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1.  INTRODUCTION

Marine mammals, including 126 extant species of
cetaceans (whales, porpoises and dolphins), pin-
nipeds (true seals, fur seals, sea lions and walruses),
sirenians (dugongs and manatees), sea otters
Enhydra lutris and polar bears Ursus maritimus
known to date, can play important ecological roles

and are often considered indicators of marine ecosys-
tem health (Bossart 2011, Parsons et al. 2015, Society
for Marine Mammalogy 2019). Their typically large
body sizes and broad range of diets influence com-
munity structure and functioning through processes
such as top-down control, nutrient recycling and bio-
turbation (Estes & Duggins 1995, Bowen 1997, Roman
et al. 2014, Kiszka et al. 2015, Albouy et al. 2017). Yet,
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historical declines caused by exploitation, and addi-
tional current threats, such as climate change, fish-
eries bycatch, pollution and maritime development,
continue to jeopardize many marine mammal species
(Kovacs et al. 2012, Magera et al. 2013, Parsons et al.
2015, Albouy et al. 2017, Avila et al. 2018). These
stressors, combined with life-history traits such as low
reproductive rates and the specificity of the breeding
or foraging requirements of some species (Davidson
et al. 2012, Maxwell et al. 2013), have led to ~25% (n
= 32) of marine mammal species currently being clas-
sified as threatened (Critically Endangered, n = 2; En-
dangered, n = 17; and Vulnerable, n = 13) on the In-
ternational Union for Conservation of Nature’s
(IUCN) Red List of Threatened Species (www. iucn
.org; last accessed April 2020). Marine mammals can
be difficult to monitor, and changes in their popula-
tion status are challenging to detect (Kaschner et al.
2011, Lotze et al. 2011, Davidson et al. 2012). As a re-
sult, an additional 21% (n = 26) of species are deemed
Data Deficient by the IUCN.

Many species and populations of marine mammals
are declining, and some have been extirpated from
parts of their range (e.g. dugong Dugong dugon and
Ganges river dolphin Platanista gangetica) or have
gone extinct (e.g. Steller’s sea cow Hydrodamalis
gigas, Caribbean monk seal Monachus tropicalis and
Yangtze River dolphin or baiji Lipotes vexillifer; Tur-
vey et al. 2007, McClenachan & Cooper 2008, David-
son et al. 2012). Yet in some cases, management
interventions, such as hunting bans and greater pro-
tection, have led to population increases/recoveries
in recent decades, and are heralded as conservation
successes (e.g. northern elephant seals Mirounga
angustirostris, humpback whales Megaptera nova -
eangliae and Guadalupe fur seals Arctocephalus
townsendi; Magera et al. 2013).

With the advent of the Decade of Ocean Science for
Sustainable Development beginning in 2021 (United
Nations 2019), we sought to bring together a global
network of scientists interested in marine mammal
conservation to look over the horizon and explore
emerging challenges and solutions. In this review,
we (1) outline key threats to marine mammals from
anthropogenic activities, identify knowledge gaps
and recommend responses; (2) discuss the merits and
downfalls of existing and future conservation mecha-
nisms; (3) outline the application of research and
monitoring techniques; and (4) highlight particular
taxa/populations that are in urgent need of focus.
Given that they make up the majority of this animal
group, we generally focus on cetaceans and
 pinnipeds.

2.  KEY THREATS TO MARINE MAMMALS

The threats posed to marine mammals by anthro-
pogenic activities can be numerous and complex
(Avila et al. 2018). Approximately 98% of marine
mammal species are at some level of risk in 56% of
the ocean, mainly in coastal waters (Avila et al. 2018;
Fig. 1). Here, we provide a brief background of the
key threats affecting marine mammals around the
globe. In Table 1 we summarise knowledge gaps
relating to these threats and recommend actions to
resolve them.

2.1.  Climate change

Specialised diets, restricted ranges, high site fidelity
and dependence on specific habitats, which are often
reached via extensive migrations, are thought to
make many marine mammal species particularly vul-
nerable to anthropogenic climate change (Würsig et
al. 2001, Simmonds & Isaac 2007, Laidre et al. 2015,
2018, Silber et al. 2017). While the full nature and
scope of climate-driven effects are uncertain for
many species (Schumann et al. 2013, Fuentes et al.
2016a), impacts have already been detected for some
and forecasted for others (Schumann et al. 2013,
Fuentes et al. 2016a, Regehr et al. 2016, Laidre et al.
2018, Moore & Reeves 2018). These impacts may be
geographic (e.g. habitat loss and range shifts) or
trophic-related (e.g. variation in food availability,
trophic dynamics and competition), with conse-
quences for phenology (e.g. changes to breeding and
migration timing) and ultimately, fitness (e.g. effects
on reproductive success, health, body condition and
population vital rates; Simmonds & Isaac 2007, Burek
et al. 2008, Kovacs et al. 2011, Edwards 2013, Ramp
et al. 2015, Fuentes et al. 2016b, Silber et al. 2017,
Hauser et al. 2018, Boyd et al. 2019, Hamilton et al.
2019, Avila et al. 2020, Laidre et al. 2020a). Marine
mammal populations most vulnerable to these influ-
ences are likely to be those that (1) are dependent on
or associated with sea ice in the polar regions (e.g.
polar bears, walruses and ice seals; Moore & Reeves
2018, Bestley et al. 2020); (2) are reliant on upwelling
boundary currents (e.g. rorqual whales; Díaz López
& Methion 2019); (3) have restricted ranges and small
populations (e.g. vaquita Phocoena sinus; Simmonds
& Isaac 2007); or (4) are reliant on low-lying islands,
atolls and coral reef habitats (e.g. Hawaiian monk
seal Neomonachus schauinslandi; Baker et al. 2012).

The capacity of marine mammals to adapt to cli-
mate change is poorly understood. Some species may
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be able to modify their behaviour in response to
changes (e.g. by shifting their range or diet; Moore &
Huntington 2008, Evans et al. 2010, Schumann et al.
2013, Ramp et al. 2015). In some cases, the impacts of
climate change may be initially positive but later un -
known (Moore & Reeves 2018, Laidre et al. 2020b).
For example, evidence of a number of positive im -
pacts linked to thinner sea-ice (range expansion, im -
proved body condition and stable reproductive per-
formance) has been identified for a subpopulation of
polar bears (Laidre et al. 2020b). However, the rapid
pace of climate change and the large number of
potential cumulative and synergistic stressors make
predicting specific impacts challenging (Laidre &
Heide-Jørgensen 2005, Burek et al. 2008, Moore 2008,
Patyk et al. 2015).

2.2.  Fisheries

2.2.1.  Fisheries bycatch

Marine mammal bycatch, i.e. the incidental cap-
ture or entanglement of animals in active fishing
gear, is a critical yet seemingly intractable problem
(Reeves et al. 2013, Brownell et al. 2019), and is
currently the threat affecting the greatest number
of marine mammal species worldwide (101 species

recorded, but likely more; Avila et al. 2018). From
small-scale to large commercial fisheries, in nat -
ional and international waters, developed and de -
veloping countries, in urban and isolated areas,
marine mammals are being caught in nets and
other types of fishing gear (Tulloch et al. 2020b).
Gillnet or entangling net fisheries are the greatest
global concern (Dawson et al. 2013, Reeves et al.
2013, Brownell et al. 2019), but interactions also
occur with other fishing gears such as longlines,
purse-seines, trawls and pots/traps (FAO 2018,
Hamilton & Baker 2019). Additionally, electric fish-
ing is an emerging threat in freshwater habitats
(Turvey et al. 2007).

Several species of cetaceans (e.g. vaquita and
North Atlantic right whale Eubalaena glacialis; Ken-
ney 2018, Jaramillo-Legorreta et al. 2019) and pin-
nipeds (e.g. Mediterranean monk seal Monachus
monachus; Karamanlidis et al. 2008) have been
driven close to extinction due, in part, to fisheries by -
catch. The baiji was declared extinct in the Yangtze
River in 2006 as a result of unsustainable bycatch and
other human activities (Turvey et al. 2007). Other
species have also been reduced to critically low lev-
els (e.g. New Zealand sea lion Phocarctos hookeri,
Australian sea lion Neophoca cinerea and some
sirenian populations; Hamer et al. 2013, Chilvers &
Meyer 2017).

Fig. 1. Cumulative risk map showing the proportion of species of the total of species predicted to be present per cell with at least 
1 documented threat. Red areas represent high-risk areas or hotspots (see Avila et al. 2018 for more details)
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In many regions, fisheries bycatch of marine mega -
fauna is poorly monitored or regulated, especially in
international waters (e.g. Anderson et al. 2020), so the
population-level impacts are not well understood
(Lewison et al. 2014). Where monitoring is carried out,
gaps in data on fishing effort, marine mammal en-
counter frequency, bycatch rates, species identification
and the fate of animals post-capture and release limit
our ability to assess the risk of fisheries bycatch, un-
derstand the cumulative impacts from fisheries that
overlap with the distributions of individual populations
and constrain management action (Hines et al. 2020).

2.2.2.  Reduction of prey availability due to 
overfishing

Indirect interactions between marine mammals and
fisheries are complex, poorly understood and largely
unmanaged (Trites et al. 1997). Relatively little is
known about exploitative competition between mar-
ine mammals and fisheries , i.e. the overlap in resource
use between them (e.g. Pauly et al. 1998, Kaschner &
Pauly 2005, Machado et al. 2016).

Multiple studies have shown that prey species re-
duction by fisheries can (at least partially) contribute
to the decline of marine mammal populations, particu-
larly small cetaceans and pinnipeds (e.g. Plaganyi &
Butterworth 2005). For example, in the Mediterranean
Sea, the population decline of short-beaked common
dolphins Delphinus delphis has been mainly attributed
to the decline of small pelagic fish stocks in the Ionian
Sea (Bearzi et al. 2006, Piroddi et al. 2011). Along the
coast of British Columbia, Canada, and Washington
State, USA, the decline of reproductive rates and sur-
vival of fish-eating killer whales Orcinus orca has
been correlated with the reduced abundance of Chi-
nook salmon Oncorhynchus tsha wytscha, which is at
least partially due to overfishing of salmon stocks
(Nehlsen et al. 1991, Ford et al. 2010). Among pin-
nipeds, population de clines due to prey depletion
from fisheries have been documented, or strongly
suspected, for several species, including harbour
seals Phoca vitulina in the western Gulf of Alaska
(Pitcher 1990) and southern sea lions Otaria flavescens
off the coast of Argentina (Koen-Alonso & Yodzis
2005) and Uruguay (Riet-Sapriza et al. 2013). At least
19 species of marine mammals, mainly odontocetes,
are currently known to experience biological interac-
tions with fisheries; high-risk areas are mostly in the
northern Mediterranean Sea and along the eastern
coast of South America (Avila et al. 2018). However,
the magnitude of im pact on marine mammal popula-

tions from fisheries-related prey depletion might be
underestimated and requires further investigation. In
addition, herbivorous species of marine mammals
(e.g. sirenians) may experience depletion of food
availability as a result of fishing activities. For exam-
ple, some fisheries damage the seagrass meadows on
which dugongs feed (Marsh et al. 2011).

