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ABSTRACT: Whaling records from the mid-1800s provide the largest set of observations with
which to conduct a basin-scale analysis of potential North Pacific right whale Eubalaena japonica
habitat. Since these data lack the concurrent oceanographic data necessary to investigate the spe-
cies' habitat characteristics [ used ocean climate from a 20th century circulation model to create a
suitable set of habitat predictors. My goals were to (1) identify regions of suitable habitat and (2)
investigate the processes underlying the species—habitat relationship by (3) examining model per-
formance at different spatial and temporal scales. The results show 2 non-overlapping habitat
regions in the subarctic North Pacific, supporting the notion of 2 distinct subpopulations. The
analysis also implicates surface temperature and temperature variability as strong indicators of
potential right whale habitat. Tests of model performance at different scales strongly suggest that
at the basin-scale, right whales use regions of cold water with low inter-annual variability and
high within-season variability (i.e. areas where high frontal activity occurs predictably from year
to year). The significance of these indicators decreased at the regional scale emphasising the cou-
pling of scale and process, and thus the need for different predictors at different scales. Compar-
isons of models built using different subsets of the dependent data showed how hypotheses can be
tested and potential biases in observational data can be explored. Analyses of rare species’ habitat
such as this can provide guidance for more directed survey efforts and help identify areas and pro-
cesses of potential biological importance.
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INTRODUCTION

The right whale was the first species of large whale
to be driven to near extinction by 19th century whal-
ing, as whalers in sailing ships scoured the entire
North Pacific in search of ever-dwindling prey. The
eastern subpopulation, estimated in the dozens
(Wade et al. 2010), remains at critically low levels,
while the western subpopulation, numbering in the
hundreds (Brownell et al. 2001), appears relatively
better off.

Historically, North Pacific right whales Eubalaena
japonica are believed to have ranged across the
entire North Pacific (Scarff 1986, 1991, Brownell et
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al. 2001, Clapham et al. 2004), with concentrations in
the Gulf of Alaska (GOA), the southeastern Bering
Sea (SEBS), the Sea of Okhotsk, the Kuril and Kam-
chatka coasts, and the Sea of Japan (Fig. 1). They
were also found in oceanic waters across much of the
North Pacific (Braham & Rice 1984, Scarff 1991,
Clapham et al. 2004). The last known large concen-
trations in the eastern North Pacific occurred in the
northern Gulf of Alaska and on the SEBS shelf and
were the focus of illegal Soviet whaling between
1963 and 1967 (Brownell et al. 2001). The few sight-
ings of right whales in the eastern North Pacific since
the 1980s have generally been concentrated in
Alaskan waters, where considerable survey effort
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Fig. 1. Extent of study area showing the historic whaling data compiled by Townsend (1935) and digitised by the Wildlife Con-

servation Society (2004). The data were divided into eastern (blue) and western (red and pink) subpopulations of Eubalaena

japonica based on 180° longitude for analysis. Black dots south of 40°N were excluded because foraging is believed to be un-

likely at these latitudes. The black frame shows the reduced study area extent used for regional models. Pink dots in the west-

ern subpopulation represent kills that may not have been foraging right whales (see ‘Materials and methods'); their potential

to bias model predictions was tested. Predicted upwelling canyons are shown based on the interaction between canyon size
(>1500 m?), vertical rise (>1000 m), aspect and seasonal current direction (author's unpubl. data)

has been applied (Shelden et al. 2005). Contempo-
rary sightings in the western North Pacific continue
to be made in the historic areas of use (Brownell et al.
2001).

Like most baleen whales, right whales tend to oc-
cupy high-latitude feeding grounds from spring to au-
tumn, moving to lower latitudes in winter, presumably
to calve. They are believed to forage almost exclu-
sively on large-bodied copepods (Omura et al. 1969,
Gregr & Coyle 2009). Predictive models of potential
habitat, with an emphasis on the underlying processes,
would greatly improve our understanding of how this
species uses its oceanic environment. This would
support conservation efforts in a number of ways,
such as improving at-sea encounter rates, thereby in-
creasing the effectiveness of field surveys. The pre-
dictions could also serve to assist with management
decisions, such as assessing potential risks to the
species and improving descriptions of critical habitat.

However, habitat studies of rare species such as
the North Pacific right whale in a space as large
as the North Pacific Ocean face significant chal-

lenges. Developing species—habitat relationships
relies on correlations between a sizeable sample of
species occurrences and environmental observa-
tions (Guisan & Zimmermann 2000). Not only are
there few contemporary right whale sightings, but
observations of the physical marine environment,
particularly on the high seas, are extremely patchy
in time and space (Munk 2000). I overcame the
first problem by using historic whaling records and
the second problem by using the output from a
general circulation model (GCM) of the North
Pacific. GCMs, while still striving to capture fine-
scale detail, do well at describing average ocean
conditions (Gregr & Coyle 2009).

In this analysis, I focused on the basin scale, where
right whale movements between feeding and winter-
ing grounds and between different feeding areas are
likely mediated by seasonal changes in foraging
opportunities (Gregr & Coyle 2009). Kenney et al.
(2001) proposed that movements at this scale are
related to aspects of topography, ocean currents and
acoustics. I therefore assumed that individuals use
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oceanographic cues to find patches of copepods suit-
able for foraging (Kenney et al. 2001, Baumgartner et
al. 2007, Gregr & Coyle 2009).

Since both the production and retention of plank-
ton are forced by dynamics at multiple scales (Bakun
1996), I explored the effects of temporal resolution
and study area extents—the 2 components of
scale—on the relationship between right whale
observations and the physical predictor variables. I
used a presence-only approach to relate the historic
whaling data and the predictor variables, developed
annual and seasonal models to explore the effect
of seasonality, and tested the effect of model de-
sign (data selection and spatial extents) on model
performance.

MATERIALS AND METHODS

I used the Wildlife Conservation Society's (2004)
digitisation of the Townsend (1935) catch data as my
dependent data. These data include the locations of
whales Kkilled during the peak of right whale
exploitation—a brief 10 yr period beginning about
1840 (Josephson et al. 2008a). I constrained the study
to the subarctic North Pacific, generally considered
to be north of 40°N latitude (Uda 1963). I included the
records south of 40°N in the Sea of Japan for com-
pleteness. Following Brownell et al. (2001), I divided
the data into eastern and western stocks based on an
assumed boundary at 180° longitude. For the sea-
sonal models, I defined spring and summer accord-
ing to peak biomass and surface residencies of key
prey species, summarised by Gregr & Coyle (2009).
Spring (April to June) overlapped with the peak sur-
face residency time of adult large-bodied copepods,
while summer (July to September) overlapped with
the peak abundance of the smaller shelf-dwelling
copepod species. I omitted the remaining 6 months
(October to March) as very few whaling records exist
for those months.

