
Vol. 114: 175-183,1994 
MARINE ECOLOGY PROGRESS SERIES 

Mar. Ecol. Prog. Ser. 
Published November 3 

Fitting ecological and physiological data to 
rectangular hyperbolae: a comparison of 
methods using Monte Carlo simulations 

John A. Berges*, David J. S. Montagnes*', C. L. Hurd, P. J. Harrison 

Department of Oceanography, University of British Columbia. Vancouver, British Columbia, Canada V6T 124 

ABSTRACT: Recommendations were developed to help aquatic scientists select which curve fitting 
method should be used to fit data that are expected to follow rectangular hyperbolic relationships. Rec- 
tangular hyperbolae of the form V = (V-S)/(Km + S), where V is a biological rate and S is the concen- 
tration of some substrate, are widely used by researchers to model the kinetics of processes such as 
enzyme activity versus substrate concentration, nutrient uptake versus nutrient concentration, and 
grazing and growth rate versus prey concentration. A variety of procedures exist to estimate the para- 
meters V,,,,, (the rate of the process at saturating substrate concentration) and K, (the concentration of 
S at which half the saturated rate is achieved). There has been extensive discussion in the biochemical 
and ecological literature as to which fitting method is most appropriate, based largely on theoretical 
and statistical considerations. However, the assumptions inherent in these fitting procedures are typi- 
cally violated by the data obtained in many field and laboratory studies, e.g. the measurement of S has 
an associated error, or error levels in the measurement of Vmay not be constant across S. Thus, there 
is a problem predicting a priori which fitting method should be used. In this study, this problem was 
approached using Monte Carlo simulations. Data sets with known V,,,, and Km were constructed for 5 
different data cases, ranging from data sets where saturation was not achieved to data sets where very 
few sub-saturated measurements were available. Random, normally distributed errors were assigned 
to each point based on a 10 %, 20 % or 50 % constant or variable error in the estimate of V, or 20 % error 
in both S and V Six fitting procedures were applied including linear methods (Lineweaver-Burk; 
Eadie-Hofstee; Hanes-Woolf), the median method (Eisenthal and Cornish-Bowden), and non-linear 
least-squares methods (Cleland-Wilkinson; Tseng-Hsu). Non-linear methods were generally superior, 
but for data sets with low error (10%) all methods gave almost equally accurate results. Data with con- 
stant error were more difficult to fit than those where error varied with V. Criteria for selecting a fitting 
method based on data characteristics are discussed and applied to actual data sets. 

KEY WORDS: Michaelis-Menten model . Curve fitting . Enzyme activity . Nutnent uptake kinetics . 
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INTRODUCTION 

Rectangular hyperbolic models, often referred to as  
Michaelis-Menten (Michaelis & Menten 1913), Monod 
(1942). Droop (1983) and Holling (1966) Type I1 mod- 
els, are widely used by biologists working in aquatic 
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systems to model processes such as  enzyme kinetics 
(e.g. Packard 1979), heterotrophic microbial activity 
(e.g.  Li 1983), nutrient uptake or growth rate of 
autotrophs (e.g. MacIsaac & Dugdale 1969), and inges- 
tion, grazing or growth rates of unicellular and multi- 
cellular heterotrophs (e.g. Mullin et al. 1975, Verity 
1991). Such hyperbolae are typically of the form: 

V = (V,, S)/(K,,, + S )  

where V is the biological rate, S is the concentration 
of some substrate required in the process, and the fit- 
ted constants V,,, and K, represent the maximal rate 
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at  substrate concentration and the substrate concentra- 
tion at half the maximal rate, respectively. 

A variety of methods exist to fit this equation to a 
data set and include using transformations to linearize 
the data and iterative non-linear procedures. It has 
been noted that fitting data using different methods 
can give different, and sometimes contradictory, 
results (e.g.  Packard 1979, Hurd & Dring 1990). Thus, it 
is important to determine which method is best for a 
given data set. Moreover, such information is essential 
to the correct interpretation of the parameters in pub- 
lished data sets that have been fitted using different 
methods. There are extensive discussions to guide the 
investigator in the choice of a fitting procedure in the 
biochemical and physiological literature, suggesting 
for example that many fitting methods using linear 
transformations are biased (see Wilkinson 1961, Cle- 
land 1967, Eisenthal & Cornish-Bowden 1974, Lam 
1981, NeIder 1991, Johnson 1992b). However, the data 
typically obtained from aquatic systems violate several 
key assumptions of commonly used fitting procedures: 
(1) errors in the measurement of Vcan be high (> l0  % 
coefficient of variation) and can be either constant with 
S or can vary in proportion to S; (2) S itself is not mea- 
sured without error; and (3) data are available for lim- 
ited ranges of S. Depending on the procedure used, 
these violations of assumptions may introduce signifi- 
cant error into determination of V,,, and K,. There 
have been considerations of these problems in which 
field data have been used to assess the accuracy of dif- 
ferent procedures (e.g. Mullin et al. 1975, Li 1983). 
Ultimately, however, such an approach relies on a sub- 
jective judgment of which fit is most 'correct', since the 
actual parameters are unknown. 