2.3.  Exploitation

2.3.1.  Commercial and subsistence take

Many taxa marine mammal taxa are subject to
direct human exploitation. For example, Robards &
Reeves (2011) estimated that people in 114 countries
have consumed meat and other products from ~87
species of marine mammals since 1990. A global
moratorium on whaling was enacted in 1983, and no
commercial whaling has been permitted under the
International Whaling Commission (IWC) in interna-
tional waters. Commercial whaling within nations’
exclusive economic zones (EEZs) was/is allowed
under IWC, and both subsistence and scientific whal-
ing have continued in some countries. For example,
in 2019, 360 in dividuals from 4 baleen whale species
were caught by Denmark (Greenland), St Vincent
and the Gren a dines, Russia and the USA for subsis-
tence purposes (www.iwc.int/table_aboriginal; last
accessed 23 September 2020) and 640 individuals
from 2 baleen whale species were caught for scien-
tific purposes by Japan in the 2018/19 Antarctic sea-
son (www. iwc. int/ table_permit; last accessed 23 Sep-
tember 2020).

The take of small cetaceans for food, bait and tradi-
tional uses has long been a cause of concern for the
IWC as well as other intergovernmental and non-
governmental organisations. Most countries have, at
some time, used small cetaceans for food, but the
scale and extent of such utilization is variable. Present-
day artisanal hunting has been identified in some
areas, for example, St Vincent and the Grenadines,
as an essential source of protein for local communi-
ties (Fielding 2014), and subsistence hunting by
indigenous residents across the Arctic is a vital part
of communities and contributes to economic, cultural
and spiritual well-being (Laidre et al. 2015). Few
countries regulate small cetacean hunts, and glob-
ally, the number of small cetaceans taken, deliber-
ately or otherwise, is unknown.

Pinniped hunting is extensive in the Arctic region
and, although controversial, is regulated through a
variety of legal frameworks. Canada permits the
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largest marine mammal hunt in the word with allow-
able takes of up to 350 000 ind. yr−1 (Hammill & Sten-
son 2005), although actual takes vary greatly (www.
dfo-mpo.gc.ca/fisheries-peches/seals-phoques/ seal-
stats-phoques-eng.html; last accessed 23 Sept 2020).
Comparable commercial hunts for multiple species of
small cetaceans set quotas at approximately 22 000
ind. yr−1 (www.jfa.maff.go.jp/ j/ whale/ w_document/ pdf/
h17_progress_report.pdf; last ac cessed 23 Sept 2020).

All 4 species of sirenians are subject to subsistence
take (Marsh et al. 2011). In most countries, this harvest
is illegal, but in Australia, and some Pacific countries,
indigenous people are permitted to hunt dugongs for
traditional purposes.

Illegal take likely poses a significant threat to many
marine mammal populations but the extent is largely
unknown.

2.3.2.  Use of marine mammals as bait in fisheries

The use of marine mammals as bait is a geograph-
ically extensive activity, affecting at least 42 species
in 33 countries, predominantly in Latin America, Asia
and West Africa (Cosentino & Fisher 2016, Mintzer et
al. 2018). Small cetaceans and pinnipeds are prima-
rily used for shark, crab and lobster fisheries in the
marine environment, and riverine dolphins are used
for catfish fisheries in freshwater systems (Avila et al.
2008, Quintana-Rizzo 2014, Mintzer et al. 2018, Camp -
bell et al. 2020, Castro et al. 2020). Marine mammals
as bait are either (1) deliberately targeted, where
animals are the main objective for fishers, (2) non-
targeted-deliberate, bycaught or stranded animals are
recovered and killed, and (3) non-targeted salvaged
acquisition, when an incidentally caught animal is
used (Hall 1996, Marsh et al. 2011, Robards & Reeves
2011). The majority of interactions are thought to be
deliberately targeted (83% of cases; Mintzer et al.
2018). The general appeal of marine mammal bait to
fishers is that it is considered effective (due to its
fatty, bloody and durable consistency), and readily
available at little or no cost (often being collected en
route to fishing grounds; Mangel et al. 2010, Bar-
bosa-Filho et al. 2018).

2.4.  Industrial development

2.4.1.  Coastal and freshwater development

Many marine mammal species have experienced
significant declines due to cumulative impacts of

anthropogenic activities in coastal and freshwater
environments, especially those with small popula-
tions, high site fidelity and reliance on coastal and
riverine habitats (Schipper et al. 2008, Pompa et al.
2011, Avila et al. 2018).

The expansion and intensity of anthropogenic
activities in these areas generates a wide array of
stressors, which may impact marine mammals both
directly or indirectly (Aguirre & Tabor 2004, Maxwell
et al. 2013). Industrial activities include the construc-
tion of infrastructure such as ports and dams, as well
as facilities related to aquaculture, energy produc-
tion and military activity. Human encroachment on
breeding and haul-out habitat is thought to have
played a contributory role in the decline and extinc-
tion of the Caribbean monk seal and Japanese sea
lion Zalophus japonicas, and likely threatens other
extant pinniped species (Kovacs et al. 2012). For
freshwater species, such as river dolphins in South
Asia and South America, and manatees in Africa and
South America, large-scale diversions of river flows
by dams, barrages and canals for irrigation, hydro -
power generation and urban/industrial water supply
have led to habitat loss (with fragmentation of popu-
lation connectivity and increased pollution), and
effects on food abundance and distribution (Smith et
al. 2009, Marsh et al. 2011, Choudhary et al. 2012,
Braulik et al. 2014, Araújo & Wang 2015, Pavanato et
al. 2016, Arraut et al. 2017). Reduced freshwater
flows have also negatively affected the productivity
of downstream estuarine and coastal habitats for
other dolphin species (Smith et al. 2009).

Additionally, the global increase in maritime and
riverine vessel traffic is causing greater underwater
noise (see Section 2.5.1) and vessel−animal collisions
(Laist et al. 2001, Van Waerebeek et al. 2007, Manuel
& Ritter 2010, Avila et al. 2018, Dey et al. 2019).

2.4.2.  Marine renewable energy installations

Marine renewable energy installations (MREIs;
wind, wave and tidal-stream devices), can help
reduce hydrocarbon use and therefore mitigate cli-
mate change (Magagna & Uihlein 2015). However,
installation, operation and decommissioning of these
devices can potentially impact wildlife, including
marine mammals (Boehlert & Gill 2010). Installation
of wind turbines using pile-driving is associated with
high sound levels, leading to avoidance or displace-
ment of marine mammals out to considerable ranges
(>20 km; Tougaard et al. 2009, Russell et al. 2016).
Construction and maintenance of MREIs also results
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in increased vessel traffic and increased potential for
vessel collision, particularly with whales (Inger et al.
2009, Bailey et al. 2014), as well as noise impacts
(David 2006, Graham et al. 2019). Floating wind tur-
bines are an emerging technology that allow for de -
ployment in waters too deep for pile-driven seabed-
mounted turbines. Advantages of floating turbines
include reduced construction noise, reduced vessel
traffic and lower installation costs. However, mid-
water column infrastructure (chains and power
cables) could pose higher entanglement risk (Harnois
et al. 2015), and could snag abandoned fishing gear
in the water column, exacerbating this risk (Ben-
jamins et al. 2014). Devices to extract wave energy,
although less common than floating wind turbines,
are likely to have similar sub-surface risks. Devices
that extract energy from tidal streams are effectively
submarine versions of wind turbines, although the
blades are generally shorter and slower turning.
However, marine mammal injury from collision with
tidal turbine blades is a significant conservation and
consenting concern (Wilson et al. 2007, Onoufriou et
al. 2019). Hastie et al. (2018) demonstrated that har-
bour seals avoid areas during playback of tidal tur-
bine operational noise, but a priority for future
research is to determine the avoidance behaviour of
marine mammals in relation to actual operating tur-
bines, and the potential for such devices to cause
exclusion from foraging areas, or barriers to transit,
particularly in multi-device arrays.

2.5.  Pollution

2.5.1.  Noise

Anthropogenic underwater noise is recognised as a
pervasive pollutant impacting marine mammals
globally (Williams et al. 2015, Cholewiak et al. 2018).
Sources range from the intentionally generated (e.g.
seismic exploration, sonar, particularly naval, and
acoustic deterrent devices; Elliott et al. 2019) to the
incidental (e.g. commercial and private vessels, pile-
driving, explosives, icebreaking, dredging and point
sources like offshore structures, such as MREIs, as
well as coastal roads, bridges and aircraft; Richard-
son et al. 2013). The consequences for marine mam-
mals depend heavily on the nature of the source, par-
ticularly its amplitude, frequency and temporal
components (e.g. continuous, impulsive, predictable
and familiar). Impacts range from direct tissue
trauma, particularly auditory damage (Southall et al.
2008), to behavioural responses and stress (Gomez et

al. 2016, Dey et al. 2019) which may themselves lead
to significant injury (Jepson et al. 2003), or habitat
exclusion and masking of ecologically relevant
sounds like communication (Clark et al. 2009).