I based my preliminary selection of predictor vari-
ables on a combination of ecological understanding
and data availability. These data included static geo-
graphic variables defined from bathymetry (depth)
and dynamic ocean climate variables (e.g. tempera-
ture) scaled to match the seasonal partitioning of the
right whale data. The geographic variables were
derived from the ETOPO1 global elevation data set
(Amante & Eakins 2009) and included depth (z),
slope (the rate of change of depth, z'), complexity
(the rate of change of slope, z") and distance to the
200 m contour (dygg).

I characterised ocean climate using the output from
a GCM for the North Pacific (Wang & Chao 2004).
Results were available for the second half of the 20th
century, with high temporal resolution, on a half-
degree longitude-latitude grid. I assumed that at the
basin scale, a long-term 20th century climatology
(i.e. a map of mean conditions) reasonably repre-
sented the relative seasonal ocean conditions that
existed at this spatial resolution during the early,
intense phase of the right whale fishery (1840s). I also
assumed the GCM output produced a reasonable
measure of the true relative differences in late 20th
century ocean climate.

From the GCM, I obtained mean monthly wind
speed, temperature and salinity (both at 1, 10, 50 and
150 m, and bottom) and current speed (surface, 50
and 150 m, and bottom) for all months from 1950 to
2001. T created 50 yr annual and seasonal (spring,
summer) climatologies for each variable, with the sea-
sonal climatologies based on the mean of all monthly
values in each season. From these climatologies, I cal-
culated 2 difference variables (surface — 50 m and sur-
face — 150 m) for temperature, salinity and currents to
represent the potential influence of the surface mixed
layer and the permanent halocline, respectively.

I defined a dynamic (seasonal) geographic vari-
able, distance to upwelling canyons (d,; Fig. 1). This
variable represents the distance to canyons capable
of generating upwelling via bathymetric steering.
Upwelling canyons were defined as those whose
aspect opposed, with a 45° tolerance, the seasonal
current at 150 m depth (author's unpubl. data).

Finally, I defined 2 measures of variability to cap-
ture intra- and inter-annual variability. | defined the
mean seasonal variability (sv) as a measure of the
average long-term variability of temperature or
salinity within a season (Eq. 1). I defined the inter-
annual variability (av) as a measure of how the mean
of a variable changes from year to year (Eq. 2).

50 50 3
Se-m  $3i,
sv=Y1 _ where T =221 (1)
50 150
50 3
2 Z (tmy - g)z
av = y=1m=1 (2)

150
The equations show the calculation for tempera-
ture (t); y indicates the years available and m the
months within the seasons. I calculated these predic-
tors for temperature and salinity, for both seasons
(spring, summer), and for both surface and bottom
depths. These variables were, by definition, only rel-

evant for the seasonal models.
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In all, I considered a total of 34 predictor variables
(5 geographic and 29 oceanographic), most of which
had both annual and seasonal forms. Exceptions
included the 8 variability measures which applied
only to the seasonal models, and all but one (distance
to upwelling canyons) of the geographic variables. I
projected all data to a Lambers Conic equi-distance
projection centred on 180°N. Data were managed
using ArcGIS 9.3 (ESRI 2008).

I scaled the study in consideration of the indepen-
dent data used and the temporal mismatch between
these and the dependent data. The half-degree reso-
lution of the CGM corresponded to a projected grid
of 50 x 50 km? cells. While this spatial resolution
would support a monthly temporal resolution, I used
seasonal climatologies to reduce potential differ-
ences between the dependent and predictor data
sets. The long-term (i.e. 50 yr) climatology removed
much of the inter-annual variability (e.g. El Nino,
Pacific Decadal Oscillation), while seasonal averag-
ing removed within-season variability, leaving only
the strongest long-term seasonal signals in the data.
Spatially, the 50 x 50 km? resolution removed local,
high-frequency patterns, such as fronts and eddies,
leaving behind basin-scale signals well suited to the
defined temporal scale. This reduction of the ocean
climate to the strongest seasonal signals helped over-
come any climate differences between the 2 eras.

A challenge to predicting habitat using any oppor-
tunistically collected data set, such as historic whal-
ing records, is a lack of true absence data. Such
analyses require either presence-only methods, or a
means of generating pseudo-absences. In a review of
how 11 different habitat modelling methods per-
formed in handling presence-only data, Elith et al.
(2006) drew 2 important conclusions. First, presence-
only data can reliably be used to model species distri-
butions. Second, new machine-learning methods
(essentially computer-based pattern detection algo-
rithms) outperformed both established presence-only
methods and the regression-based, presence-
absence approaches (i.e. generalised linear and
additive models with pseudo-absence data) based on
several criteria (Elith et al. 2006). This and other com-
parisons of presence-only methods (e.g. Wisz et al.
2008, Tittensor et al. 2009) found that the maximum
entropy method (MaxEnt; Phillips et al. 2006) regu-
larly performed better than other approaches. I
therefore used MaxEnt (Version 3.3.1) to build the
predictive models for the present analysis.

The MaxEnt tool iteratively searches for the multi-
variate distribution that is closest to uniform, subject
to the constraint that the expected value of each pre-

dictor variable (or its transform and/or interactions)
matches the average associated with the species
observations (Phillips et al. 2006). Essentially, it min-
imises the difference between 2 probability densities
(i.e. observed and background) defined in feature
space (Elith et al. 2011; for more details see Phillips et
al. 2006, Dudik et al. 2007, Phillips & Dudik 2008).

MaxEnt uses a number of variable formulations
(called features) to fit the model. Features include
forms normally associated with envelope models,
such as threshold and hinge features (step- and
piece-wise functions, respectively), and regression-
like forms, such as linear, quadratic and product
terms (Phillips & Dudik 2008). To reduce the poten-
tial for over-fitting, MaxEnt provides a variable (reg-
ularisation) to reduce the precision of the fit required
from each variable. Higher regularisation gives a less
precise fit to the constraints.

I elected not to compare a variety of modelling
methods because my focus here was on the explo-
ration of the spatio-temporal scaling of the data.
While a comparison of methods would be warranted
prior to adopting any such results for management, it
would unnecessarily complicate the results pre-
sented here without significantly influencing the
conclusions.