Alternatively, a number of biochemists have at- 
tempted to use Monte Carlo approaches to the prob- 
lem, by creating data sets with known V,,, and K, and 
adding random errors (e.g. Cornish-Bowden et al. 
1978, Curne 1982, Tseng & Hsu 1990). These studies 
are of limited value to aquatic researchers because 
they have focused on data sets with unrealistically 
small errors, they have ignored error in S, they have 
used regular spacing of data points across S, and/or 
they have compared only a limited number of linear 
and non-linear fitting methods. Moreover, many of 
these studies are largely sta.tistica1 in nature, and are 
published in areas of the literature not usually read by 
aquatic researchers. 

In this investigation, randomly generated data sets 
with known V,,, and Km and with different error levels 
and distributions of points were used in order to com- 
pare 6 fitting procedures. In each case, results were 
evaluated in terms of both accuracy (i.e. the distance of 
the parameter estimates from the true values), and pre- 
cision (i.e. the percentage of estimates falling within a 

certain range of the true value). Generalizations were 
then developed for different types of data sets, and val- 
idated using data from a range of aquatic experiments. 

MATERIALS AND METHODS 

Data generation. Five data cases were devised 
(Fig. 1): Case 1, where data were geometrically distrib- 
uted across S; Case 2,  where there were no data for S 
less than K,; Case 3, where there were no data for S 
greater than K,; Case 4, where there were data only 
for Sgreater than 2 X Km or less than 0.5 X K,; and Case 
5, where all data fell between 2 X Km and 0.5 X K,. For 
each case, data sets were generated with V,,, = 10 and 
K, = 2. Random errors (generated using a SYSTAT 
procedure; Wilkinson 1990) were assigned in an addi- 
tive manner: 

V = (V,,, S)I(K, + S) + E 

I - '  ' -  

2 It Case 1 Case 4 

2 - Case 2 

. '  -! ;? 
:- 

2 ,- Case 3 1 

Substrate concentration (S) 

Fig. 1. Data cases considered. Cases represent geometrically 
distributed data (Case l ) ,  data where no points are lower 
than Km (Case 2) ,  data where no points are higher than K,,, 
(Case 3),  data where only points higher than 2 X Km or lower 
than 0.5 X K, are available (Case 41, and data where all points 
fall between 2 X K,,, and 0.5 X K,,, (Case 5). In each case. data 

sets of 10 points were generated with V,,,,, = 10 and K, = 2 
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where the error, E ,  was normally distributed with mean 
of zero. In one series of data sets, errors were added 
such that errors were a constant percentage of V,,,,,/2, 
either 10, 20, or 50 % in Valone, or 20 % (independent) 
error in both S and V (see Fig. 2). This was termed a 
constant error; the standard deviation in V was con- 
stant regardless of S (analogous to the constant errors 
used by Dowd & Riggs 1965, or the 'simple' errors used 
by Cornish-Bowden et al. 1978). In the second series of 
data sets, errors were a constant fraction of the value of 
V, again either 10, 20, or 50% in V alone, or 20% 
(independent) error in both S and V (Fig. 2). This was 
termed a variable error; in this situation the coefficient 
of variation of V was constant regardless of S (analo- 
gous to the 'increasing' errors used by Dowd & Riggs 
1965, or the 'variable' errors used by Cornish-Bowden 
et al. 1978). In each case, 100 data sets of 10 points 
each were generated, i.e. representing 100 individual 
experiments where V was measured at 10 different 
S-values. 

Fitting procedures. Fitting procedures were imple- 
mented on a 486 AT-type personal computer using 
software written by the authors or modified from pub- 
lished software, as noted below. Six basic procedures 
were compared. The names describing each method 
were chosen on the basis of common use in the litera- 
ture; Cornish-Bowden (1979) provides a discussion of 
priorities. 