2.5.2.  Plastic 

At least 42% of extant marine mammal species
have been found to ingest or become entangled in
plastic pollution (Senko et al. 2020). Plastic may be
consumed via 2 main pathways, direct or indirect
ingestion. The former can occur as a result of indis-
criminate feeding strategies (e.g. filter feeders;
Besseling et al. 2015), mistaken identity (Secchi &
Zarzur 1999, de Stephanis et al. 2013) or due to
naivety and curiosity, as may be the case in young
animals (Baird & Hooker 2000). Indirect ingestion
can occur as a result of trophic transfer where prey
containing microplastics (plastic <5 mm in size) are
consumed (Nelms et al. 2018, 2019a,b). Ingestion of
macroplastics (>5 mm) can cause lacerations, ulcera-
tions, obstructions and lesions, and may lead to sub-
lethal effects such as dietary dilution, dehydration
and starvation (Kastelein & Lavaleije 1992, Stamper
et al. 2006, Levy et al. 2009, Alexiadou et al. 2019).
Although ingestion of macroplastics can result in
mortality, the population-level effects for most spe-
cies are unknown (Alexiadou et al. 2019, Senko et al.
2020). Some, already vulnerable, species and popu-
lations (i.e. those that are of conservation concern
due to other stressors) are likely to be most at risk.
Foraging ecology and/or habitat use also appear to
be a risk factor. For example, deep-diving odonto-
cetes, such as beaked and sperm whales, seem to
have the propensity to consume, and become com-
promised by, plastic pollution (Secchi & Zarzur 1999,
Stamper et al. 2006, Jacobsen et al. 2010, Kaladharan
et al. 2014, Lusher et al. 2015, Abreo et al. 2016,
Alexiadou et al. 2019).

Entanglement in plastic pollution, such as derelict
fishing gear (or ‘ghost gear’; i.e. gear that is aban-
doned, lost or deliberately discarded), packaging
and strapping, can lead to lacerations, constriction,
higher energetic costs associated with increased
drag, an inability to forage and/or escape predators
and other threats (such as ship strikes) and drowning
(Allen et al. 2012, van der Hoop et al. 2017, Jepsen &
de Bruyn 2019). Although cetaceans are known to
become entangled in debris (Baulch & Perry 2014),
pinnipeds seem to be more susceptible, and 67% of
species (n = 22 of 33) have been recorded with entan-
glements (Laist 1997, Jepsen & de Bruyn 2019).
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2.5.3.  Chemical contaminants

Contaminants are recognised as significant stres-
sors of marine mammal health worldwide, including
in remote polar environments (Brown et al. 2018).
Persistent organic pollutants (POPs), heavy metals,
and pharmaceuticals and personal care products
(Bengtson Nash 2018) represent just a small selection
of legacy and emerging contaminants of concern.
Genotoxicity, immunosuppression and endocrine
disruption are among the toxic effects commonly as -
sociated with legacy POPs and heavy metals, but our
understanding of how exposure to complex environ-
mental chemical mixtures is expressed in wild mar-
ine mammal populations is poor (Desforges et al.
2017). Oil spills from offshore extraction and trans-
portation can negatively affect marine mammals
through direct contact with crude oil and damage to
foraging areas and prey stocks. For instance, the
1989 ‘Exxon Valdez’ oil spill in Alaska killed tens of
killer whales and thousands (1000−2800) of sea otters,
and other individuals may have migrated out of the
affected area (Helm et al. 2015). Similarly, the 2010
Deepwater Horizon oil spill in the Gulf of Mexico
caused a dolphin mortality event (>1000 dead indi-
viduals were recorded; www.fisheries.noaa.gov/
national/ marine-life-distress/sea-turtles-dolphins-
and-whales-10-years-after-deepwater-horizon-oil; last
accessed 11 December 2020), while surviving animals
exhibited moderate to severe lung disease and evi-
dence of hypoadrenocorticism consistent with im -
munotoxic effects of oil (Daly et al. 2016).

2.5.4.  Pathogens 

Increased urbanisation of coastal areas, move-
ment of ballast waters and global movement of
people have contributed to an increase in detection
of terrestrial pathogens in marine life. The term
‘pathogen pollution’ has been coined to describe
the emergence of organisms typically considered
pathogens of land animals in the ocean ecosystem.
Protozoa such as Giardia, shed in mammalian fae-
ces, have been de tected in marine mammals from
the Arctic to Antarctica (Fayer et al. 2004). Toxo-
plamsa gondii, a parasite dependent upon cats for
sexual reproduction and shed in faeces of felids, is
an important cause of mortality in Endangered
Hawaiian monk seals and California sea otters in
the USA, and for Māui dolphins Ce pha lo rhynchus
hectori maui in New Zealand (Roe et al. 2013, Bar-
bieri et al. 2016).

The recent outbreak of COVID-19 (SARS-CoV-2
virus) has highlighted concerns of reverse zoonosis,
where human-borne viruses are passed to wild ani-
mals. Marine mammals may be exposed to the virus
via sources such as inadequately managed waste-
water and direct human contact (e.g. handling by
field researchers), and are potentially highly suscep-
tible to infection (Barbosa et al. 2021, Mathavarajah
et al. 2021).

3.  CONSERVATION MECHANISMS

The diversity of threats facing marine mammals re -
quires an equally diverse suite of conservation tools
to address them. Here we outline a range of estab-
lished and emerging conservation mechanisms and
discuss their merits and downfalls.

3.1.  Practical management options

3.1.1.  Bycatch mitigation

Many non-technical and technical marine mam-
mal bycatch mitigation methods have been pro-
posed or tested with varying degrees of success
and implementation (for detailed reviews, see FAO
2018 and Hamilton & Baker 2019). Non-technical
methods in clude spatial closures (permanent, sea-
sonal or dy namic) to reduce or eliminate the over-
lap between the fishing activity and at-risk species
(Gilman et al. 2006, NMFS 2010, van der Hoop et
al. 2013, Hazen et al. 2018); gear switching from
high- to low-risk practices (e.g. from gillnets to
longlines); binding and non-binding measures (e.g.
national legislation, international agreements and
consumer campaigns); and Food and Agriculture
Organization of the United Nations (FAO) best
practice advice.

Technical methods to reduce bycatch come in many
forms but their efficacy tends to be species-specific.
Acoustic deterrents are perhaps the most tested and
include alarms (pingers) applied to fishing nets (Car-
retta & Barlow 2011, Dawson et al. 2013), playback of
predator sounds (Werner et al. 2015) and passive
acoustics, such as nets with enhanced acoustic reflec-
tivity (Trippel et al. 2003, Larsen et al. 2007, Bordino
et al. 2013). Pingers have had promising results in de-
terring several species of cetaceans (e.g. Burmeister’s
porpoises Phocoena spinipinnis) from small-scale
driftnets (Clay et al. 2018) but have also been shown
to attract some pinnipeds (‘dinner bell’ effect; Carretta
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& Barlow 2011). Recently, light-emitting diodes re-
duced gillnet bycatch of small cetaceans in Peru by
70% (Bielli et al. 2020). For pinnipeds, attempts at re-
ducing deaths have involved seal and sea lion exclu-
sion devices on trawl nets and cod pots, with varying
success (Königson et al. 2015, Lyle et al. 2016, Meyer
et al. 2017). Other fishing gear modifications include
weakened gear (e.g. thinner net twine, narrower
gauge longline hooks, weak links or reduced strength
rope on pots and traps that allows animals to break
free; Northridge et al. 2003, Knowlton et al. 2016); net
illumination (Bielli et al. 2020); ropeless traps/pots
(DeAlteris 1999); and shielding of target catch, such
as with ‘cachalotera’ (from ‘cachalote’, meaning sperm
whale in Spanish;  Moreno et al. 2008) or ‘umbrella
and stones’ devices (to reduce sperm whale Physeter
macrocephalus and seabird depredation of fish
caught by bottom-set longlines; Goetz et al. 2011).

Changes to fishing operations can also help avoid
or mitigate bycatch. Examples of this can be found in
tuna purse-seine fisheries through the elimination of
setting on dolphin pods and whales (Gilman 2011) or
using back-down procedures and Medina panels
that allow encircled dolphins to escape (Hall &
Roman 2013).

Implementation costs, including the tracking of po-
tential impacts on target species catch rates and catch
value, need additional consideration. A promising ap-
proach is to apply return-on-investment approaches
to select the most cost-effective mitigation, which can
vary with region, fishery and species, often in complex
ways (Tulloch et al. 2020a). Low-cost solutions for the
vast small-scale coastal net fisheries common in the
developing world also require particular attention
(Brownell et al. 2019). Fishers involved in incidences
of bycatch are at risk of penalties and punishments,
where enforcement exists. For socio-economically
marginalized fishers (e.g. in Africa or South Asia),
and/ or where monitoring is weak or non-existent, the
costs of honest reporting of accidental bycatch cases
might be too high and affect livelihoods negatively. In
such scenarios, fishers mostly tend to hide bycatch
cases, which can result in severe under-reporting and
poor ability to enact change (Lewison et al. 2011, Teh
et al. 2015). Inclusion and empowerment of fishing
communities is essential for managing, reporting and
ultimately preventing bycatch.

3.1.2.  Creating alternative livelihoods for fishers

Elimination of human-induced mortality is urgent -
ly needed for small isolated populations of marine

mammals (Wade 1998, Brownell et al. 2019). This
goal is challenging for fisheries in developing coun-
tries where extensive multi-gear fisheries are active,
some throughout the year. Professional fishing is not
only about food security and income generation but
is also a source of cultural identity. Successfully
changing the behaviour of fishers to new gears
and/or areas that reduce bycatch, to not using mar-
ine mammals as bait and potentially reducing their
dependence on fisheries, requires not only aware-
ness, education and exposure to ecosystem-based
thinking, but requires alternative modes of income
generation and sources of food. As these processes
require a rigorous social and economic assessment of
individual situations, providing alternative liveli-
hoods should be considered as a socio-ecological
process of transformation, rather than a conservation
challenge per se (Mozumder et al. 2018).

Focus on the fishing community to maximise the
likelihood of successful transition to alternative
livelihoods and economic and sociological expertise
is key (Amevenku et al. 2019). Failure to understand
and incorporate the needs of the fishers and their
community will inevitably lead to suboptimal out-
comes in the long term because too few fishers will
be able to transition to the new livelihoods needed to
achieve required levels of bycatch reduction (Sorice
& Donlan 2015). In small-scale fisheries, fishing is
often part of a ‘portfolio’ of activities, especially in
Asia where fishing is a seasonal activity. Fishers seek
other opportunities in off-seasons, indicating that
alternatives to fishing may be already available to
these communities.