I began by developing annual models to explore
differences between the western and eastern sub-
populations of North Pacific right whales. I used
these annual models to examine how the spatial
extents of both the dependent and the predictor data
influenced model performance. I then developed
seasonal (spring, summer) models for each subpopu-
lation to evaluate how the performance of the predic-
tor variables changed at different temporal scales.
Finally, I investigated how the predictions for the
western subpopulation responded to the removal of
potentially biasing records (i.e. right whale records
from the northern Sea of Okhotsk likely represent
bowhead whales [Josephson et al. 2008b], while it is
unclear whether the Sea of Japan represents a forag-
ing ground, or simply a migratory corridor [Brownell
et al. 2001]). In total, I built 8 annual and 14 seasonal
models by systematically modifying the temporal res-
olution and spatial extents of the data used.

I compared model performance using the regu-
larised gain and the AUC (area under the receiver-
operating characteristic curve; Fielding & Bell 1997)
statistics reported by MaxEnt. Gain is related to
deviance and measures goodness-of-fit using the
average log probability of the presence samples. It
starts at 0 and increases towards an asymptote as the
model is fit, effectively measuring how closely the
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resulting model fits the presence samples. The AUC
statistic, while sensitive to the size of the study area
and other factors (Lobo et al. 2008), nevertheless pro-
vides an acceptable measure of model performance,
particularly when comparing relative model perfor-
mance (Elith & Graham 2009).

While models built to predict species’ distributions
(such as many contemporary terrestrial models) com-
monly use data-splitting to evaluate predictive power
(Rykiel 1996, Guisan & Zimmermann 2000), the
appropriate evaluation approach depends on the
objectives (Rykiel 1996). My objective was not to pre-
dict the potential distribution of right whales, since
for severely reduced populations such models will —
at best—predict the ecological niche of the species,
not its realised distribution. Rather, I was interested
in comparing models across different scales of analy-
sis and drawing inferences about the underlying pro-
cesses. Given that model comparison —not absolute
model performance—is the objective, I argue that
comparing models built with all available dependent
data, particularly in cases such as this where the
observations are well distributed throughout the
study area, is appropriate. I therefore used all the
dependent data (constrained by study extents and
season) to fit all models and calculate performance
statistics.

To test whether changes in model performance
were due to changes in spatial and temporal scale
rather than just the corresponding change in sample
size, I applied a null model test to each such compar-
ison. I calculated bootstrapped confidence intervals
for the AUC and gain statistics by drawing 5000 ran-
dom samples, the same size as the subset data, from
the larger data set. I then compared the gain and
AUC of the subset models to these test distributions
and concluded that changes in model performance
were not simply due to a reduced sample size if the
statistics for the subset models fell outside the 95 %
bootstrapped confidence interval.

I began the variable selection process by summaris-
ing the full set of predictor variables in a correlation
matrix. To improve the independence of the predictor
variables, I dropped the most cross-correlated vari-
ables (i.e. those correlated at >0.80 with most other
variables). I used the full suite of uncorrelated predic-
tor variables to develop an annual model for the
entire North Pacific study area using all the observa-
tional data. I built 2, basin-extent annual subpopula-
tion models by recalibrating the full annual model
with the dependent data divided into western and
eastern subpopulations to test whether focusing on
subpopulations improved model performance. I com-

pared the performance of the 2 subpopulation models
to the full annual model using the null model test.

I then created regional subpopulation models by
reducing the spatial extents of the annual subpopula-
tion models to their respective regions (black frame,
with subpopulations separated by 180°; Fig. 1). [ used
these models to explore the effects of reduced spatial
extents. Finally, I reduced the complexity of the
basin-extent subpopulation models by removing pre-
dictor variables that cumulatively contributed <10 %
to the model prediction across the 5 annual model
variants. This resulted in the final set of basin-extent,
reduced, annual subpopulation models and associ-
ated predictor variables. These were compared to the
final (8th) annual model built with all the observa-
tional data and the reduced set of predictor variables.

At the seasonal resolution, I partitioned the obser-
vational data into spring and summer and used sea-
sonal climatologies as the predictor variables. I built
3 variants of the seasonal subpopulation models
(vielding a total of 12 models); the data reduction
experiment yielded an additional 2 models for the
western subpopulation. For the first seasonal sub-
population models I used only the seasonal variants
of the final annual predictor variables. These models
allowed me to test whether changing only the tem-
poral resolution improved model performance. I
then built additional models by first adding the 8
variability measures and then removing the most
redundant predictor variables based on MaxEnt's
jackknife test of variable importance. The jackknife
test calculates the drop in performance as each vari-
able is omitted from the fully specified model. The
variable resulting in the lowest drop in gain can be
considered the most redundant as its power to fit to
the data is compensated for by the remaining vari-
ables. Following Yost et al. (2008), I ran the jack-
knife test using 10 random partitions of the depen-
dent data (70% training, 30% testing), with
randomised selection of background cells (i.e. pre-
dictor data). I removed the most redundant variable
based on the mean gain of the 10 model runs. I
repeated the process, removing 1 variable at a time,
until the gain fell outside the 95 % confidence inter-
val of the mean gain of the fully specified model.
Applying this to each of the seasonal subpopulation
models gave the final set of reduced seasonal sub-
population models. I presented all model predictions
using the default logistic distribution, which can be
interpreted as relative suitability (Dudik et al. 2007).

I used the basin-scale extents for the seasonal mod-
els because this resolution was more appropriate
given the nature of the data and scale of analysis (see
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‘Discussion’). I used this scale to also test the effect of
removing potentially biasing data from the western
subpopulation model.

I investigated the characteristics of the predicted
habitats by examining how the ocean climate vari-
ables differed between locations where the animals
were killed and the background ocean climate using
a re-scaled histogram, generated with the S-Plus
density function (S-Plus 2007). To focus on areas
where right whales were more common, I restricted
this analysis to cells with near-surface temperatures
<20°C. I tested to see if the distributions of predictor
variables were significantly different using the Kol-
mogorov-Smirnov test. This analysis of key predictor
variable distributions contributed to insights about
the possible processes represented by the predictive
models.

