching an unparalleled
level of breadth, precision and resolution and the
advent of the ‘Daily Diary’ promises to unlock many
unknowns about spatial ecology of animals such as tur-
tles (Wilson et al. 2008, this TS).

Publish or be damned!

We have largely restricted ourselves to the peer-
reviewed literature in this review although there is
an additional wealth of data that has been presented
only in arcane technical reports or in symposium pro-
ceedings (over 220 non peer-reviewed abstracts in
the proceedings of the International Sea Turtle Sym-
posia by 2007; B. J. Godley pers. obs.). The total of
papers reviewed here does not compare favourably
with this massive total, especially given that many
published papers are of the same study individuals
featured in previous publications, sometimes repeat-
edly. Acknowledging that there will always be a
delay between tracking and effective publication, it is
clear that only the minority of satellite tracking data
have been published in the peer-reviewed literature.
Although presentation at any venue may be better
than no dissemination at all, data that are not fully
analysed and presented in the public domain are
more liable to be damaged, lost or forgotten and
although they can be used by their custodians, this
utility is limited. For the greater good, should we
(workers and donors) consider time-limited tenure
over data before they are shared on the global com-
mons? In the meantime, are your data safe? Are they
in a format that will facilitate sharing in the future? In

some cases, data may already be lost. Donor organi-
zations and researchers share a responsibility to
ensure positive steps are made in this regard.

Seeking outcomes

This research area offers a great deal of manage-
ment-relevant information, and is constantly feeding
into management plans (e.g. Western Pacific Regional
Fishery Management Council 1994, Turtle Expert
Working Group 2007) but to date clear documented
policy changes as a result of findings are few. For
instance, multiple studies have highlighted Nicaragua
as holding foraging grounds for adults of 3 species
from multiple origins (Troëng et al. 2005a,b, Blumen-
thal et al. 2006, van Dam et al. 2008), yet largely
unmanaged harvesting of adult turtles continues in the
coastal waters there (Lagueux 1998). Researchers
studying leatherback migration have used satellite
tracking data to highlight key areas for leatherback
conservation (Eckert 2006, James et al. 2005c) but it is
clear that mitigation of threats in these areas is not sim-
ple. Perhaps the exception, Shaver & Rubio (2008) out-
line how tracking, in addition to nesting and stranding
data were instrumental in the development of a time-
area fisheries closure in Texas, USA to protect Kemp’s
ridley turtles.

Much of the sea turtle tracking literature claims to
inform conservation but why the apparent lack of
clear policy changes? What does it really mean if tur-
tles migrate across international boundaries? What
does it mean if there are hotspots for turtles? How
can we translate these data into positive outcomes?
Are managers and policy makers prepared to make
decisions on an n = 8.5 (our overall average number
of conspecific turtles per study) or on an n = 9.9 tur-
tles (our average since 2005)? Are we presenting
results in a clearly understandable format and sug-
gesting suitable management changes? Are tracking
data perhaps simply one investigative strand that
needs to be integrated with multiple lines of evi-
dence to generate a synthetic understanding before
the long slog of effecting change can begin? Addi-
tionally, unless molecular profiling progresses to a
point where individuals can be individually identified
for very little cost with no time delay, there is likely
always going to be a valid research need to perma-
nently or semi-permanently mark study individuals.
This facilitates upfront hypothesis testing (e.g. be-
haviour of neophytes versus remigrants) and acts as
post-hoc backup of identity following loss of satellite
tags (Sherrill-Mix & James 2008).

We suggest that the major scientific breakthroughs
in this field are likely to come from increased sample
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size, most easily attained through data-sharing and
through inter-disciplinary synergy with others such as
ecological modelers, oceanographers, statisticians and
and fisheries scientists. Such partnerships will help us
to progress from the qualitative to the quantitative
with regard to integration of movements with dynamic
environmental variables, both physical and anthro-
pogenic e.g. fishing effort. It is time for us all to
embrace such approaches, perhaps facilitated through
mechanisms such as the clearing house outlined above
(Coyne & Godley 2007). In addition, with appropriate
intellectual safeguards, data can (and we suggest
should) be shared for management purposes prior to
the production of scientific papers (e.g. Turtle Expert
Working Group 2007).