There are a few examples of alternative livelihood
programmes that have been specifically designed to
protect a species of conservation concern from fish-
ing. The alternative livelihoods programme devel-
oped by the National Oceanic and Atmospheric
Administration (NOAA) for the vaquita (Vaquita
SAFE 2019) is a prominent but unsuccessful exam-
ple. In some situations, dolphin-watching may pro-
vide an alternative livelihood (Sutaria 2009, Beasley
et al. 2014, Mustika et al. 2017). Women’s collectives
that provide a wide portfolio of income generation
at the household level through diverse activities,
such as seaweed drying, pond aquaculture, veg-
etable and fruit farming and handicrafts, along with
the education and movement of youth from fishing
to different occupations, have been established in
several marine fishing communities in India (Patter-
son et al. 2008, Periyasamy et al. 2014, Kadfak
2020), but the performance of such initiatives has
not yet been evaluated.
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3.1.3.  Spatial management for conservation

Spatial management is one of the most common
approaches in marine mammal conservation, varying
widely in spatial scope and target, including marine
protected areas (MPAs), single-sector spatial man-
agement or dynamic management approaches. MPAs
are the most well-known spatial management tool,
with their goals and protection levels ranging from
no-take marine reserves where all extractive activi-
ties are prohibited (IUCN Category Ia: Strict Nature
Reserve), to MPAs where only a subset of activities
are prohibited (IUCN Category VI: Protected areas
with sustainable use of natural resources; Day et al.
2019). MPAs may be designed to protect marine mam -
mals either directly by targeting threats, or indirectly
through management goals that may reduce impacts
on marine mammals, such as prohibition of fisheries
that result in bycatch of marine mammals or that com-
pete with their food resources (Peckham et al. 2011).
Since many marine mammals are wide-ranging spe-
cies, smaller MPAs may not be of sufficient size to
encompass critical habitat (Agardy et al. 2011); how-
ever, many marine mammal species do aggregate
during key life-history stages or during seasonal
cycles (e.g. foraging and breeding), and these areas
can potentially be effectively encompassed by MPAs
(Cordes et al. 2011, Gormley et al. 2012).

Dynamic ocean management, whereby managed
boundaries shift over short time scales, or near-real
time, in response to changing conditions or animal
movements (Maxwell et al. 2015), is an approach that
is increasingly being employed, as it is more respon-
sive to highly mobile species and results in less active
management of human uses of the ocean (see e.g.
Wiley et al. 2013, Dunn et al. 2016, Hazen et al. 2017,
2018). Furthermore, mobile and flexible MPAs may
be a critical tool for accommodating shifting marine
mammal distributions as a result of climate change
(Avila et al. 2018, Maxwell et al. 2020).

A relatively new advance in spatial management
for marine mammals is the concept of Important Mar-
ine Mammal Areas (IMMAs; Corrigan et al. 2014).
IMMAs are defined as discrete portions of habitat,
important to marine mammal species that have the
potential to be delineated and managed for conser-
vation. How IMMAs concord with existing legislative
controls within and across national jurisdictions is
still being developed, and IMMAs have the potential
to be delineated and managed for conservation by
management agencies, whether government, inter-
governmental organisations or conservation groups,
though this is not mandated.

While spatial management can be effective for
marine mammals (Notarbartolo di Sciara et al. 2016),
several limitations exist. For example, marine mam-
mals are often impacted by multiple human threats
simultaneously, resulting in additive or cumulative
impacts on individuals and populations (Maxwell et
al. 2013). Additionally, threats that exist within
MPAs, such as pollution or climate change, may orig-
inate outside of spatial boundaries and may be
beyond the jurisdiction or capabilities of manage-
ment agencies (Maxwell et al. 2014). Furthermore,
population-level impacts of management actions can
be difficult to assess, given the highly mobile nature
and long generation times of some marine mammal
species. Determining the efficacy of these manage-
ment actions requires greater attention (Ashe et al.
2010).

3.1.4.  Ex situ conservation

Ex situ management, i.e. the maintenance of a spe-
cies outside its natural habitat for conservation pur-
poses, has saved species such as the Arabian oryx
Oryx leucoryx and the California condor Gymnogyps
californianus from extinction. Classically in this ap -
proach, individuals are removed from their natural
habitat to a safe area, a breeding programme is estab-
lished, and offspring are returned to the wild after
threats there have been reduced or eliminated. Ex
situ management can be controversial, because such
efforts may be perceived to divert resources from
efforts to conserve species in their natural habitats
(Bowkett 2009, Ralls & Ballou 2013). In addition, ex
situ operations are expensive, logistically challeng-
ing, require long-term commitment and are risky for
captured individuals. Typically they are only consid-
ered when extinction risk is high (Martin et al. 2012,
Canessa et al. 2016).

The increasing urgency for actions to tackle the
current biodiversity crisis has led to changes in the
definition of ex situ conservation, and the distinction
between in situ and ex situ has become blurred. The
IUCN (IUCN/SSC 2014) now defines ex situ as:

 conditions under which individuals are spatially re -
stricted with respect to their natural spatial patterns or
those of their progeny, are removed from many of their
natural ecological processes, and are managed on some
level by humans.

This new approach to ex situ conservation, which
includes elements of management by humans within
marine mammal habitats (as distinct from ex situ cap-
tive breeding), is feasible for some marine mammals,
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especially those with terrestrial elements to their life
history. Temporary holding of stranded pinnipeds to
treat injuries, diseases, malnutrition or impacts from
oil with release into their natural range following dis-
ease screening now occurs in many parts of the world.
For example, in 2012, almost a third (32%) of all living
Hawaiian monk seals were alive due to past human
interventions, such as disentanglement, translocation,
nutritional support and vaccination (Harting et al.
2014). In California, 71% of abandoned sea otter pups
reared in captivity by surrogate otter mothers and re-
leased at weaning survived to adulthood (Nicholson
et al. 2007). In China, Yangtze finless porpoise Neo -
phocaena phocaenoides have been translocated from
the mainstream river to protected oxbow pools where
they are now reproducing (Wang 2015).

In the future, new approaches will need to combine
ex situ conservation with in situ management to pre-
vent the loss of marine mammal diversity. Disentan-
glement, medical treatment, vaccination and trans -
location will likely be increasingly integrated into
population-level management of pinnipeds in situ.
For cetaceans, capture myopathy and captive main-
tenance remain challenges. For example, attempts to
capture Critically Endangered vaquita for temporary
protection were halted after the death of an animal
from capture myopathy (Rojas-Bracho et al. 2019) but
may have potential for more robust species. The
scale, size and number of facilities needed to ade-
quately house sufficient animals to maintain genetic
diversity in a captive population make captive breed-
ing programmes for reintroduction unlikely for the
larger marine mammal species. The successful re -
lease of captive-born cetaceans into the wild poses
an additional challenge due to their complex pat-
terns of social behaviour. To date, only 1 formal
attempt has been described, with unclear results: a
group of bottlenose dolphins, including 4 captive-
born juveniles, were released from an aquarium in
Western Australia in 1992; 1 calf was recaptured due
to poor health, 1 is assumed to have died, and the fate
of the other 2 is unknown (Gales & Waples 1993).

3.1.5.  Animal welfare science and its application to
conservation outcomes

It is increasingly acknowledged that conservation
efforts for wild marine mammal populations need to
be inclusive of animal welfare (McMahon et al. 2012,
Dubois & Fraser 2013), and that the welfare science of
individuals can inform conservation management of
populations (Beausoleil et al. 2018). However, animal

welfare can be mistaken for animal rights, and subse-
quently misunderstood as either morally or emotion-
ally motivated. Papastavrou et al. (2017) demonstrated
how conservation and welfare share similarities in
their scientific biases and proposed that they should
be considered in unison in marine mammal conserva-
tion management. These arguments align with inter-
national legislations such as the US Marine Mammal
Protection Act (1972) and New Zealand Marine Mam-
mal Protection Act (1978) which define disturbance
and harm at the individual level (welfare), even
though the aim of conservation management is to pre-
vent population impacts. In deed, the potential benefits
of integrating welfare science, including individual
health studies, into conservation management efforts
are starting to be recognised in marine mammal con-
servation (Pirotta et al. 2017). While many biologists
still appear to be discomforted by the now widespread
discussions of welfare in terms of an individual’s sub-
jective experience, i.e. ‘feelings’ (Beausoleil et al.
2018), recent failed attempts to safely live-capture
vaquita in an attempt to conserve the species (Rojas-
Bracho et al. 2019) serve as a reminder of why welfare
must be positioned within scientific discourse, plan-
ning and assessment. While some conservationists,
veterinarians and welfare scientists still consider their
own  disciplines in isolation, an increasing need to find
commonalities in our language, understanding and
application is necessary if we are to positively affect
conservation outcomes for marine mammals (Stockin
2019). The recent application of the 5 domains model
to assess welfare implications of tourism on a critically
endangered whale population is just one example
(Nicol et al. 2020).

3.2.  Monitoring and sampling

Effective management of marine mammals with
diverse habitat ranges depends on the sharing of
species- and population-specific data, environmental
information and data on local, regional and global
threats. Forums such as the IWC have long facilitated
data sharing, and there is now strong evidence sug-
gesting data syntheses are effective at identifying
research and conservation priorities (Campbell et al.
2015, Nguyen et al. 2017, Hindell et al. 2020). Rec-
ommendations for how to achieve this include:

(1) Create data management plans that include
 de finitions of the types of data, their source, for-
mats, interfaces, and scientific robustness (e.g. anec-
dotal records, incidental sightings or systematic
 monitoring).
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(2) Map out potential data sources.
(3) Pool information to produce datasets.
(4) Accompany all datasets with metadata descrip-

tions based on standardised formats and vocabular-
ies, such as MVB (vocab.nerc.ac.uk/collection/MVB)
and use the Biodiversity Information Standards to
offer online management and sharing of data from
multiple sources.

(5) Store and securely back up the data for
providers and users.

(6) Provide protection/privacy policies for re-use of
the available data and determine whether it should
be open access (see Lennox et al. 2020 for issues
regarding release of sensitive biological data).

(7) Encourage the use of free apps/platforms to col-
lect citizen science data and map sightings.

(8) Promote pathways by which scientists, students
and industry can provide input to any resultant
repository database(s).

(9) Enable frameworks for the access and sharing
of data with different stakeholders/users in the short
and long term, while adhering to the ‘Findable, Ac -
cessible, Interoperable, Reusable’ (FAIR) principles
for scientific data management and stewardship
(Wilkinson et al. 2016).

(10) Provide services that acknowledge or display
contributors, in particular the promulgation of data
digital object identifiers (DOIs), to encourage data
publication.

(11) Promote e-learning platforms for training,
especially for remote areas or those with less access
to technological resources.