RESULTS

Out of a total of 2001 right whale Eubalaena japon-
ica kills in the entire North Pacific, I removed 51 that
were south of 40°N in the main basin (retaining those
south of 40°N in the Sea of Japan). I also removed 42
records (12 in the west and 30 in the east) that
occurred on land cells (due to the spatial resolution of
analysis) and an additional 32 records (6 in the west
and 26 in the east) that occurred in winter. This left
1876 records for the annual model, with 857 in spring
and 1019 in summer. The 1876 annual records
occurred in 1345 grid cells. This ratio of presence
cells to observations (~70%) was fairly consistent
across the different models.

In the present study, the default
MaxEnt parameters led to consider-
able overfitting of the models (e.g.
Fig. 2a). Excluding MaxEnt's hinge

Near surface
temperature

(= 0.8) predictors. I used the remaining 19 variables
(Table 1) to build 3 basin-extent models with differ-
ent sets of observational data and 2 regional
(reduced extent) models for the western and eastern
subpopulations. The subpopulation models (gain =
1.964 and 2.148; AUC = 0.967 and 0.977, for west and
east, respectively; Table 2) outperformed the full
annual model (gain = 1.317; AUC = 0.937), suggest-
ing that the observational data are better fit when
separated. The 95 % confidence intervals (CI) for the
null model test (1.4886 to 1.4863 and 1.4795 to
1.4817, for west and east, respectively; Table 3) show
only marginal increases over the full annual model,
confirming that the improved performance of the
subpopulation models was largely due to the separa-
tion of observations into subpopulation models. Re-
scaling the subpopulation models to the regional
scale led to a large decrease in model performance
(gain = 0.647 and 1.264; AUC = 0.817 and 0.901, for
west and east, respectively), particularly in the west.

Based on the importance of individual predictor
variables across these 5 models, I removed 7 predic-
tor variables that had a summed, total contribution of
<10% (Table 1). This manipulation defined the final
set of 12 variables (unshaded; Table 1) used to build
the reduced annual models. The habitat predictions
from the annual subpopulation models were mutu-
ally exclusive and appeared to refine the predictions
made by the full annual model (Fig. 3). The perfor-
mance of the reduced basin-extent models was only
marginally lower than the fully specified models
(Table 2).

The difference between the full and subpopulation
annual model predictions can be attributed entirely

Surface current
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such ‘skyline’ plots (Fig. 2b) and
reduced the number of parameters

ol LN

used to fit the models by more than
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Of the 26 variables considered for
the annual models, I removed slope,
and temperature and salinity at 3
depths (surface, 50 m and 150 m)
because their influence was retained
in the model by other, correlated
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Fig. 2. Examples of MaxEnt models for the fit of 3 response variables using: (a)

default regularisation and default feature selection and (b) all but 2 fitting fea-

tures (threshold and hinge), as done in the present analysis. The default set-

tings (a) produced ‘skyline’ plots strongly indicative of overfitting, while re-

moving the threshold and hinge features (b) produced more ecologically
interpretable relationships. See ‘Results’ for details
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Table 1. Independent variables used in the development of predictive models of historic North Pacific right whale Eubalaena japonica
habitat and their percent contribution to each of the 8 annual and 14 seasonal models developed (see Table 2). Annual models were de-
veloped for 2 spatial extents (basin and regional) using 3 subsets of dependent data (all, western (W) and eastern (E) subpopulations).
Seasonal models were built for spring (Spr) and summer (Sum). Variables selected for the final annual models (n = 12) based on a 2-step
variable removal process (see ‘Materials and methods' for details) have their abbreviations shown in bold print. Percent contributions
to overall model performance are shown for the variables retained in each model; the top 5 contributing variables are shaded according
torank (red, orange, yellow, teal and blue corresponding to ranks 1 through 5, respectively). Variables with grey-shaded annual contri-
butions were removed from the annual models based on a summed contribution of <10 %. Gaps represent variables not used

Variable name Abbreviation Annual Seasonal ————
Basin Regional Basin
All W E w E —W — —E —
Spr Sum Spr Sum
Depth (m) z 2 6 2 8 4 13 3 Em 3
Complexity z 0 1 1 2 0
Distance to 200 m contour dyo0 11 3 12 a0 9
Distance to canyon induced upwelling® dyw 25 20 6 5 7 16 13 17
10 m temperature to 17 3 9 [ 42 31 57 44 |
Bottom temperature thot 2 3 0 3 1
fyurt = t50 Aty 2 12 14 6 e 14 2 5
bt — tiso At, 2 o e 1 12 5 6
10 m salinity 510 4 6 6 6 5 s 10
Bottom salinity Sbot 2 13 1 Bl 5
Ssurf — S50 Asy 1 1 0 0 1
Ssurf — S150 ASz 1 2 2 5 3
Surface current velocity velgy, 0 0 0 3 3 1
50 m current velocity velsg
150 m current velocity velyso 0 2 1 4 4 2 3
Bottom current velocity velpot 0 1 1 3 2
velg,s — velsy Avy 1 0 1 1 3
velg,s — veljso Av, 0 0 0 1 1
Wind velocity w e 2 9 10 2 s
Mean seasonal variability (temp.)® Surface SV surf 10 4
Bottom sV ot
Inter-annual variability (temp.)¢ Surface  avygur 1 8
Bottom  avypot 1 2
Mean seasonal variability (salinity)® Surface SV, surf 1 1 1
Bottom sV ot 3 1
Inter-annual variability (salinity)© Surface  avg gyt 3
Bottom  avy pet [ 4
3A dynamic feature linking canyons to dominant current direction; "For each season, the mean of all annual variances. Captures
seasonal variability. Calculated for surface and bottom depths; “For each season, the variance of all annual means. Captures
inter-annual variability. Calculated for surface and bottom depths

to ocean climate, as predictions generated with only
the geographic data (not shown) were spread across
the shelf and slope of the entire study area. The
largest contribution to all the annual, basin-scale
models was from near-surface temperature (t;y) and
distance to upwelling canyons (d,,) (Table 1). The
major contributing variables to the regional annual
subpopulation models differed from the basin-extent
models and between subpopulations (Table 1). Bot-
tom salinity (sp0;) and distance to the 200 m contour
(dago) were the largest contributors to the western and
eastern regional subpopulation models, respectively.

The seasonal models (using the seasonal variants
of the 12 predictor variables retained from the annual
models) showed large improvements in model per-

formance (Table 2). Restricting the dependent data
for the western subpopulation by removing the
potentially biased observations further improved that
model's performance (Table 2), and the null model
tests confirmed that these improvements were signif-
icantly more than expected through only reducing
the sample size (Table 3). I therefore used the
reduced set of observations (W-s in Table 2) in the
subsequent western subpopulation models.