Lineweaver-Burk (LB; Linewea ver & Burk 1934). 
This double-reciprocal transformation of Eq.  (1) (repre- 
sented graphically by a plot of 1/V versus 1/S) gives: 
l / V  = (Km/Vma,) (11s) + (l/Vma,), which represents a 
straight line with slope (K,/V,,,) and intercept 
(l/V,,). Slope and intercept were estimated by least- 
squares linear regression (Steel & Torrie 1980) and 
parameters calculated. The regressions were not 
weighted. 

Eadie-Hofstee (EH; Hofstee 1959). This rearrange- 
ment of Eq. (1) gives: V = -K, (V/S) + V,,, (repre- 
sented graphically as a straight line on a plot of Vver- 
sus V/S, and also known as an Augustinsson plot) from 
which parameters are estimated as for the LB method. 

Hanes- Woolf (HW; Hanes 1932). This rearrangement 
of Eq. (1) gives: S/ V= Km/ V,,,,, + S (l/V,,), (represented 
graphically as a straight line on a plot of S/Vversus S, 
and referred to also as a Hanes plot or a Woolf plot) from 
which parameters may be estimated as above. 

Eisenthal and Cornish-Bowden (EC; Eisenthal & 
Cornish-Bowden 1974). In this median method, the 
points of intersection of the lines defined for each (V, 
S )  pair by y = (V/S)x + V  are calculated. The median 
value of X corresponds to Km, and the median value of 
y corresponds to V,,,. The program was adapted from 
Myers et al. (1990), with improvements to the sorting 
routine. 

10% error 
Colwant 

(3 50% error 
2 ConsAant 

Variable 

4 C w t a n l  

Wand s) 

Q 50% error 
2 
0 

Substrate concentration (S) 

Fig. 2. Examples of error levels (as percentages of V and S) 
assigned for Case 1. Constant error levels are set as percent- 
ages of 0.5 X V,,,,,. Errors were assigned in a normal distri- 

bution 

Cleland- Wilkinson (W; Wilkinson 1961). This method 
first estimates values of V,,,, and K,,, from a linear plot 
(identical to HW), then uses an iterative non-linear 
method to directly fit the equation to the data using least 
squares as a criterion (see Johnson 1992b). 

Tseng-Hsu (TH; Hsu & Tseng 1989). This method 
uses a least-squares criterion as for the W method, but 
uses a random search technique. First, estimates were 
made of the ranges in which V,,, and Km occurred 
(0 to 10 for Km and 0 to 50 for V,,,). Within this range, 
500 random pairs of points were picked. Least squares 
were calculated for each pair of estimates and the 
10 V,,-K, pairs giving the smallest residuals were 
identified. The search range was redefined based on 
the variance of the best 10 parameter pairs and the 
process was repeated up to 100 times, or until no fur- 
ther changes in parameter estimates were found. 

In addition to the latter 2 non-linear methods, 
selected data were fitted using different algorithms 
and commercially available packages including Sim- 
p l e ~  and Semi-Newton (SYSTAT NLIN procedure; 
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Wilkinson 1990), and  Marquardt-Levenberg (Sigma- 
plot 5.0, Jandel Scientific) methods. 

Real data sets. The above fitting procedures were 
also applied to 3 real data sets, for comparison: 
(1) nitrate reductase activity versus nitrate concentra- 
tlon in a marine microalga (Berges 1993), represent- 
ing data with low, constant error; (2)  phosphate up- 
take versus phosphate concentration in a marine 
macroalga (Hurd & Dring 1990), representing data 
with high, variable error; and (3) growth rate versus 
prey concentration in a marine ciliate (Montagnes 
1993, note these data were translated to give X- and 
y-intercepts of zero), representing data with high, 
constant error. 

RESULTS 

Table 1 shotvs typical results of the 6 fitting meth- 
ods for data generated for Cases 1 and 3. These cases 
illustrate the quality of the data, and were selected 
because they show the best (Case 1)  and the poorest 
(Case 3) fits. It was also found that parameters esti- 
mated using three non-llnear fitting routines in 2 com- 
mercial packages corresponded almost exactly to 
those found for the TH method; differences were 
found only in third or fourth decimal places of para- 
meter estimates. Thus, only the data from the TH 
method are presented in the following results. Median 
values were chosen for presentation because fre- 