In closing, we hope that we have highlighted the
obvious need for a clearer strategy to address inade-
quate sample size and the species, life stage and geo-
graphic imbalance of many past studies. We need to
participate in a shift in the way we carry out our work
for maximal benefit to ensure we can counter any alle-
gations of a ‘tagging reflex’ (Mrosovsky 1983). Finally,
it is our observation that much of the tracking work to
date has been funded and acted upon in such a man-
ner that has so far failed to ensure translation of the
research into tangible outputs and management bene-
fits. It is the responsibility of all who purport to be car-
rying out research in the name of sea turtle conserva-
tion to work to have our research published,
disseminated, built upon and translated into positive
conservation action.
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Ocean Country (state/s) F M J U Total Reference

Loggerhead turtle Caretta caretta
W Atlantic USA (Georgia) 8 0 0 0 8 Stoneburner (1982)
W Atlantic USA (Mississippi) 1 0 0 0 1 Timko & Kolz (1982)
Mediterranean Greece 1 0 0 0 1 Hays et al. (1991)
Atlantic USA (Texas) 0 0 4 0 4 Renaud & Carpenter (1994)
Indian South Africa 4 0 0 0 4 Papi et al. (1997)
W Pacific Japan 2 1 0 0 3 Sakamoto et al. (1997)
E Pacific Mexico 0 0 1 0 1 Nichols et al. (2000)
E Pacific High seas 0 0 9 0 9 Polovina et al. (2000)
W Pacific Australia (Queensland) 6 0 0 0 6 Limpus & Limpus (2001)
Mediterranean Italy 3 1 0 0 4 Bentivegna (2002)
W Pacific Japan 0 1 0 0 1 Hatase et al. (2002a)
W Pacific Japan 5 0 0 0 5 Hatase et al. (2002b)
W Atlantic USA (Georgia) 5 0 0 0 5 Plotkin & Spotila (2002)
W Atlantic USA (Florida) 4 0 0 0 4 Dodd & Byles (2003)
Mediterranean Northern Cyprus 5 0 0 0 5 Godley et al. (2003a)
Indian South Africa 11 0 0 0 11 Hays et al. (2003b)
Indian South Africa 5 0 0 0 5 Luschi et al. (2003b)
E Pacific USA (Hawaii) 0 0 0 2 2 Polovina et al. (2003)
E Pacific USA (Hawaii) 0 0 40 0 40 Chaloupka et al. (2004a)
W Pacific Japan 2 0 0 0 2 Hatase & Sakamoto (2004)
E Pacific High seas 3 0 23 0 26 Polovina et al. (2004)
Mediterranean Spain (Balearic Islands) 0 0 5 0 5 Cardona et al. (2005)
Mediterranean Italy 0 0 1 0 1 Hochscheid et al. (2005)
Mediterranean Italy, Tunisia 0 0 0 13 13 Hochscheid et al. (2005)
W Atlantic USA (New York) 0 0 3 0 3 Morreale & Standora (2005)
W Atlantic UK (Cayman) 3 0 0 0 3 Blumenthal et al. (2006)
E Atlantic Spain 0 0 2 0 2 Cejudo et al. (2006)

Appendix 1. Summaries of published studies of satellite tracking in 6 species of marine turtles. Ocean: ocean basin (W: west;
C: central; E: eastern); F: adult female; M: adult male; J: juvenile; U: sex/maturity status unknown
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E Atlantic Cape Verde 10 0 0 0 10 Hawkes et al. (2006)
Indian South Africa 8 0 0 0 8 Luschi et al. (2006)
W Pacific High seas 0 0 43 0 43 Polovina et al. (2006)
Mediterranean Italy 3 1 4 0 4 Bentivegna et al. (2007)
Mediterranean Northern Cyprus 10 0 0 0 10 Broderick et al. (2007)
Mediterranean Cyprus 2 0 0 0 2 Fuller et al. (2008)
W Atlantic USA (North Carolina) 12 0 0 0 12 Hawkes et al. (2007)
W Atlantic USA (North Carolina) 0 0 30 0 30 McClellan & Read (2007)
Mediterranean Spain (Balearic Islands) 0 0 10 0 10 Revelles et al. (2007a)
Mediterranean Spain (Balearic Islands) 0 0 10 0 10 Revelles et al. (2007b)
Mediterranean Greece 6 0 0 0 6 Zbinden et al. (2007)
Green turtle Chelonia mydas
E Pacific USA (Hawaii) 3 0 0 0 3 Anonymous (1993)
Indian Malaysia 1 0 0 0 1 Anonymous (1994)
W Pacific Malaysia 1 0 0 0 1 Papi et al. (1995)
W Pacific Malaysia 4 0 0 0 4 Luschi et al. (1996)
C Atlantic UK (Ascension) 6 0 0 0 6 Luschi et al. (1998)
Indian Australia (West Australia) 1 0 0 0 1 Spring & Pike (1998)
C Atlantic UK (Ascension) 11 0 0 0 11 Hays et al. (1999)
W Pacific Taiwan 8 0 0 0 8 Cheng (2000)
Indian Malaysia 8 0 0 0 8 Liew et al. (2000)
C Atlantic UK (Ascension) 15 0 0 0 15 Papi et al. (2000)
C Atlantic UK (Ascension) 15 0 0 0 15 Åkesson et al. (2001)
C Atlantic UK (Ascension) 0 2 0 0 2 Hays et al. (2001a)
C Atlantic UK (Ascension) 1 0 0 0 1 Hays et al. (2001b)
C Atlantic UK (Ascension) 12 0 0 0 12 Hays et al. (2001c)
C Atlantic UK (Ascension) 5 0 0 0 5 Hays et al. (2001d)
C Atlantic UK (Ascension) 18 0 0 0 18 Luschi et al. (2001)
Mediterranean North Cyprus 6 0 0 0 6 Godley et al. (2002)
C Atlantic UK (Ascension) 7 0 0 0 7 Hays et al. (2002)
W Pacific China (Guangdong) 3 0 0 0 3 Song et al. (2002)
W Pacific China (Guangdong) 3 0 0 0 3 Wang et al. (2002)
C Atlantic UK (Ascension) 18 0 0 0 18 Åkesson et al. (2003)
W Pacific China (Hong Kong) 1 0 0 0 1 Chan et al. (2003)
W Atlantic Brazil (Ceara) 2 0 6 0 8 Godley et al. (2003b)
C Atlantic UK (Ascension) 6 0 0 0 6 Hays et al. (2003a)
Indian France (La Reunion, 2 0 6 0 8 Pelletier et al. (2003)