The addition of the seasonal variability predictors
increased the number of predictors to 20 and further
improved the performance of the seasonal models for
both subpopulations (Table 2). The subsequent
removal of variables based on redundancy left 10
variables in both western models and 9 and 12 vari-

Rank
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» e

Fig. 3. Eubalaena japonica. Annual basin-extent model predictions based on the reduced set of 12 predictor variables using
(a) all dependent data, and the (b) western and (c) eastern subpopulations separately

Table 2. Eubalaena japonica. Performance measures (gain and AUC [area under the receiver-operating characteristic curve])

for the different models generated for the present analysis. Annual models were built at basin extents for 3 subsets of the ob-

servational data (Obs.: all, western [W] and eastern [E] subpopulations) and at reduced (regional) spatial extents for the sub-

population models only. Seasonal (spring and summer) models were produced at basin extents using W and E dependent data

and a subset of the W subpopulation data (W-s) that excluded potentially non-foraging right whales. Performance measures

were calculated using the full set of observations available at each spatial and temporal scale. The number of predictors used
(Pred.) is shown for each group of models

Annual models Pred. Obs. Performance measures
Gain AUC
Basin-extent, full 19 All 1.317 0.937
Basin-extent, subpopulation W 1.964 0.967
Basin-extent, subpopulation E 2.148 0.977
Regional, subpopulation W 0.647 0.817
Regional, subpopulation E 1.264 0.901
Basin-extent, reduced, full 12 All 1.246 0.926
Basin-extent, reduced, subpopulation A\ 1.904 0.966
Basin-extent, reduced, subpopulation E 2.084 0.974
Seasonal subpopulation models —— Spring — ——Summer —
(basin extents) Gain AUC Gain AUC
Seasonal, reduced annual 12 w 2.186 0.970 2.268 0.976
W-s 2.659 0.980 2.712 0.984
E 2.372 0.979 2.313 0.975
Annual + seasonal 20 W-s 2.816 0.984 2.769 0.986
E 2.463 0.981 2.582 0.983
Reduced seasonal 9-12 W-s 2.723 0.981 2.730 0.985
E 2.398 0.980 2.566 0.982
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Table 3. Eubalaena japonica. Results of data scaling experiments: Reference values are for models prior to re-scaling; scaled

values are for models using subsets of the dependent data; 95 % confidence intervals are for the null model used to assess the

significance of the change in performance between the reference and scaled models, as measured by Gain and AUC (area un-

der the receiver-operating characteristic curve). Results are for 3 experiments: Full, annual to subpopulation (west, east); an-

nual to seasonal (spring, summer) by subpopulation (western, eastern); and biased data removal for the western subpopulation
only. See '‘Materials and methods’ for details

Full, annual Western subpopulation Eastern subpopulation
Scale to subpopulations Scale to seasons Biased data removed Scale to seasons
West East Spring Summer Spring Summer Spring Summer
Gain
Reference 1.317 1.904 2.186 2.268 2.084
Scaled 1.964 2.148 2.186 2.268 2.659 2.712 2.372 2.313
95% CI 1.4886 1.4795 2.0477 2.0997 2.2872 2.3179 2.2022 2.2804
1.4863 1.4817 2.0508 2.1040 2.2985 2.3233 2.2079 2.2847
AUC
Reference 0.937 0.966 0.970 0.976 0.974
Scaled 0.967 0.977 0.970 0.976 0.980 0.984 0.979 0.975
95% CI 0.9379 0.9378 0.9642 0.9658 0.9713 0.9736 0.9714 0.9747
0.9381 0.9380 0.9643 0.9660 0.9717 0.9738 0.9716 0.9748

ables in the eastern spring and summer models,
respectively, with only a marginal drop in perfor-
mance (Tables 2 & 4).

The mean gain as a function of redundant variables
removed did not follow a monotonic distribution
(Fig. 4). I therefore selected the model with the least
number of variables whose gain was within the con-
fidence interval of the fully specified model, and pre-
ceded all subsequent models with mean gain below
this threshold. To ensure that the observed fluctua-
tion on model performance was not due to the sub-
sampling used for the jackknife procedure, I calcu-
lated the gain for the full sample of dependent data
for both subpopulations, in spring, to compare with
the randomised results (Fig. 4).

Similar to the annual models, the reduced seasonal
subpopulation models were dominated by ¢,
although more so in spring than summer (Table 1). In
spring, the western subpopulation model included
contributions >10 % from surface mixing (At;) and z,
while, in the east, d,, and annual variability in sur-
face temperature (av;q,) were the other significant
contributors. In summer, in the west, t;, was reduced
in importance, while the contribution of At; almost
doubled and d,,, replaced z as the third most signifi-
cant contributor. In the east, similar variables con-
tributed in both spring and summer, but summer
showed increased contributions from annual vari-
ability in both surface salinity and temperature
(@vssurr and avyg,y) (Table 1).

The seasonal models (Fig. 5) showed habitat pre-
dictions of high suitability moving from offshore
areas in spring to on-shelf areas in summer, although
this was more evident for the western subpopulation.

The reduced spring model predicted areas of high
suitability offshore in the west, while, in the east,
high suitability predictions were concentrated off-
shore of Kodiak Island and in the northern GOA. The
summer model in the west showed areas of high pre-
dicted suitability extending from the shelf waters

Table 4. Predictor variables in order of decreasing redun-

dancy for subpopulation models, by season. Redundancy

was defined as how readily the variable's contribution to the

model could be replaced by the remaining variables. The

shaded variables were retained in the seasonal reduced

models. See Table 1 for variable codes and ‘Materials and
methods’ for details

—— Western Eastern

Spring Summer Spring Summer
Aty Shot Shot Shot
SVs, surf SVs,bot ASZ ASZ
Shot Asy 00 Aty
velisg veliso SVibot SVibot
ASZ avs,bot aVs,bot aVs,bot
Vi ot SVibot SVibot da00
avt,surf aVs,suu'f S10 w

sV t,surf SV[,surf A tl av t,bot
SVibot w aVysurt z

AV surf Velsurf Velsurf SV, bot
SV bot AtZ AV surf VEISurf
Velsurf svs,surf SV surf duw

w av t,surf avs,bot SV surf
Aty S10 vel;so vel;so
z z SV, t,surf SV, t,surf
duw tio w S10
d00 daoo duw AV surf
S10 AV bot tio tio
aVs,bot Atl z aVs,sulrf
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Fig. 4. Eubalaena japonica. Redundancy plots showing how performance
measures (gain and AUC [area under the receiver-operating characteristic
curve]) responded to the removal of predictor variables according to their re-
dundancy in the seasonal subpopulation models. Black arrows indicate the
partial model just before the gain dropped permanently below the confidence
interval of the fully specified model. Spring plots show gain for both subsam-
pled (with 95% confidence intervals) and full models (no confidence inter-
vals), indicating that randomisation of the subsample was not responsible for
the non-monotonic reduction in gain

bia and Prince William Sound, Alaska.
Higher suitability predictions also
extended south towards the central
GOA. High suitability was also pre-
dicted on the SEBS shelf.

