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ABSTRACT. Neural network analysis was proposed and evaluated as a method for image analysis of 
plankton data derived from automatic counting techniques. It was shown that a neural network with 2 
layers of weights was capable of learning a large data set by the backward-error propagation method. 
Significant results were achieved in separating novel images of 2 co-occurring species of Ceratium spp. 
from the western North Atlantic Ocean. 

INTRODUCTION 

There is a growing concern amongst the marine 
scientific community about the diminishing numbers 
of competent plankton taxonomists remaining in, and 
being recruited to, research. This has led to a number 
of initiatives attempting to overcome this problem 
using automated pattern recognition techniques 
(Jeffries et al. 1984, Rolke & Lenz 1984, Steidinger et 
al. 1990). Certainly it is a generally held belief that 
the majority of plankton samples will eventually be 
sorted, counted and taxonomically analysed using 
automatic techniques. No definitive system has yet 
been built but it is highly likely that pattern recogni- 
tion and image processing will be the method to 
achieve the processing of the data. There is also a 
growing requirement for discrimination and identifica- 
tion of video images collected from cameras mounted 
on remote vehicles and towed systems. Recognition 
of biological patterns by neural networks is a new 
concept and one which we suggest could play a role 
in achieving these ends. 

The majority of previous attempts to use automated 
pattern recognition for taxonomic identification have 
utilised explicitly statistical techmques, whereby mor- 
phological measurements are made on sample data 
(either by hand or by some automatic image analysis 
technique), and the measurements submitted to dis- 
criminant analysis (Yarranton 1967, Jeffries et al. 1980, 
1984). Typically such techniques involve making a 
wide range of measurements, and using the statistical 
analysis to determine which measurements or combi- 
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nation of measurements allows the best discrimination 
to be made. Obtaining images clean enough to enable 
accurate measurement is itself quite problematic. A 
neural network approach was considered suitable for 
this type of problem for a number of reasons: (1) neural 
networks (strictly, artificial neural networks) are able 
to be taught, i.e. exposed to data and 'told' what the 
correct response (e.g. category) is for that stimulus, 
and do not need to be given a rule-base to determine 
behaviour; (2) they are able to form arbitrary mput- 
output mappings, and so can be used in a wide variety 
of domains; (3) they have been shown to be largely 
resistant to noisy or imperfect inputs; (4) their massive 
operational parallelism means that hardware versions 
of networks can be made that perform very complex 
mapping tasks at great speed. 

MATERIALS AND METHODS 

Samples. To assess the possibilities of artificial 
neural networks' discriminating images of planktonic 
species, specimens of the genera Ceratium were used. 
Ceratium spp. are generally compressed in one plane 
and are ideal organisms for drawing or video imaging. 
They are also morphologically variable and specimens 
are at times difficult to separate, when there can be up 
to 20 different and distinct species of the genera occur- 
ring in one plankton sample. The 2 species selected 
were C. arcticum (Ehrenberg) Cleve, and C. longipes 
(Bailey) Gran., which have sympatric geographical 
distributions in the western Atlantic Ocean. 
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Fig. la ,  b shows 4 abundance levels (where the 
sampled area is bounded by a solid line on the maps). 
The analysts from the Continuous Plankton Recorder 
(CPR) team (Glover 1967, Colebrook 1982) identify 
phytoplankton from samples collected in the western 
Atlantic, and thus are making taxonomic decisions 
differentiating these species. Samples of phytoplank- 
ton were used from this ongoing survey, and assistance 
in classifying these samples was obtained from the 
CPR personnel and used to test the efficacy of this 
neural network technique. 

Neural networks. Neural networks consist of large 
numbers of processors ('nodes'), massively intercon- 
nected by variable connections ('weights') (see Fig. 2). 
Typically research in this domain is done on serial 
digital computers simulating the parallel operation of 
these networks, as is the case here. 

The neural network model used in the experiments 
reported here is a feed-forward activation model 
(meaning that the nodes are arranged in layers, and ac- 
tivation of the nodes feeds forward from the input layer 
to the output layer, possibly through intervening lay- 

Fig. 1. Cerafium spp. Annual mean 
distribution and abundance of (a) 
C. arcticum and (b) C. longipes 
in North Atlantic, from sampkng 
at 10 m depth by the continuous 
plankton recorder. Data for all 
months sampled were combined to 
show mean abundance from 1958 
to 1989. Samples were assigned 
to rectangles lo lat. by 2' long. 
Rectangle means are represented 
by 3 graded symbols (abundance: 
+ least; , intermediate; \ ,  most). 
The absence of symbols (in the 
sampled area) indicates that the 
species were not found in the CPR 
samples. The boundary of the sam- 
pled area is shown by straight lines 
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Fig. 2. A feed-forward network with 15 input units, 4 hidden 
units and 2 output units. W,, indicates a weighted connection 

from node i to node j 

ers), taught by the backward error propagation tech- 
nique (Rumelhart et al. 1986). A network is exposed to 
an input pattern, and the weights are adjusted so that 
the required output pattern results at the output layer. 
In addition to the nodes described, there is a bias node 
in each layer prior to the output layer, providing a stim- 
ulus to each layer forward of the input layer. This is 
required in order to ensure the dynamic range of the 
input to a node is within its operational bounds. The 
backward-error propagation (or 'back-prop') algorithm 