Tromelin, Moheli)
Mediterranean, Cyprus, Malaysia, 31 0 0 0 31 Hays et al. (2003b)
W Pacific, E Pacific, Mexico, UK (Ascension)
C Atlantic

W Pacific American Samoa 7 0 0 0 7 Craig et al. (2004)
W Pacific Australia (Northern Territory) 20 0 0 0 20 Kennett et al. (2004)
E Pacific Costa Rica 0 0 1 0 1 Swimmer et al. (2006)
W Atlantic Costa Rica 10 0 0 0 10 Troëng et al. (2005b)
Indian Thailand 1 0 0 0 1 Yasuda & Arai (2005)
W Atlantic UK (Cayman Islands) 7 0 0 0 7 Blumenthal et al. (2006)
Indian France (Europa) 3 0 0 0 3 Girard et al. (2006)
W Pacific Japan 4 0 0 0 4 Hatase et al. (2006)
Indian Thailand 7 0 0 0 7 Yasuda et al. (2006)
Mediterranean North Cyprus 10 0 0 0 10 Broderick et al. (2007)
Indian France (Mayotte) 20 0 0 0 20 Luschi et al. (2007)
E Pacific Ecuador(Galapagos) 12 0 0 0 12 Seminoff et al. (2008)
Mediterannean Cyprus 4 0 0 0 4 Fuller et al. (2008)
Leatherback turtle Dermochelys coriacea
W Atlantic France (French Guiana) 1 0 0 0 1 Duron-Dufrenne (1987)
W Atlantic USA (USVI) 1 0 0 0 1 Keinath & Musick (1993)
E Pacific Costa Rica 8 0 0 0 8 Morreale et al. (1996)
E Pacific Mexico (Michoacán) 9 0 0 0 9 Eckert & Sarti (1997)
Indian, E Atlantic South Africa (KwaZulu-Natal) 1 0 0 0 1 Hughes et al. (1998)
Indian South Africa (KwaZulu-Natal) 3 0 0 0 3 Luschi et al. (2003b)
E Pacific, Indian Mexico, South Africa 8 0 0 0 8 Hays et al. (2003b)
W Atlantic France (French Guiana) 12 0 0 0 12 Ferraroli et al. (2004)