I found several significant differ-
ences between where right whales
were Kkilled and the background (i.e.
average) ocean conditions and
between the average conditions occu-
pied by the 2 subpopulations (Fig. 6).
For both subpopulations, kills occur-
red in surface waters (t;o) considerably
colder on average than background
and with a much narrower distribution
of values, particularly for the eastern
subpopulation. Animals in the east
occupied colder waters than those in
the west in both seasons. Annual sur-
face temperature variability (@vguf)
differed by subpopulation, with the
animals in the east caught in areas of
lower av; gy, while, in the summer, the
bulk of the western animals were
caught in areas with higher variability.
Seasonally, sv;q,y was higher for
occurrences from both subpopulations
in both seasons, with spring showing a
narrower distribution of variability.
Eastern animals occurred closer to
canyons than western animals in both
spring and summer, with both subpop-
ulations showing a narrower distribu-
tion of distances in summer (Fig. 6).

DISCUSSION

Understanding how an animal per-
ceives its environment and uses envi-
ronmental cues to find foraging habitat
is a central ecological question for all
species. For rare, highly mobile species
like North Pacific right whales, such an
understanding would benefit conser-
vation efforts by helping identify po-
tential impediments to the species' re-

northeast of Hokkaido to the western side of the covery. While we are unlikely to ever understand
Kamchatka peninsula, as well as some patches of completely how animal behaviour interacts with habi-
predicted high suitability on the eastern side of Kam- tat characteristics, we nevertheless can—and indeed
chatka. The eastern summer model showed high must —speculate about the processes that may be im-
suitability in the northern GOA, particularly between portant at different spatial and temporal scales (e.g.

the Queen Charlotte Islands (QCI) in British Colum- Kenney et al. 2

001, Baumgartner et al. 2007). The pre-
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Western

Summer

Fig. 5. Eubalaena japonica. Predicted seasonal habitat for the western and eastern subpopulations of North Pacific
right whales

sent study contributes to the information available for
such reflections by providing the most detailed corre-
lational analysis to date between right whale observa-
tions and environmental conditions, at 2 spatial ex-
tents and 2 temporal resolutions.

Habitat predictions

The improved fit of the subpopulation models com-
pared to the annual model lends support to the hy-
pothesis that 2 subpopulations exist in the North Pa-
cific. By their nature, the subpopulation models
predict non-overlapping habitats with different
oceanographic signatures (Fig. 3, Table 1). Since
cetaceans are believed to transfer knowledge of suit-
able foraging habitat across generations (Rendell &
Whitehead 2001), dispersal to new foraging grounds
can be delayed or not occur at all if currently used
habitats provide sufficient prey. Since the animals
killed on the 2 sides of the North Pacific occupied dif-
ferentiated habitats, and, assuming that severely re-
duced population sizes would make dispersal unnec-
essary, the right whales observed recently on the
SEBS are more likely a remnant of the eastern sub-
population than dispersing animals from the west.

The improved fit of the seasonal (spring and sum-
mer) over the annual models for both subpopulations
emphasises the importance of including seasonal res-

olution when modelling migrating species. The shift-
ing of predicted habitats from offshore to on-shelf
regions, particularly in the west, supports the
hypothesis that right whales make use of foraging
habitats in the open ocean in the spring, before mov-
ing to foraging areas along the shelf-edge and on-
shelf later in the season (Gregr & Coyle 2009).

The seasonal predictions are also supported, again
more so in the west, by high correspondence
between predicted summer suitability and docu-
mented historical whaling areas. The area along the
shelf edge, about halfway from Hokkaido to Kam-
chatka, was a known hotspot for right whales
(Reeves et al. 2008) and is one of 3 highly productive
upwelling areas in the Sea of Okhotsk (Ivashchenko
& Clapham 2010). The predicted foraging area off
the west coast of Kamchatka corresponds closely to
the coordinates given (563°02'N, 152°30'E) for the
Midas Ground —also a historic right whale whaling
ground (Reeves et al. 2008), while the area between
Sakhalin Island and Hokkaido is a natural bottleneck
leading from the Sea of Japan to the Sea of Okhotsk.
These last 2 areas are also where the major Sea of
Okhotsk currents interact with bottom topography to
create potential vertical mixing and entraining
frontal structures. These 3 habitats are much less
resolved by the annual model.

In the east, there is little information with which to
evaluate the predicted change in seasonal habitat.
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Fig. 6. Eubalaena japonica. Density plots comparing temperature, interannual and seasonal variability in surface temperature,

populations were killed compared to the oceanic background (heavy black line) in areas where temperature at 10 m depth was

and geographic distances between locations where right whales from the western (solid line, grey) and eastern (dashed line) sub-
<20°C in (a) spring and (b) summer. Table insets indicate significant differences (o

0.05; check mark) between background

(Bkg) and western (W), Bkg and eastern (E), and W and E data based on Kolmogorov-Smirnov tests of equal distributions
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However, of the few dozen right whale sightings on
the SEBS since 1982, the majority have occurred in
July, with a single sighting reported earlier (June)
and a handful later, in August and September
(Shelden et al. 2005). This supports the prediction
that the SEBS is more of a summer (July to Septem-
ber) rather than spring habitat. Recent acoustic and
tagging data show that right whales continue to
occupy this habitat until as late as December (Phil
Clapham pers. comm.).

The spring models provide an intriguing picture of
potential oceanic habitats on both sides of the basin,
corresponding reasonably well to areas where meso-
scale eddies, cross-shelf transport currents and the
interaction between the large-scale ocean currents
are believed to generate right whale habitat features
(Gregr & Coyle 2009). Such features create disconti-
nuities in average ocean conditions and can be char-
acterised by areas with low surface temperatures
(e.g. Etnoyer et al. 2004) or high seasonal variability,
as described here. In the west, predicted areas of
high spring suitability are small and patchy, suggest-
ing less temporal persistence in the major currents
in the region, while, in the east, predicted oceanic
habitat patches occur where strong oceanic currents
may interact with buoyancy-driven coastal currents
(Gregr & Coyle 2009).