Table 1. Results of model-fitting procedures (Lineweaver-Burk, LB; Eadie-Hofstee, EH; Hanes-Woolf, HW; Eisenthal and Cor- 
nish-Bowden, ECB; Cleland-Wilkinson, W; or Tseng-Hsu, TH) for Case 1 (CS1) and Case 3 (CS31 data. Notation describes error 
as constant (C) or variable (V) and error levels as a percentage (10, 20 or 50). Error in both S and Vis denoted XY Values repre- 
sent medians of estimated parameters of the data. The true values are V,,, = 10, and K, = 2. Numbers in parentheses represent 

the percentages of estimates which fell outside the ranges of 1.2 to 2.8 for K, and 6 to 14 for V,,, 

Estimated V,,, 

EH HW ECB W 

5.37 -1.35 10.15 10.03 
(72) (65) (6) (0) 
4.72 -0.43 9.90 10.09 
(92) (72) (19) (11 
4.32 -0.36 10.43 10.00 
(951 (95) (39) (35) 
4.72 -0.43 9.90 10.09 
(92) (72) (191 (17) 
9.76 10.07 10.14 10 12 
(0) (0) (01 (01 

8.81 9.94 10.10 10 27 
(1) (2) (6) (25) 

5.76 8.10 11.35 11.48 
(54) (59) (371 (52) 
8.03 9.87 9.74 10.10 
(2) (4) (5) (7) 

Estimated K, 
HW ECB W 
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t Fig. 3. Examples of frequency 
> distributions of V,,, and K, .- - 

estimates for various fitting S 
procedures for Case 1 data 2 
with 20% variable or constant 
error. Procedures are: (0)  Line- 
weaver-Burk, (.) Eadie-Hofs- 
tee, (v) Hanes-Woolf, (v) Eis- 
enthal and Cornish-Bowden. 
(D) Cleland-Wilkinson, and (m) 
Tseng-Hsu. Y-axis scale IS rel- 
ative percentage. True values 
of V,,, and K, are 10 and 2, 

respectively 

20% error, variable 20% error, constant 

K m  estimate 

quency distributions of estimates were often asym- 
metrical (Fig. 3). 

Table 2 summarizes the results of fitting procedures 
by case and by error levels. In order to rank the success 
of fitting procedures, 2 criteria were selected: the accu- 
racy of the estimate (i.e. how close the median estimate 
was to the true value) and the precision of the estimate 
(i.e. what percentage of estimates fell within a speci- 
fied range). Enzyme activity and growth rate data 
often give coefficients of variation of 20 % or less. Thus 
a 20% or smaller departure of the median estimate 
from the true parameter estimate was considered 
acceptable. High variability is also a common feature 
of biological data, so precision was evaluated based on 
the percentage of estimates that fell outside a range of 
*20% of the true parameter value, i.e. 8 to 12 for V,,, 
and 1.6 to 2.4 for K,. In Table 2, median estimates that 
fell within 20% of the true value and in which fewer 
than 50% of the 100 estimates were outside the 
respective range were marked with a single asterisk. If 
less than 20% of the 100 estimates fell outside the 
range a double asterisk was used. 

In general, linear models performed well only at low 
error (10%) and when error varied with V. The EH 

Vmav estimate 

technique seldom predicted V,,,,, within the stated cri- 
teria of accuracy and precision, but was more success- 
ful for predicting K,. LB and HW methods estimated 
both parameters equally well. 

The ECB method was more successful than linear 
methods as error increased, but W and TH methods 
showed the greatest level of accuracy and precision in 
predicting K,,, and V,,,. Even for these non-linear 
least-squares methods, however, parameters were 
poorly estimated at high error levels. The estimates 
were worst when few points at high S were available 
(e.g. Cases 3 and 5). In contrast to linear methods, the 
constant error cases we investigated in the present 
study appeared to be fitted better than variable cases 
for non-linear methods, particularly at high error lev- 
els. The TH method was marginally better in terms of 
accuracy of estimates than W, but this was always in 
cases where initial estimates for W (derived from a 
linear method estimate in the procedure used) were 
substantially in error. The methods were equivalent 
when suitable initial estimates were provided. 