Building the capacity of scientists with skills in
Open Science, programming for analysis, research
data management, data visualization, information se-
curity, machine learning and author carpentry, and
computational infrastructures (www.codata.org/) will
facilitate data handling required for effective marine
mammal research and conservation. To do this effec-
tively, we need to create strong and relevant commu-
nication and messaging platforms for all marine mam-
mal scientists. Datasets should be made available
within a global repository of metadata (e.g. global
databases that can integrate both species and envi-
ronmental parameters such as the Ocean Biogeo-
graphic Information System, OBIS; https:// obis .org/),
ensuring that existing data can be discovered, ac-
cessed and used to support management decisions,
such as designating IMMAs (De Pooter et al. 2017). A
forum for such a repository could be hosted within an
extant international consortium, such as the IWC, In-
tergovernmental Oceanographic Commission of
United Nations Educational, Scientific and Cultural

Organisation (IOC-UNESCO; https:// ioc. unesco .org/),
OBIS, World Register of Marine Species (WoRMS;
http://www.marinespecies.org/) or the IUCN, thereby
ensuring longevity and that the quality of the data is
maintained and linked to other platforms worldwide.

3.3.  Policy, guidance and assessment

3.3.1.  IUCN Red List

The IUCN Red List (https://www.iucnredlist.org/)
is the globally recognised standard for characterizing
conservation status of species and ecosystems, and
has many strengths. Rigorous application of the
clearly defined quantitative Categories and Criteria
by recognised experts in the field provides a common
currency that a variety of global stakeholders re -
spect, roughly understand and rely upon. Red List
classifications are cited in many contexts, including
popular media, environmental impact assessments
and national and international laws, policies and
treaties (Hoffmann et al. 2008). Assignment of a
‘Threatened’ classification status can spur conserva-
tion action and lend urgency and credibility to
regional recovery programmes, management plans,
research projects and funding, to support practical
conservation efforts. Furthermore, in many cases, the
need to obtain quantitative population data and eval-
uate threats for either national or international Red
List assessments can provide in centive for the expert
compilation of unpublished, but reliable, data on cer-
tain species or populations, or drive new research
which, in turn, informs on-the-ground conservation
efforts (Hoffmann et al. 2008).

While the Red List is generally viewed as authorita-
tive, critics argue that its emphasis on robust data on
abundance and threats may distract energy and
funding away from more practical on-the-ground
threat reduction and conservation interventions (e.g.
Knight et al. 2010). Furthermore, the utility of global
species-level assessments has been questioned on
the grounds that they may provide a false sense of
security for wide-ranging species with geographi-
cally isolated (sub)populations, which themselves are
threatened or in decline (Godfrey & Godley 2008, Des-
forges et al. 2018). Some feel that efforts to address
this concern for marine mammals have resulted in a
somewhat haphazard collection of (sub)population-
level assessments, usually conducted only for those
populations that are well studied, are seriously
threatened and have a ‘champion’ with the expertise
and motivation to prepare and submit an assessment.
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Among other perceived limitations, as an assess-
ment tool only, the Red List lacks ‘teeth’ and has no
mechanism or power to implement or enforce change
at the level of a range state, which is where most of
the regulatory capacity lies (Hoffmann et al. 2008).
However, from its inception, the Red List has been
designed as a widely accepted and practical way to
help stakeholders of all types to set priorities for con-
servation action. Without such a standardised tool,
governments, funding bodies, industry and others
responsible for allocation of resources or develop-
ment of conservation policy, would arguably have
difficulty sifting through and synthesizing scientific
and popular literature to guide their decisions.

The Red List can and should evolve, and comple-
mentary tools can make it more effective to achieve
conservation aims. Recently, in an effort to move
beyond an exclusive reliance on quantitative popu-
lation and trend data, Red List assessments for ceta -
ceans have included greater consideration of the
nature and pervasiveness of threats and their poten-
tial population-level impacts (Minton et al. 2017,
Wang & Reeves 2017, da Silva et al. 2018, Braulik &
Smith 2019), providing a more precautionary and
holistic approach. Combined with national assess-
ments, and other complementary tools, such as place-
based assessments (e.g. IMMAs, Ecologically or
Biologically Significant Marine Areas, or Key Biodi-
versity Areas), the Red List can serve to catalyse
and inform legislation, threat-mitigation efforts and
management measures that lead to population
increase and recovery (Zamin et al. 2010). As the
human footprint on our planet expands to include
almost every marine mammal habitat, putting more
and more populations at risk, the IUCN Red List
remains more relevant for marine mammal conser-
vation than ever.

3.3.2.  Science outreach and advocacy: international
agreements and frameworks

It is frequently argued that the role of science stops
with providing the evidence, leaving policy-makers
to decide how to act. Many marine mammal scien-
tists are likely guilty of statements such as ‘this re -
search is essential to underpin the implementation of
the Marine Strategy Framework Directive’, implicitly
assuming that marine mammal conservation is en -
hanced as a result of research. However, to be effec-
tive, scientists must, from the outset, engage with all
relevant stakeholders, ranging from policy-makers to
the general public: locally, nationally and interna-

tionally. Following the precautionary principle, scien-
tific advice should be offered even when data are im -
perfect (as they usually are), noting that incomplete
knowledge does not justify inaction by managers.

An effective approach to successful conservation
science is to embed it within the adaptive manage-
ment framework (McFadden et al. 2011). Adaptive
management capitalises on opportunities to improve
the effectiveness of management strategies as new
knowledge is gained (McCarthy & Possingham 2007)
and so extends conservation science into manage-
ment strategy evaluation and decision-support sys-
tems, with feedback and linkages between scientific
advice, its implementation (partial or complete) and
evaluation and re-evaluation of outcomes. Such sys-
tems can propose a range of possible science-based
management measures, providing evidence about
the likely environmental, social and economic out-
comes of their implementation, and critically evalu-
ate the likely nature and extent of non-compliance
with measures and its consequences (e.g. the Con-
servation Evidence assessments: www.conser vation
evidence.com). However, this requires adaptation by
scientists, consent of managers and policy-makers,
and support from governments, stakeholders and the
general public. It also presupposes a joined-up ap -
proach to environmental legislation, for example
such that fisheries and conservation management
are integrated rather than dependent on different
legislation and government departments. An ecosys-
tem-based approach to managing charismatic spe-
cies is key in order to truly understand and mitigate
the impacts of multiple threats on marine mammal
populations. This could be supported by a risk-based
approach, which explicitly recognises the monetary
and cultural values attached to marine mammals as a
component of healthy marine ecosystems, objec-
tively measures the likelihood and extent of costs
and benefits, to identify how and where resources
can be most effectively deployed using a return-on-
investment approach to achieve conservation objec-
tives (Tulloch et al. 2020b). This can help to avoid
focussing conservation actions on a few charismatic
species or a few protected areas while the wider eco-
systems on which they depend continue to be
degraded.

3.3.3.  Regulatory versus incentive-based
approaches

The marine mammal conservation science commu-
nity has historically focussed on documenting the
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status of, and threats to, various taxa (Read et al.
2006, Avila et al. 2018) and recommending potential
regulatory or management solutions to the many
conservation concerns. This approach has often not
resulted in the uptake of the solutions proposed,
even in nations where the conservation priority is
codified in legal and policy instruments (Reeves et al.
2003). There are relatively few examples of demon-
strated impact from uptake of science-based recom-
mendations into regulation or management (al though
see Gormley et al. 2012). The potential socio- economic
and resultant political impact associated with re -
gulating activities is often deemed unacceptable
by decision makers, and so a zero-sum trade-off
results. While good governance may be necessary for
marine mammal conservation, it may not always be
 sufficient.

Faced with similar challenges in other sectors, civil
society actors (e.g. non-government organisations
and progressive companies) have sought to create
positive incentives via markets to recognise and
reward those who act in a sustainable or responsible
manner. These actors leveraged increasing societal
expectations for sustainability, coupled with increas-
ing market demand for secure supply chains, and
eventually led to the development of a suite of volun-
tary sustainability certification and labelling pro-
grammes for products, including timber, coffee, palm
oil and fish (e.g. Agnew et al. 2014). Such organisa-
tions develop standards that entities who wish to be
certified need to meet in order to access the potential
benefits of certification (e.g. access to new markets or
price premiums). When these potential benefits
exceed the marginal cost of actions that result in
more sustainable outcomes, organisations who seek
certification are incentivised to implement such solu-
tions. For example, implementing harvest-control
rules to restrict fishing effort as the stock approaches
the target level, increasing levels of observer cover-
age to assess bycatch species and conducting benthic
surveys to improve assessments of habitat impacts.

We suggest that the uptake of marine mammal
conservation-focussed recommendations may bene-
fit from considering how market (or indeed other)
incentives could aid in addressing the socio-eco-
nomic impacts of regulatory or other measures whose
consequences may impede conservation outcomes.
However, in situations where individuals in small
populations of marine mammals are killed inciden-
tally, the time required to implement incentive-based
mechanisms is likely to be too long to prevent local
extinction. For example, all 11 examples of Critically
Endangered small cetacean populations impacted by

gill netting identified by Brownell et al. (2019) have
such small populations that even 1 human-caused
mortality will increase the risk of extinction (see
International Whaling Commission 2018). In such
cases, incentives alone are unlikely to prevent extinc-
tion although they may be a component of a more
comprehensive approach. Interdisciplinary research
to identify the scenarios under which either regula-
tory or incentive-based measures, or both in combi-
nation, may yield successful outcomes would be
valuable. Such research should be undertaken well
before emergency conservation actions are required.
Additionally, improved communication between sci-
entists and the general public may enhance aware-
ness of conservation issues, improve support for pro-
posed solutions and result in greater conservation
success.

4.  RESEARCH AND MONITORING TECHNIQUES

In recent decades, the range of methods used to
ob serve and understand marine mammals has
evolved rapidly. Here we outline examples of key
technological, molecular and social techniques and
discuss their future application and priorities for
development.

4.1.  Technology

4.1.1.  Satellite and drone imagery

Over the past 5 decades, the use of earth observa-
tion satellites and other emerging technologies has
grown exponentially. Decreasing costs, increasing
re solution of sensors, expanding global coverage,
and the availability of public archives of imagery
(e.g. Google Earth) now make it possible for re -
searchers to use remote sensing tools to safely and
efficiently study marine mammals (Moxley et al.
2017, Johnston 2019, Schofield et al. 2019).