The summer prediction for the eastern subpopula-
tion shows a swath of high predicted habitat suitabil-
ity extending from QCI to the central GOA. This area
corresponds with a path often taken by meso-scale
eddies generated along the eastern GOA shelf
(Crawford et al. 2007, Gregr & Coyle 2009). Another
line of predicted high suitability extending from QCI
to Prince William Sound follows both an area of high
eddy energy (Ladd 2007) and a seamount chain,
making it a region with considerable potential for
current-topography interactions. If the right whale's
migratory path includes this region of the GOA, it is
possible that sufficient prey are encountered in some
years to make the full migration to the SEBS unnec-
essary (Gregr & Coyle 2009). This could explain why
right whales have not been encountered on the SEBS
in all years.

Habitat characterisation

Despite little spatial overlap, the annual subpopu-
lation habitat predictions (Fig. 3) were both domi-
nated by d,, and t;o. The importance of temperature
was emphasised at the seasonal resolution, where t;
persisted as the dominant predictor for both subpop-

ulations. Although the contribution of the geographic
predictors was overshadowed by the ocean climate
variables, the distance variables (d,y and d,,) never-
theless provided notable contributions. In the west,
dyy contributed in both seasons, while d,, was
important in summer when its contribution was
plainly evident in the area of predicted high suitabil-
ity centred on the canyons east of Hokkaido. In the
east, d,,, contributed to the models in both seasons
and can be attributed to the canyons identified
around the northern GOA (Fig. 1).

The addition of relevant ocean climate at the sea-
sonal resolution is the likely cause of the reduced
contribution by geographic variables at the seasonal
scale (compare annual and seasonal columns in
Table 1). While such changes in model specification
can lead to improvements in model performance,
changes in the dependent data can have a similar
effect. For example, dividing the dependent data into
subpopulations resulted in a large improvement in
model performance over the model using all the
dependent data (Table 3), lending support to the sep-
aration of subpopulations. Similarly, applying the
variables from the reduced annual models at the sea-
sonal resolution again improved model performance,
suggesting that the dependent data were better
described at a seasonal resolution. This method of
iterative model development allows hypotheses
about species ecology and data quality to be tested.

Removing the records for presumably non-foraging
right whales from the western subpopulation model is
another example of such testing. The removal of these
data improved model performance and generated
more interpretable predictions. Understanding such
biases in opportunistically collected presence data is
essential for accurate interpretation of habitat models
(Lozier et al. 2009). While such experiments are by no
means definitive, they help challenge the assumptions
we hold about our data and our study system.

Notable for its lack of contribution to the models
was current velocity. The currents at different depths
were highly cross-correlated, leaving only the sur-
face and 150 m velocities in the annual model. Forc-
ing winds also remained in the model, providing a
temporal lag to the slower, ocean processes, and ulti-
mately had the largest contribution from this set of
predictors, ranking fifth in a single seasonal model.
However, the contribution from surface currents and
wind speed increased at the regional scale (Table 1).
This suggests that these forces are more directly rel-
evant at reduced extents and finer resolution, while
their role at the basin scale is captured by more inte-
grative predictors such as temperature.
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The seasonal subpopulation habitats were charac-
terised largely by ;o and At; (in the west), with signif-
icant contributions from the distance variables. Addi-
tionally, annual and seasonal surface temperature
variability contributed notably in the east. This led
me to investigate the role of temperature in more
detail by examining how the temperature variables
compared between where the whales were killed
and the average ocean conditions (Fig. 6). In all
cases, the suite of temperature variables was notably,
and sometimes dramatically, different from back-
ground. These differences can be partially explained
by the species’ northern distribution, but this cannot
explain the differences observed in inter-annual and
within-season variability. Rather, they are likely also
a function of the whales' distribution along the shelf
edge, where colder waters can be expected on aver-
age due to upwelling. The variability indices provide
additional clues about how right whales respond to
their environment.

As a measure of year-to-year predictability, lower
values of av,imply a higher likelihood of an area hav-
ing similar year-to-year seasonal temperatures. Thus,
the association of right whales with lower surface av,
in spring, coupled with lower temperatures and an
offshore distribution may be an indication of pre-
dictable surface mixing and, given the large contri-
bution from d,, in the east, an indication of canyon-
derived upwelling. Since these areas would be more
likely to support spring concentrations of oceanic
copepods (Gregr & Coyle 2009), experience with
where such features occur predictably would
enhance the foraging success of right whales.

The summer differences in surface av; between the
subpopulations (Fig. 6b) reflect the difference be-
tween predicted suitability in the west which occurred
in the more dynamic shelf ecosystem, and that in the
east, where the central GOA appears to represent a
region of fairly constant year-to-year temperatures.

Seasonal surface temperature variability (sv,) in
spring was much higher than background ocean con-
ditions for kills from both subpopulations (Fig. 6a). If
high short-term variability in temperature can be
interpreted as an indication of high frontal activity
(Gregr & Trites 2008), then these animals would have
been in areas with a higher frequency of ephemeral
fronts, an indicator of potential prey concentrations
(Hyrenbach et al. 2000, Gregr & Coyle 2009). While
these variance measures ranked in the top 5 in the
east, they were not retained in the western subpopu-
lation model, possibly because of correlated predic-
tors (especially ¢y and Aty) capturing other aspects of
the same process.

Taken together, the association of right whales
with cold waters, low inter-annual variability and
high within-season variability supports the notion
that these animals frequent areas where high
frontal activity occurs predictably every year. This
appears true for both spring oceanic habitats and
on-shelf summer habitats, though the physical sig-
nals are subtly different. The importance of temper-
ature at large spatial scales has also been related to
right whale life history, with Southern Ocean calv-
ing rates correlated with inter-annual sea surface
temperature anomalies (Leaper et al. 2006). Under-
standing how such oceanic habitats re-occur is cen-
tral to efforts to identify and protect regions of bio-
logical importance.