Despite cautions about the effects of error in S (see 
Leatherbarrow 1990), the results of analyses with 
errors in both S and V (i.e. the XY error levels) were, in 
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Table 3. Comparison of estimates of the parameters of rectan- 
gular hyperbolae (V,,, and K,,,) for 3 real data sets, using dif- 
ferent fitting methods. Fitting procedures are: Lineweaver- 
Burk ( L B ) ,  Ead.ie-Hofstee (EH), Hanes-Woolf (HW), Eisenthal 
Cornish-Bowden (ECB). Cleland-Wilkinson (W),  and Tseng- 
Hsu (TH). Data sets are pictured in Fig. 4C, and described in 

the text 

Fitting NR vs PO4"- vs Growth rate 
method (NO3-] IPO,~-I VS l p r e ~ l  

v,,, K, v,,, K, v,, ~ ~ ( ~ 1 0 3 )  

LB -0.015 -0.026 18.60 10.02 0 375 0.103 
EH 4.153 -0.006 9.82 1.57 1.01 0.295 
H W  -0.310 -0.161 11.13 3.52 -9.58 -202 
ECB 8.876 0.022 17.07 7.52 1.59 4.89 
W 8.119 0.018 15.42 5.39 1.63 6.93 
TH 8.119 0.018 15.42 5.39 1.63 6.93 

fact, very similar to cases where the same error was 
introduced only in Vat the same level. 

The results of the Monte Carlo simulation were re- 
flected in real data set analyses. Fig. 4A represents en- 
zyme kinetic data with a low (10 %), constant error and a 
distribution similar to Case 1. From Table 2, it would be 
predicted that such a data set would not be fit well by 
llnear methods. As shown in both Fig. 4A and Table 3, 
linear estimates are clearly inadequate. If the 2 data 
points with the lowest S-values were deleted from this 
data set, however, all of the linear methods gave results 
much closer to the non-linear techniques. In the nutrient 
uptake data set represented in Fig. 4B, data are similar 
to Case 2, with high (20 to 50%) and variable error. In 
general, linear techniques predicted lower K,-values 
and lower V,,,,,-values. Table 2 suggests that, while 
none of the methods is entirely satisfactory, non-linear 
methods should provide better results in this case. For 
the growth rate versus prey concentration data, a case of 
high (20 to 50%) and constant error, linear methods 
again gave the poorest results (Fig. 4C; Table 3), as pre- 
dicted from the simulation (Table 2). 

DISCUSSION 

The finding that non-linear methods were superior to 
linear transformation methods is not surprising; this 
has been pointed out previously (e. g.  Wilkinson 1961, 
Cornish-Bowden 1979, Currie 1982). It should, how- 
ever, be noted that Linear transformation methods do 
perform well for data with low, variable error. In gen- 
eral, non-linear least-squares methods appear to be 
the most useful approach to fitting data to rectangular 
hyperbolae, provided adequate initial parameter esti- 
mates are given. In addition to superior accuracy and 
precision, non-linear models provide greater flexibility 

L d 

2 Nitrate concentration (mM) 

Q, 
X 1 
5 0 
P 

5 10 15 20 
3 Phosphate concentration @M) 

Prey concentration (X 103 cells ml") 

Fig. 4. Examples of real data sets fit to rectangular hyperbolae 
using different fitting methods: (-) Lineweaver-Burk, 
(- -) Eadie-Hofstee. (- -) Hanes-Woolf, (- - - -) Eisen- 
thal and Cornish-Bowden, ( -  . - - - )  Cleland-Wilkinson or Tseng- 
Hsu. (A) Nitrate reductase activity versus nitrate concentra- 
tion in extracts of the diatom Thalassiosira pseudonana (from 
Berges 1993), (B) phosphate uptake versus concentration in 
the marine macroalgae F u c u s  spiralis (from Hurd & Dring 
1990) and (C) growth rate versus prey concentration for the 
marine ciliate Strornbidium sp. feeding on the marine alga 
Rhodomonas sp. (modified from Montagnes 1993). Para- 

meters for each fit are given in Table 3 

in that they readily permit consideration of cases 
where there are non-zero intercepts (e.g. Leatherbar- 
row 1990), or inhibition constants (e.g. Li 1983), which 
are problematic to accommodate in linear fitting meth- 
ods. Of the non-linear fitting methods available, com- 
mercially available non-linear fitting packages using 
methods such as Gauss-Newton, Simplex, or Mar- 
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quardt-Levenberg may be most suitable for routine 
use; the agreement of these methods is not unusual 
because they use the same criterion (least squares) for 
determining the best fit. They differ in the algorithm 
used to find the best fit, and thus in relative efficiency 
and complexity of manipulations. Users are likely to 
select a method based on computing power available. 
For example, while the TH method may provide good 
parameter estimates, it is inefficient and difficult to 
apply to data sets larger than 25 points (see Cornish- 
Bowden 1991). The principle disadvantages of non- 
linear versus linear methods are that the non-linear 
methods are computationally complex and that they 
are sensitive to initial parameter estimates (see Jones & 
Taransky 1991). The former problem is no longer diffi- 
cult to overcome, given the ready availability of pow- 
erful personal computers (see Duggleby 1991), but the 
latter problem remains very real. In the present study, 
for example, the W techniques sometimes suffered 
from poor initial estimates. 