Earth observation satellites: Several studies have
successfully employed satellite data to investigate
marine mammal distribution and density. WorldView
imagery has been used to study distributions of Wed-
dell seals Leptonychotes weddellii (LaRue et al.
2011) and polar bears (LaRue & Stapleton 2018), and
to detect and count mysticete whales in several loca-
tions around the world (Fretwell et al. 2014, Cubaynes
et al. 2019, Bamford et al. 2020). Deep learning meth-
ods to automate detection and enumeration in satel-
lite data are in development (Guirado et al. 2019).
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The capacity for studying and conserving marine
mammals via satellites will continue to grow, due to
the continued launch of large earth observation satel-
lites (>50 kg) to support habitat and conservation
studies (Probst et al. 2017), as well as the proliferation
of small satellites (<50 kg; i.e. cubeSats, microSats
and nanoSats, see Spaceworks, https:// www. space
works.aero/nano-microsatellite-forecast-8th-edition-
2018/). These efforts will provide im proved imaging
and increased coverage for purposes of tracking ani-
mals with the Argos System (Bille et al. 2018).

Unoccupied aircraft systems: At present, unoccu-
pied aircraft systems (UASs or ‘drones’) are used to
detect and count marine mammals in shore-based
colonies, on sea ice and at sea (Moreland et al. 2015,
Seymour et al. 2017, Angliss et al. 2018, McIntosh et
al. 2018), assess size and body condition (Durban et
al. 2015, Sweeney et al. 2015, Christiansen et al.
2018, Allan et al. 2019), monitor vital signs (Horton et
al. 2019), study respiratory microbiomes and virology
(Apprill et al. 2017, Pirotta et al. 2017, Geoghegan et
al. 2018), document behaviour (Torres et al. 2018)
and detect and assess injury rates (Martins et al.
2019). These on-demand sampling approaches are
increasingly coupled with automated approaches for
analysis (e.g. Fearnbach et al. 2018, Burnett et al.
2019), including deep learning techniques (Gray et
al. 2019). Alongside these biological and ecological
applications, efforts focussed on understanding and
mitigating disturbance of marine mammals by aerial
and underwater drones are underway (Smith et al.
2016, Arona et al. 2018, Thaler et al. 2019). Finally,
there is a growing interest in using drones to study
human interactions with marine spaces and species,
although key privacy and security concerns must be
addressed (Nowlin et al. 2019).

Drones provide on-demand remote sensing at
 in credibly high resolutions, overcoming many chal-
lenges presented by satellite remote sensing (John-
ston 2019). Furthermore, UAS surveys can be cheaper
and less logistically challenging than occupied aircraft
surveys, and may present opportunities to reduce risk
to researchers and study subjects (Johnston 2019). As
costs decline further and platform and sensor capaci-
ties rise, UAS technology re presents a dramatic de-
mocratization of remote sensing in marine mammal
research and conservation. Unfortunately, at present,
the legal rules associated with the use of UAS in mar-
ine mammal research are complicated, constantly in
flux, and in some locations, their use is prohibited.
This ever-changing legal landscape is one of the
major factors that limits adoption of UAS technology
in marine mammal research.

4.1.2.  Biologging and telemetry

Biologging is the use of animal-borne electronic
tags to record data about individuals and their envi-
ronment (Rutz & Hays 2009; Fig. 2). Biotelemetry
refers to the remote transmission of such data when
tags cannot be recovered (Hart & Hyrenbach 2009,
Hussey et al. 2015). Biologging was pioneered on
marine mammals over 50 yr ago (Kooyman 1966), and
the field has since developed to facilitate data collec-
tion from all marine mammal taxa around the globe
(McIntyre 2014). We are in a ‘Golden Age’ of biolog-
ging science, with rapid advances in technology and
analytical approaches (Ropert-Coudert et al. 2009,
Wilmers et al. 2015). Besides the long-established lo-
cation and dive sensors, an array of additional sensors,
including conductivity, temperature, depth (Boehme
et al. 2009); accelerometers (Ydesen et al. 2014), mag-
netometers (Mate et al. 2017) and jaw movement
(Liebsch et al. 2007); video (Goldbogen et al. 2013);
stomach temperature (Andrews 1998); sound level
(Johnson & Tyack 2003); active acoustics (Lawson et
al. 2015); and, most recently, near-infrared spectro -
scopy to measure haemodynamics (McKnight et al.
2019), can be incorporated into biologging devices.
Such data and associated analytical tools have pro-
vided key information for marine mammal conserva-
tion, including inference of important foraging areas
(Hindell et al. 2020), and how individuals respond to
anthropogenic disturbance (Russell et al. 2016, Iso-
junno et al. 2017) and environmental change (Hindell
et al. 2017, Harcourt et al. 2019b).

As biologging technology and analytical ap proaches
continue to develop, 5 key areas are essential to max-
imise progress for marine mammal conservation:

(1) Improved on-board compression and abstrac-
tion techniques for high-resolution data to optimise
transmission (Photopoulou et al. 2015, Cox et al. 2018).
This will reduce reliance on archival tags, which are
currently only appropriate for certain life stages and
species that can be easily re-encountered, generat-
ing demographic bias in the literature (McIntyre 2014).

(2) Improved tag hydrodynamics and bio-compati-
bility with minimally invasive attachments to limit
energetic consequences of carrying a tag (Kyte et al.
2019), thus helping to mitigate tag effects in biolog-
ging data and welfare concerns (Wilson & McMahon
2006, Horning et al. 2017).

(3) Development of long-lasting miniature tags,
allowing individuals to be tracked over multiple
years, facilitating estimation of vital rates including
survival and recruitment age to improve our under-
standing of population dynamics (Horning & Hill 2005).
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(4) Integration of physiological sensors alongside
simultaneous collection of behavioural and environ-
mental data to allow estimation of the true impacts of
anthropogenic disturbance on marine mammals at
sea (Hays et al. 2016, Pirotta et al. 2018).

(5) Improved integration of biologging and bio tele -
metry data into international marine policy frame-
works for effective conservation (Dunn et al. 2019).

4.1.3.  Habitat preference modelling

Habitat preference modelling (HPM) aims to quan-
tify the link be tween species presence or abun-

dance and environmental co variates
(Fig. 3). For marine mammals, mod-
elled relationships are often used to
predict the at-sea distribution of pop-
ulations (Gregr et al. 2013). For pin-
nipeds, HPM can also be used to
predict distributions on land (Den -
drinos et al. 2007). Predicted distri-
butions are used to identify priority
areas for conservation manage-
ment (Bailey & Thompson 2009, Em -
bling et al. 2010). Although tradition-
ally such models are based on census
or visual survey data (Baum gartner
et al. 2003), ad vances in ecological
modelling techniques have facilitated
HPM for acoustic survey (Marques et
al. 2009, Pirotta et al. 2011, Stani -
street et al. 2018, Mer kens et al.
2019) and individual tracking data
(Aarts et al. 2008, Wilson et al.
2018).

To maximise the potential of HPM
for marine mammal conservation, we
identify 4 general (1−4), and 2 data-
specific (5−6), challenges, and suggest
priorities for future work:

(1) Climate change increases the
challenges associated with HPM but
also its necessity (Hazen et al. 2013,
Silber et al. 2017). Such modelling
often involves extrapolating predic-
tions be yond the environmental pa -
ram eter space in which the model
was fitted (Bouchet et al. 2020). Re -
searchers should highlight areas of
extrapolation and use multiple cli-
mate scenarios to assess the robust-
ness of predictions.

(2) To enhance our ability to predict distributions,
we must improve our understanding of the mecha-
nistic relationships between species and the physical
(e.g. water depth) and biological (e.g. drivers of
prey/predator distributions) processes that shape
habitats (Palacios et al. 2013). This shift towards eco-
system-level modelling requires data on diet compo-
sition and flexibility (Smout & Lindstrøm 2007) but
could facilitate more dynamic management strate-
gies (Maxwell et al. 2015).

(3) Where possible, HPM should be activity-spe-
cific (Palacios et al. 2019). Not accounting for activ-
ity-specific (e.g. foraging, resting and breeding) pref-
erences may result in inaccurate overall preference

Fig. 2. Biologging devices provide a suite of data useful for marine mammal
conservation. For example, satellite telemetry devices deployed on grey seals
in the southern North Sea record and transmit data on their location, dive ac-
tivity and haul-out behaviour, which can be used to answer a range of questions
relevant to conservation management. Photo and tracks credit: Sea Mammal 

Research Unit
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relationships and inadequate protection (Tyne et al.
2015).

(4) Future research should aim to improve the
interface between population models and HPM to
directly link population dynamics and habitat trends
with species distributions (Hindell et al. 2017).

(5) Models using survey data should propagate
un certainty in detection probabilities to inform
uncertainty surrounding predictions (Marques et al.
2009).

(6) HPM for presence-only (i.e. tracking) data
often requires various subjective assumptions. More
robust predictions depend on understanding the
impacts of such assumptions and would benefit
from combining multiple data sources to evaluate
methods (Mikkelsen et al. 2016, Woodman et al.
2019), and linking inference from the typical HPM
landscape-scale models with models of individual
movement paths (Signer et al. 2017, Michelot et al.
2019).

4.1.4.  Real-time acoustic data

In contrast to light, sound travels well underwater
and has become a key source of information on mar-
ine mammal species presence, system attributes and
harmful anthropogenic activities. Options for deploy-
ing acoustic monitoring sensors into appropriate
locations are diverse (Van Parijs et al. 2009) and typ-
ically rely on passive-acoustic monitoring using hydro -
phones. The simplest approach is to suspend one or
multiple hydrophones in the water, using any plat-
form, from canoes to ships. Vessels can be expensive,
however, and impractical for long-term use. Continu-
ous monitoring can be achieved if hydro phones can
be cabled to shore. Though more convenient, cables
are costly and vulnerable to damage from storms or
fishing activities, and require substantial, often mili-
tary, infrastructure (e.g. Tyack et al. 2011). With the
advent of small, low-power electronics, miniaturisa-
tion has revolutionised acoustic monitoring, and

Fig. 3. (a) Locations of 104 blue whales Balaenoptera musculus were tracked using satellite-monitored radio tags off the US
West Coast between 1994 and 2008, with colour shading indicating the number of tagged whales occurring inside 25 km grid
cells to highlight the hotspots of highest observed aggregation. Red circles indicate the 3 areas where the tags were deployed
(see Bailey & Thompson 2009 for details). Tracks credit: Oregon State University (OSU). (b) Prediction of the likelihood of blue
whale occurrence (% chance) based on habitat preference modelling of static and dynamic habitat variables in the California
Current ecosystem for September 2019, on a 25 km resolution grid, from the WhaleWatch model available from NOAA at 

https://  www.fisheries.noaa.gov/west-coast/marine-mammal-protection/whalewatch (see Hazen et al. 2016 for details)
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many options are now available to re motely capture
and archive sound without vessels or cables (Sousa-
Lima et al. 2013). Hydrophones and recorders are
commonly packaged as free-standing units and left
alone in the water to record for days, months or
longer and can be stationed at any depth by using
acoustic release mechanisms (Mellinger et al. 2007).
Memory size, battery life, desired sampling rate and
duty cycling determine device duration. Units are
most often left at sea moored or drifting, alone or in
arrays (Van Parijs et al. 2009, Wilson et al. 2014). Fur-
ther miniaturisation has even made it possible to
attach them to the animals themselves (Johnson &
Tyack 2003, Fregosi et al. 2016). Passive acoustic
monitoring is not suitable for species such as pin-
nipeds that do not reliably indicate their presence
through vocalisations. For these species, active sonar
is emerging as a potentially useful monitoring tech-
nique (Hastie et al. 2019).