Scaling, assumptions, and model performance

It is unlikely that the same predictor variables will
have a consistent relationship with right whale habi-
tat across all scales. It is therefore worth considering
how the persistence of key predictor variables
changed across scales, providing insight into the
underlying processes. For example, the contribution
from t;, was high at annual and seasonal resolutions
at the basin scale, but not at reduced spatial extents,
where variables such as surface winds and d,,
among others, provided increased contributions
(Table 1). This implies that temperature (possibly
reflecting deep-water influences) is an important
indicator at basin extents, but becomes less reliable
at regional extents where more dynamic or more
proximate (sensu Austin 2002) variables characterise
local processes. Similarly d., was also important at
the annual and seasonal scales, but not at regional
extents, suggesting that any putative influence of
canyons would be better resolved at the regional
scale by more than just distance.

At any scale of analysis, it is also important to con-
sider underlying assumptions. The most important
assumption here is that a 50 yr climatology from the
20th century can describe the relative environmental
conditions during the brief (1840 to 1850) period of
intense right whale exploitation at the end of the lit-
tle ice age (ca. 1350 to 1900). I argue that since long-
term processes are expressed over large spatial
extents (Wiens 1989), the ecological relevance of
these climatologies is at the basin-scale, where fea-
tures of importance will be largely defined by the
interaction of major oceanic currents with each other
and with the bathymetry (Gregr & Coyle 2009). Thus,
my use of long-term climatologies mitigated any dif-
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ferences between the 2 eras and retained only the
strong, persistent, seasonal signals in the data.

This underlying assumption is consistent with avail-
able data. Temperatures reconstructed from tree ring
data show that while from 1850 to 1865 summer air
temperatures were low, comparable cold periods
occurred in the early 1900s and 1970s (Mann et al.
1998). Perhaps more importantly, the same time
series shows periods from 1750 through 1900 with
temperatures similar to the 20th century. Addition-
ally, the Pacific Decadal Oscillation, which has a
strong influence on weather patterns in the North
Pacific, was actually in a cooler phase from 1950 to
1976 than during the right whale whaling era (Biondi
et al. 2001). Finally, whaling occurred in the Bering
Sea in summer throughout the 1840s (Josephson et
al. 2008b), and accounts from Arctic logbooks con-
tain no indication of unusually cold conditions (Wood
& Overland 2003). Thus, while an overall warming
trend in air temperature is evident in the region
(Moore et al. 2002), there is little to suggest that the
ocean climate in the North Pacific during the mid-
19th century was in any way dramatically different
from the 20th century.

As with all distributional analyses of opportunistic
data, the present study assumed that the Townsend
data provided an accurate and unbiased representa-
tion of the distribution of foraging right whales in the
North Pacific. The catch data are likely biased to
some degree due to the uneven distribution of whal-
ing effort. However, because this bias was primarily
towards favourable habitat (e.g. whalers concen-
trated on known whaling grounds), and because
whaling was an opportunistic endeavour (i.e. whales
were hunted when encountered), any bias will be
towards preferred whale habitat, making the result-
ing model predictions conservative rather than inac-
curate. Despite potential transcription errors from
original sources (Josephson et al. 2008b), such data
represent valuable information on the historic distri-
bution of exploited species. The data removal exper-
iments conducted here showed how the removal of
potentially unreliable data can improve model per-
formance and thus provide one approach to explor-
ing questions of correct transcription. Additionally,
while there is no information on the positional accu-
racy of the log book records (Wildlife Conservation
Society 2004), the use of large grid cells and basin-
scale extents minimised the influence of any such
inaccuracies.

All told, this work has generated reasonable
hypotheses about how topography and long-term
averages of ocean climate might explain the basin-

scale distribution of right whale foraging habitat. As
habitat predictions at the broadest spatio-temporal
scale, they provide a context, or a type of boundary
condition, suitable for refinement with higher resolu-
tion studies (Gregr & Coyle 2009).

Future efforts

First and foremost, efforts to collect contemporary
observations and conduct tagging studies should
continue, as these data are necessary to answer key
ecological questions about right whale habitat use.
Such efforts can be informed by predictive models
such as those presented here.

In the eastern north Pacific, the summer habitat
predictions partially correspond with the legally des-
ignated ‘critical habitat’ on the SEBS shelf under the
United States Endangered Species Act (Clapham et
al. 2005). However, there was little correspondence
with the critical habitat off Kodiak Island in either
seasonal model (Fig. 5). Enhanced acoustic detection
efforts in the northern GOA in both shelf-edge and
oceanic ecosystems would help determine the
degree to which right whales continue to use this
area and whether changes to the existing critical
habitat designation in the GOA are warranted.

Regional models with higher spatial and temporal
resolution using concurrent sighting and predictor
data will help refine the oceanic habitats and support
investigations of the processes hypothesised here.
Such efforts will also help describe the influence of
potential predictor variables at different scales,
improving our understanding of how ocean climate
creates suitable foraging habitat for the North Pacific
right whale.

CONCLUSIONS

The habitat predictions presented demonstrate a
number of basin-scale patterns that improve our
understanding of right whale stock structure and dis-
tribution, help characterise right whale foraging
habitat and provide some explanation of the seasonal
movements between potential foraging areas. By
describing the distribution and characteristics of per-
sistent suitable foraging habitats, the models provide
insights into ocean features potentially used by right
whales to locate suitable foraging habitats today.

The existence of 2 subpopulations is supported by
habitat predictions that are spatially separated, with
different ecological signatures. These habitat differ-
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ences are characterised both by the inclusion of dif-
ferent predictor variables and by the differences in
contributions by similar predictor variables. This sug-
gests that the 2 subpopulations are specialised to the
different oceanic conditions that provide suitable for-
aging areas on the 2 sides of the North Pacific basin.
Thus, the animals seen in the last 20 yr on the SEBS
are likely remnants of a distinct eastern stock, rather
than dispersers from the more numerous western
North Pacific population.

Predicted habitats in the western North Pacific cor-
respond to known historic whaling grounds, while, in
the east, a known present-day summer habitat on
the SEBS shelf is represented. The habitat predicted
in the GOA, while plausible, remains to be validated
as a present-day foraging habitat. Such validation
could be accomplished by expanding the use of
remote acoustic hydrophones in the region.

High habitat suitability was predicted by all the
seasonal subpopulation models in areas where long-
term ocean conditions could be reasonably expected
to create enrichment and retention features at sea-
sonal and basin scales. Indicators of potential habitat
at this broad scale would provide right whales with
an idea of where to search for foraging patches at
different times of the year. The location of actual
habitat patches at finer spatial resolutions and at
more specific times of the year will depend on how
local, more immediate processes modify the longer
term, broader scale patterns.
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