Appendix 1. continued
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W Atlantic Grenada 4 0 0 0 4 Hays et al. (2004a)
W Atlantic Grenada 9 0 0 0 9 Hays et al. (2004b)
W Atlantic Puerto Rico 3 0 0 0 3 Lutcavage et al. (1999)
W Atlantic Canada 0 11 0 0 11 James et al. (2005a)
W Atlantic Canada 9 3 3 0 15 James et al. (2005b)
W Atlantic Canada 21 11 6 0 38 James et al. (2005c)
W Atlantic Grenada 6 0 0 0 6 McMahon et al. (2005)
W Atlantic Trinidad and Tobago 9 0 0 0 9 Eckert (2006)
W Atlantic USA (Florida) 10 0 0 0 10 Eckert et al. (2006)
W Atlantic Canada (Nova Scotia) 0 0 0 0 3 Flemming et al. (2006)
W Atlantic France (French Guiana) 1 0 0 0 1 Gaspar et al. (2006)
W Atlantic Grenada 9 0 0 0 9 Hays et al. (2006)
W Atlantic Canada 3 2 0 0 5 James et al. (2006a)
W Atlantic Canada 0 0 0 15 15 James et al. (2006b)
W Atlantic Canada 8 3 3 0 14 Jonsen et al. (2006)
W Atlantic Grenada 9 0 0 0 9 McMahon & Hays (2006)
Indian South Africa (KwaZulu-Natal) 4 0 0 0 4 Sale et al. (2006)
W Atlantic Grenada 1 0 0 0 1 Myers et al. (2006)
Indian South Africa 11 0 0 0 11 Luschi et al. (2006)
W Atlantic Grenada 9 0 0 0 9 Bradshaw et al. (2007)
W Pacific Indonesia 9 0 0 0 9 Benson et al. (2007a)
W Pacific Papua New Guinea 19 0 0 0 19 Benson et al. (2007b)
W Pacific Indonesia 10 0 0 0 10 Hitipeuw et al. (2007)
E Pacific USA (California) 0 1 0 0 1 Seminoff & Dutton (2007)
W Atlantic France (French Guiana) 5 0 0 0 5 Fossette et al. (2008)
W Atlantic, E Atlantic France (French Guiana), 37 0 0 0 37 Georges et al. (2007)

Gabon, Grenada, Suriname
W Atlantic Canada 0 0 0 5 5 Jonsen et al. (2007)
W Atlantic Costa Rica 2 0 0 0 2 Troëng et al. (2007
E Atlantic Gabon 7 0 0 0 7 Witt et al. (in press)
W Atlantic Eire 1 1 0 0 2 Doyle et al. (2008)
W Atlantic Canada 20 8 14 0 42 Sherrill-Mix & James (2008)
Hawksbill turtle Eretmochelys imbricata
W Atlantic Barbados 4 0 0 0 4 Horrocks et al. (2001)
W Atlantic Costa Rica 2 0 0 0 2 Troëng et al. (2005a)
na(captivity) Thailand 0 0 2 0 2 Yasuda & Arai (2005)
Indian Cocos Islands 0 0 1 0 1 Whiting & Koch (2006)
W Pacific Australia (Northern Territory) 2 0 0 0 2 Whiting et al. (2006)
W Atlantic Puerto Rico 7 8 0 0 15 van Dam et al. (2008)
Kemp’s ridley turtle Lepidochelys kempii
W Atlantic USA (Louisiana) 1 0 0 0 1 Renaud et al. (1996)
W Atlantic USA (Georgia) 1 0 0 0 1 Gitschlag et al. (1996)
W Atlantic USA (Texas, Louisiana, 0 0 0 57 57 Renaud & Williams (2005)

North Carolina)
W Atlantic Mexico (Tamaulipas) 0 11 0 0 11 Shaver et al. (2005)
W Atlantic USA (New York) 0 0 12 0 12 Morreale & Standora (2005)
W Atlantic USA (Florida) 0 0 6 0 6 Schmid & Witzell (2006)
W Atlantic USA (Texas) 28 0 0 0 28 Shaver & Rubio (2008)
W Atlantic USA (Texas) 6 0 0 0 6 Seney & Landry (2008)
Olive ridley turtle Lepidochelys olivacea
E Pacific Costa Rica 12 0 0 0 12 Plotkin et al. (1995)
E Pacific High seas 0 1 0 0 1 Beavers & Cassano (1996)
E Pacific Costa Rica 0 11 0 0 11 Plotkin et al. (1996)
E Pacific Costa Rica 21 0 0 0 21 Plotkin (1998)
E Pacific USA (Hawaii), Costa Rica 0 0 8 0 8 Swimmer et al. (2002)
E Pacific USA (Hawaii) 0 0 0 2 2 Polovina et al. (2003)
C Pacific High Seas 0 0 10 0 10 Polovina et al. (2004)
E Pacific Costa Rica 0 0 1 13 14 Swimmer et al. (2006)
Indian India (Orissa) 4 0 0 0 4 Pandav & Choudhury (2006)
Indian India (Orissa) 4 0 0 0 4 Sasamal & Panigraphy (2006)
W Pacific Australia (Northern Territory) 4 0 0 0 4 McMahon et al. (2007)
W Pacific Australia (Northern Territory) 8 0 0 0 8 Whiting et al. (2007)
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