There are a number of situations where stored
sound is insufficient and real-time information is
needed. Examples include those where animal
presence and location are used to observe how they
respond to the presentation of particular signals
(Tyack et al. 2011) or where industrial activities
need be curtailed when animals are present (Ver-
fuss et al. 2016). For such applications, real-time
sound might be transferred through cables or via
satellite or cellular networks (Lee et al. 2018). Real-
time acoustic monitoring of right whales on the east
coast of the USA is used to notify mariners of their
location, thus reducing the risk of ship strikes (Sol-
devilla et al. 2014). The high-frequency and cryptic
nature of many marine mammal signals, however,
mean that sophisticated data compression and auto-
mated detectors are re quired (Gillespie et al. 2009).
Here, the ongoing artificial intelligence revolution
in signal detection and species classification meth-
ods has exciting potential for marine mammal stud-
ies. The proliferation of above- and below-water
unmanned vehicles has meant that acoustic sensors
can be attached and manoeuvred into and through
a wide variety of challenging habitats at less cost
than traditional ap proaches (Verfuss et al. 2019).
Especially exciting is the possibility of communica-
tion and re sponsive sampling or movement between
un manned vehicles so that all the benefits of appli-
cations like arrays can be harnessed without the
limitations of being fixed in space. At such a point,
listening to marine mammals could be as mobile as
the animals themselves. An operational challenge
for the marine research community will be to keep
abreast of the ever-changing tools long enough to

apply, test, debug, validate and optimise them so
that they can be used to usefully answer urgent
questions re quired for marine mammal conservation
and  management.

4.1.5.  Electronic monitoring of fisheries

Electronic monitoring (EM) systems are increas-
ingly being used to complement conventional human
on-board observer programmes and to initiate at-sea
monitoring of fishing practices where none previ-
ously existed, and can produce estimates of marine
mammal bycatch with high precision and possibly
higher accuracy than estimates derived from conven-
tional at-sea observer programmes (Kindt-Larsen
et al. 2012, Bartholomew et al. 2018). EM systems
 typically use on-board cameras, global positioning
 systems, sensors and data loggers to collect informa-
tion on fishing, trans-shipment and supply vessels
(Restrepo et al. 2018). Properly designed EM systems
have several advantages over conventional human
observer programmes, in particular, greatly reducing
3 main sources of statistical sampling bias (Mon-
teagudo et al. 2015, Kennelly & Hager 2018, Gilman
et al. 2019):

(1) Observer effect: Fishers may alter their fishing
practices and gear in response to the presence of a
human observer or EM system. The higher the
observer and EM coverage rate, the lower the bias
from an observer effect, where 100% observer cover-
age would eliminate this source of bias. Having all
vessels outfitted with EM equipment and analysing a
random sample or all of the EM imagery could elimi-
nate this source of bias.

(2) Observer displacement effect: Management
authorities may not place observers on vessels that
are too small to accommodate an additional person,
or because they are unsafe, or it may be logistically
challenging for placement. Vessel specification re -
quirements for EM systems are much lower than for
a human observer. EM therefore enables avoiding an
observer displacement effect so that sampling is ran-
dom and balanced proportionately across ports and
vessel  categories.

(3) Coercion and corruption: At-sea observers col-
lect sensitive information, and the vessel captain and
crew may hinder the observer from properly con-
ducting their monitoring activities, threaten the ob -
server’s safety or attempt to bribe the observer to not
report damaging information. Some observers may
deliberately misreport sensitive data fields due to
friendships with fishers.
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EM also provides more accurate data by enabling
multiple areas of vessels to be monitored simultane-
ously and near-continuously, allowing questionable
data to be audited. Logbook data self-reported by
fishers can be much less reliable than EM data, in
particular for discards and bycatch of species of con-
servation concern, as fishers may have economic or
regulatory disincentives to record accurate data, or
may be inattentive (e.g. Walsh et al. 2002). Camera
set-up, however, can be a weakness for EM systems,
as areas on deck or water where crew handle and
release non-retained catch may not be within EM
camera fields of view (Monteagudo et al. 2015, Lar-
combe et al. 2016, Bartholomew et al. 2018, Briand et
al. 2018). For marine mammals, and other species
that crew release, blind spots may prevent EM sys-
tems from detecting the capture event, or when
detected, could prevent EM analysts from determin-
ing the species, condition, handling and release
methods employed by crew, or what gear remained
attached to the animal upon release (McElderry et al.
2010, 2011, Gilman et al. 2020). Minor modifications,
such as adding a dedicated camera on the outboard
side of the rail near the hauling station (Gilman et al.
2019), obtaining crew cooperation to bring bycatch
into the EM camera field of view prior to release,
and, if needed, adjusting deck lighting to ensure that
areas within the EM cameras’ fields of view are ade-
quately lit, could all help address the issues of visibil-
ity and detection by cameras (Gilman et al. 2019).

4.1.6.  Spatial Monitoring and Reporting Tool patrols

Spatial Monitoring and Reporting Tool (SMART) is
a suite of best practices and a free, user-friendly soft-
ware program (https://smartconservationtools.org/)
used by protected-area managers and local commu-
nities to document, adaptively manage and evaluate
the performance of wildlife enforcement and moni-
toring patrols. The software can also integrate data
collected from other sources, such as informant net-
works and vessel monitoring systems. Although
SMART has been used mostly for terrestrial wildlife
enforcement and monitoring patrols, it is also becom-
ing a valuable conservation tool in the marine envi-
ronment (Cronin et al. 2019). SMART is being pio-
neered for marine mammal conservation in the
waterways of the Sundarbans mangrove forest of
Bangladesh which support populations of Ganges
river dolphins Platanista gangetica and Irrawaddy
dolphins Orcaella brevirostris (Smith et al. 2006),
both considered Endangered on the IUCN Red List

(Minton et al. 2017, Braulik & Smith 2019). Between
January and September 2018, the Bangladesh Forest
Department conducted 63 SMART patrols lasting
10−12 d each and covering more than 68 000 km. A
total of 322 offenders were arrested, more than half
for illegal fishing that threatened dolphins. In addi-
tion, 292 vessels and 312 illegal fishing gears were
seized, and 962 georeferenced sightings were made
of Ganges river dolphins and 296 of Irrawaddy
 dolphins.

SMART is also being deployed in the Mekong River,
which supports a genetically distinct Irra waddy dol-
phin population (Krützen et al. 2018) considered
Critically Endangered on the IUCN Red List (Smith &
Beasley 2004). Sixty-eight river guards were re -
cruited from local communities and stationed at 16
outposts throughout the 190 km long distribution of
Irrawaddy dolphins in the Mekong. SMART patrols
resulted in a dramatic increase, from 998 in 2014 to
2596 in 2016, in confiscation of illegal gillnets that
bycatch Irrawaddy dolphins and certainly contributed
to a reduction in mortality and an increase in dolphin
abundance (Thomas & Gulland 2017).

As SMART is adaptable to use in different situa-
tions in different environments, it is ideal for guiding
effective conservation management and promoting
accountability using both top-down (e.g. government
led) and bottom-up (e.g. community led) approaches.
Information collected on marine mammals during
SMART patrols, including geo-referenced sightings
and mortalities, can be especially valuable in areas
where dedicated studies and local capacity for con-
ducting marine mammal research is lacking. A key
factor in the success of SMART is intensive training
and mentoring for field-level practitioners and data
managers.

4.2.  Molecular techniques

The rapid advancement and decreasing cost of DNA
sequencing technology provides an ever-expanding
suite of tools to assist in marine mammal conserva-
tion (Cammen et al. 2016). For example, the investi-
gation of genetic data can highlight vulnerabilities
from reduced genetic diversity, examine resilience
and plasticity, assess susceptibilities to environmen-
tal and anthropogenic stressors, develop necessary
management strategies associated with population
differentiation and cryptic species, and help to under-
stand the mechanisms that determine these factors.

Marine mammal distributions vary from local
endemics to global species inhabiting all major ocean
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basins (Kaschner et al. 2006). Many species with
large ranges are sub-divided among insular regional
populations that are genetically differentiated (Hoelzel
2009, Vianna et al. 2010). The identification of these
groups can help effective management by defining
populations to protect and therefore conserving the
evolutionary potential for the species as a whole
(Barlow et al. 2018). It is also useful to compare pat-
terns of genetic diversity and demography within
and between distinct populations, as local adaptation
and differing levels of diversity may reflect different
sensitivities to exploitation and disturbance. For
example, low genetic diversity in small populations
or species increases the risk of inbreeding depres-
sion, a loss of evolutionary potential in a changing
environment and increased risk of disease (Hoffman
et al. 2014, Leroy et al. 2018).

One of the earliest, and still widely used, applica-
tions of genetics in marine mammal conservation is
the forensic identification of animals to species, and
sometimes population, of origin (Ogden & Linacre
2015, Baker & Steel 2018). Sequence data (such as
the control region of mitochondrial DNA) from the
sample in question is compared to a database of val-
idated species (e.g. Ross et al. 2003), and can reveal
illegal harvest and trade (Baker et al. 1996), and
quantify the prevalence of a particular species in
bycatch (Henshaw et al. 1997) or strandings (Alfonsi
et al. 2013). They can even result in the discovery of
new species when the samples have no database
match (Dalebout et al. 2002). Advancements of these
methods have allowed for the identification of spe-
cific individuals in genetic monitoring programmes,
a particularly useful method to estimate vital life his-
tory parameters and connectivity when the recapture
of individuals is possible (Carroll et al. 2018).