Generalizing the results of the present study may be 
limited due to the number of cases considered. Clearly, 
given the wide variety of applications of rectangular 
hyperbolic models, the number of possible patterns of 
error distribution are enormous. We did not, for exam- 
ple, examine how readily the results of this simulation 
can be applied to a case where error decreases with S 
or was Poisson distributed. Thus, an investigator with 
data displaying a radically different error distribution 
should consider comparing different non-linear fitting 
methods. 

Error of the parameter estimates and statistical 
considerations 

Another potential advantage of non-linear methods 
is that they can provide error estimates for kinetic 
parameters that are necessary for statistical evaluation 
of data. However, for non-linear methods there is no 
exact theory to calculate a confidence interval. Many 
fitting packages provide 'asymptotic standard errors', 
but these are probably inaccurate in many cases. Vari- 
ance/covariance matrices and Monte Carlo simulations 
to find joint confidence intervals are preferred, but 
more conlplex methods (Jones & Taransky 1991, John- 
son 1992b). Cornish-Bowden et al. (1978) have shown 
that distribution-free confidence limits can also be 
derived for data fitted using the ECB method. How- 
ever, for the data considered in the present study, the 
problems with the ECB method itself make this 
approach less desirable for certain data sets. A better 
strategy might be to replicate the entire experiment 
and derive parameter estimates (but not confidence 
limits) from each replicate. The mean and standard 

error of these estimates could then be used to estimate 
the true parameters and their error 

In some cases, it might be useful to consider for what 
purpose the confidence limits are needed. If, for exam- 
ple, the purpose is to demonstrate a difference be- 
tween 2 curves in which the values of the parameters 
are not important in themselves (or the precise form of 
the relationship is not known), this may be more effi- 
ciently done using an analysis of variance (ANOVA; 
Johnson 1992a) or a multivariate analysis (MANOVA) 
(Potvin et al. 1990). Considerations of these procedures 
will also affect the optimal experimental design. 

Design recommendations 

The level of error and whether this error is constant 
or variable will dictate which methods can be used 
with satisfactory results, but the design of the experi- 
ment (i.e. the specific concentrations of S selected, the 
number of data points and the spacing of these points) 
will also play an  important role (see Duggleby & Clark 
1991). Based on the results of the present study, there 
are clearly data distributions that are not amenable to 
analysis even by non-linear methods. Data corre- 
sponding to Case 3, for example, where no V,,, 
plateau is obtained, are particularly problematic. More 
accurate and precise values result when all data points 
are above K,, suggesting that values on the plateau 
are critical. Currie (1982) found using simulations that 
non-linear methods performed best with data distrib- 
uted geometrically (i.e. as in Case l ) ,  but the results of 
the present study do not support this contention; fits to 
data distributed as Cases 2 and 4 were as good or bet- 
ter (see Table 2). 

Johnson (1992b) has pointed out that increasing the 
number of independent data points gives better results 
than increasing the number of replicates at single S 
value, for non-linear fitting procedures (i.e. 30 differ- 
ent concentrations of S is superior to 3 replicates each 
at 10 different concentrations). Furthermore, data must 
not be smoothed since this will violate assumptions of 
random sampling. The 3 key assumptions remain how- 
ever: (1) that the error in S is much smaller that the 
error in V, (2) that Vis normally distributed at a single 
value of S; and (3) that the model to which the data are 
fit is correct (see Johnson 1992b). This study has not 
considered whether the rectangular hyperbola is an 
appropriate model for a given data set. Indeed, there is 
evidence that nutrient uptake kinetics and growth ver- 
sus food concentration may not fit hyperbolic kinetics 
perfectly (see Mullin et al. 1975, Condrey 1982, Hurd & 
Dring 1990). Unfortunately, in real data sets, it may 
often be impossible to distinguish a lack of fit due to 
error from a lack of fit due to an unsuitable model. 
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In summary, this study has provided objective crite- 
ria for selecting a fitting method for a given data set, 
based on the data distribution and error level and 
structure. It has also provided a means to assess 
whether previously published parameter estimates 
using different fitting methods are satisfactory or 
whether they should be reanalyzed. 
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