Future directions in conservation genetics will in -
volve improving new sequencing technologies (Ama -
rasinghe et al. 2020), expanding the use of ‘-omics’
technologies in non-model species, refining methods
to extract genomic material from minimally invasive
material (i.e. seawater, faeces, exhaled breath, an -
cient samples; Carroll et al. 2018), combining genetic
data with those of other monitoring techniques (e.g.
telemetry or demographic) to inform meta-popula-
tion dynamics (Carroll et al. 2020) and developing
tools for storing and analysing vast quantities of
genetic data for Big Data analyses (Siepel 2019).

Harnessing the power of advanced gene editing
technology may also become an option in the wildlife
conservation toolkit, with methods such as clustered
regularly interspaced short palindromic repeats
(CRISPR/ Cas; Cong et al. 2013) and gene drives

(Esvelt et al. 2014) opening the doors to de-extinc-
tion, more effective and/or humane eradication of
pests/ invasive species/pathogens, vaccine develop-
ment and fitness improvements by increasing genetic
diversity in the face of accelerating pathogen and cli-
mate change threats (Shapiro 2015, Novak et al. 2018).

4.3.  Societal engagement

‘Citizen science’ can be defined as the collection or
collation and processing of data by members of the
public who may not necessarily have scientific cre-
dentials, but whose contribution can aid in ongoing
scientific research (Bonney et al. 2014, Wood et al.
2015). The ever-increasing popularity of portable elec-
tronic devices gives users online accessibility to web-
sites and social media platforms, and enables them to
contribute data on subjects such as species occur-
rence and distribution (Wood et al. 2015) as well as
incidents of injury or mortality (e.g. entanglement in
plastic pollution; Donnelly-Greenan et al. 2019).

With quality checks, citizen science can be espe-
cially useful in gathering information on data- deficient,
elusive and difficult to study marine mammal spe-
cies, particularly in regions of the world where carry-
ing out extensive surveys is logistically and finan-
cially challenging (Stafford & Baumgartner 2014,
Olson et al. 2018). Information from social media
posts can be a source of data where no other data
exist and can be mined retrospectively, after citizens
have shared their observations (Parton et al. 2019).

In India, a marine mammal data-deficient country,
an increase in the number of annual marine mammal
sighting/stranding records appeared after 2012
(www. marinemammals.in), when this open access
database was first advertised widely, resulting in
greater participation from the public and increased
information. In Vietnam, another marine mammal
data-deficient country, species occurrence and diver-
sity were investigated by data mining social media
and other online entries for sightings and stranding
events along the entire coastline of the country over
a 14 yr period. This yielded 166 events with at least
15 species of cetaceans, including 1 new species
record (Vu & Ponnampalam 2018). Citizen science
has also been used for more complex investigations.
For example, in Australia, data collected by non-spe-
cialist volunteers has contributed to understanding
local habitat use by migrating humpback whales
(Bruce et al. 2014) and enabled scientists to monitor
their rate of recovery (Pirotta et al. 2019). Similarly, in
New Caledonia, Derville et al. (2018) found that citi-
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zen science data were a valuable tool in describing
cetacean habitat in a study of humpback whale
 distribution.

The development of mobile applications, or ‘apps’,
has led to the creation of various marine mammal
reporting apps that are locality specific, such as
Whale Alert, Dolphin and Whale 911, Beach Track,
SEAFARI, Whale Track, Happywhale and SIREN.
These enable the public to easily report any marine
mammal sighting or stranding in a standardised
manner that provides researchers with key informa-
tion. Apps are also an opportunity for the public to
become more informed, interested and involved in
marine conservation issues (Edwards 2015). Investi-
gating the effectiveness and limitations of mobile
apps, as well as citizen science programmes, can
improve those platforms and so ensure the quality of
the data and enhance the sustenance of these pro-
grammes (Thiel et al. 2014, Hann et al. 2018). One
caveat, however, is that citizen science programmes
are not a panacea and are most valuable when a sci-
entifically robust design is implemented at the outset
(Bird et al. 2014, Embling et al. 2015).

5.  PARTICULAR TAXA/ POPULATIONS THAT
ARE IN URGENT NEED OF FOCUS

Despite the great strides made by researchers and
conservationists towards finding ways to monitor and
protect marine mammals and their habitats, species
and populations continue to be lost. The baiji was
declared likely extinct in 2006 (Turvey et al. 2007),
and the vaquita is close behind. Here, we highlight
selected examples of species for which additional
focus might yet turn the tide of their fortunes. The
North Pacific and the North Atlantic right whales
(Eubalaena spp.) were driven to near-extinction by
whaling by the early 20th century (nearly 30 000 were
taken in the North Pacific during 1840−1849 alone;
Scarff 2001, Reeves et al. 2007), and the populations
have languished since then, even in the absence of
whaling (Cooke & Clapham 2018). Right whales
remain extremely rare throughout their historical
range in the North Pacific, with few recent signs of
successful reproduction and recruitment. The main
threats to both species are ship strikes and entangle-
ment in fishing gear (Harcourt et al. 2019a). How-
ever, climate change may be exacerbating problems
by pushing whales further north. Every individual
lost lessens the chances of recovery, and research
effort focussing on solutions to mitigate these threats
is urgently needed.

Similar to the plight of baleen whales, all monk seal
species (genera Monachus and Neomonachus) expe-
rienced overhunting by sealers. Of the 3 species, the
Caribbean monk seal is extinct, while the Hawaiian
and Mediterranean monk seals are IUCN Red-listed
as Endangered. After a long history of decline,
Hawaiian monk seals managed to stabilize at around
1300 individuals in 2013−2015 (Baker et al. 2016).
However, they have particularly low genetic diversity
(following a population bottleneck) and have one of
the highest documented rates of entanglement of any
pinniped (Antonelis et al. 2006). For the Mediterran-
ean monk seal, strong conservation efforts, in Madeira
(Portugal), Greece and Mauritania, have enabled
seals to persist in a few parts of their now highly frag-
mented range, but the entire meta-population com-
prises less than 500 mature individuals (Karamanlidis
& Dendrinos 2015). Habitat loss, entanglement in fish-
ing gear, deliberate persecution by fishermen, re-
duced genetic diversity and a litany of other stressors
continue to threaten these seals.

All 4 sirenian species (genera Dugong and Tri -
chechus) are classified as Vulnerable (Marsh et al.
2011). However, some populations (e.g. West Indian
manatees T. manatus) are likely to be secure given
their location in highly developed countries with ad -
vanced conservation practices. In contrast, the future
of African manatees T. senegalensis is particularly
concerning because of the high levels of poverty
throughout most of their range, an issue that will be
exacerbated by climate change. Similarly, local ex -
tinctions of very small, isolated populations of dugongs
are likely in East Africa, the South Asian sub-conti-
nent, Palau and Japan (Marsh & Sobtzick 2017).

The Critically Endangered Atlantic humpback dol-
phin Sousa teuszii, endemic to nearshore waters be -
tween Western Sahara and Angola (Weir & Collins
2015), has a discontinuous distribution, with small
remnant populations (typically 10s to low 100s) iso -
lated by hundreds of kilometres. This likely reflects the
distribution and relative intensity of several anthro-
pogenic stressors, for example, habitat loss, gillnet
fisheries and local consumption as marine bush meat
(Collins et al. 2017). Although the conservation pro -
spects in some areas appear ‘intractable’ (Ayissi et al.
2014), with stringent measures, the species’ status
could yet improve. An urgent focus is required on
known strongholds with explicit measures to reduce
bycatch, protect habitat (e.g. through MPA designa-
tion) and prevent hunting. To date, however, conserva-
tion has been limited by an absence of resources and
capacity to conduct much-needed work (Van Waere-
beek et al. 2004, Weir et al. 2011, Ayissi et al. 2014).
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In southern Asia, small coastal, lagoonal and river-
ine populations of river dolphins (Platanista), Irra -
waddy dolphins (Orcaella spp.), Indo-Pacific hump-
back dolphins (Sousa spp.) and finless porpoises
(Neophocaena spp.) are threatened primarily by
entanglement in gillnets and other fishing gear, and
secondarily by chemical and noise pollution, loss and
degradation of habitat as a result of water manage-
ment policies and structures, competition with fish-
eries, inland shipping and low levels of hunting
(Sutaria 2009, Sutaria et al. 2015, Khanal et al. 2016,
Minton et al. 2017, Sule et al. 2017, Braulik & Smith
2019, Dey et al. 2019). The risk of losing local popu-
lations rises as their numbers become smaller over
time in a region that is under immense development
pressure, with ever-increasing human population
densities and little or no evident political will to pro-
tect biodiversity and natural habitat.

The maritime fur trade of the 18th and 19th centuries
caused a significant decline in sea otter populations,
reducing their numbers from approximately ~300 000
to less than ~2000 individuals (Davis et al. 2019). Al-
though some populations are now recovering due to
the implementation of multi-national management
measures, the pre-exploitation range of this species is
highly fragmented, and some populations remain in
decline due to issues such as habitat de gradation and
loss, oil spills, potential fisheries interactions, preda-
tion and disease events (Doroff & Burdin 2015).

Although some sub-populations of polar bears may
initially benefit from the effects of climate change on
sea-ice thickness (Laidre et al. 2020b), rising temper-
atures pose severe risks to the species as a whole. A
reduction in sea-ice leads to diminished access to
prey and lower reproductive success (Laidre et al.
2020a), as well as increased disturbance from humans
due to the opening up of new shipping routes (Gross
2018). Accurate population estimates for polar bears
are limited, and the current population trend for the
species is unknown. Large reductions in the global
polar bear population are predicted, however, if sea-
ice loss continues as forecasted by climate models
(Wiig et al. 2015).

6.  CONCLUSION

Marine mammals are a diverse group, inhabiting
marine, estuarine and many riverine environments
globally. While very few marine mammal species
have been driven to extinction in modern times, con-
tinued increases in anthropogenic pressures on our
marine and freshwater ecosystems are placing new

and powerful stressors on many species and popula-
tions. As we begin the Decade of Ocean Science for
Sustainable Development, we have taken a renewed
synthetic view of these key threats, discussed exist-
ing and future conservation mechanisms and out-
lined emerging research and monitoring techniques
that can be engaged to help safeguard marine mam-
mals over the horizon.
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