does this iteratively, repeatedly exposing the network 
to the input-output pattern pairs until the amount of 
operational error shown by the system reaches a suffi- 
ciently low value. This being so, when shown a pattern 
in the training set, the network will respond appropri- 
ately. The strengths of the weights connecting the input 
and output nodes can be said to represent the cate- 
gories that the network has learnt. If there are addi- 
tional layers of nodes (called hidden units in that 
they are not directly accessed by inputs or outputs) they 
can be said to have formed an internal representation. 
The real strength in this approach is not in teaching a 
network to categorise a particular set of data, but in 
using a network so taught to categorise new, novel 
data. If a network is able to respond appropriately to 
novel data (or test data) it can be said to have qenerali- 
sed from the training set. This is in effect how humans 
operate. They are shown repeated examples of input- 
output pairs, (somehow) come to learn them, and ex- 
tend their knowledge of these examples to new cases. 
Experiments were done in order to investigate the pos- 
sible generalisation ability of networks in this domain. 

Obtaining the images. Drawings of 110 specimens of 
the dinoflagellate genus Ceratium (C. arcticum and C. 
longipes), removed from CPR samples, were obtained. 
These were made either from line drawings taken with 
a camera lucida fitment on a microscope or directly 
from the microscope slide using a video camera and 
digital frame grabber (Fig. 3a). The h e  drawings were 
then digitised, and thresholded to give a binary black 

Fig. 3.  (a) Grey-level images of Ceratium longipes (upper) and C. arcticum (lower). (b) Binary line drawings of same. (c) Reconsti- 
tuted image of only the lowest 16 spatial frequencies from (a). (d) Frequency gradient histograms of the images in (c) 
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and white image (Fig. 3b). These data were initially 
thought to consist of roughly half C. longipes (Bail.) 
and half C. arcticum (Ehrb.). Given the generally diffi- 
cult nature of Ceratium classification it was thought 
inadvisable to obtain a cast-iron set of classifications 
from one expert, so a technique was devised for 
obtaining the 'correct' class of each specimen. A 
randomised double set of images was produced, and a 
number of plankton analysts with a wide range of 
classificatory experience in this field were asked to 
identify each image. Each set of images given to each 
individual were randomised differently to prevent the 
occurrence of order effects. 

The results of the analysts' identifications were ana- 
lysed in 2 ways. Firstly, each individual's classifications 
were analysed to see how self-consistent they were, 
that is, how reliably a particular individual classified 
unages to be a particular species. This could be calcu- 
lated since each image occurred twice in the set of 
images being classified. This was the measure of inter- 
nal consistency. Secondly, the results were analysed to 
determine the external consistency of the group of 
individuals. Table 1 shows the percentage agreement 
between each individual and every other individual. 

By ordering the results by internal consistency it can 
be seen that the 3 most internally consistent set of 
classifications (A, B and C )  were mutually consistent to 
a high degree. Beyond this group both internal and 
external consistency dropped off sharply. Working on 
the premise that if one is largely right, one's decisions 
will be largely consistent with someone who is also 
largely right, whereas if one is wrong one may be 
wrong in very different ways to another person who is 
wrong, we suggest that this clustering of the more 
consistent performers indicates that they are all largely 
right (i.e. right thinkers must think alike, wrong 
thinkers needn't). Given this we can use their judg- 
ments to give us a 'definitive' benchmark classification 

Table 1 Consistency of subjects (Experts A to H) in Ceratium 
classification trials 

External consistency (rounded to %): 

A B C D E F G  

International inconsistency (errors per 110 pairs): 
3 6 6 17 18 20 27 33 

for each species. Where there are disagreements 
within this group a simple majority decision was taken 
as the class. In a few cases the majority decision was 
considered to be insufficiently overwhelming, and that 
image was discarded for these experiments. Even- 
tually a set of 100 images, 50 Ceratium longipes and 
50 C. arcticum, was arrived at, each one classified as 
such more than 80 % of the time by these 3 experts. 
This set constituted our image data. 

In order to reduce the size of the input to the network 
some pre-processing of the image was done. In all 
experiments the frequency power spectrum of the 
image was obtained by performing a Fourier Trans- 
form (FT) and summing all the information for each 
frequency. This gives us a set of frequency responses 
for the image. The FT was chosen as a suitable pre- 
processing technique for several reasons. Firstly, the 
nature of the FT means that the plankton in the image 
need not be positioned or centred prior to the trans- 
form, since the result of the transform is largely posi- 
tion invariant with respect to large detail in the image. 
This saves us quite a problem, since techniques re- 
quiring centering of an object can be very sensitive to 
slight errors in positioning. Secondly, an FT can be 
performed in a parallel processing fashion on suitable 
hardware, thus enabling a fast transform, and possibly 
the development of a single network incorporating the 
pre-processing and the later processing. Thirdly, a 
power spectrum can be obtained from an FT, and a 
frequency histogram from the power spectrum. There 
is a very great compression of information from the 
grey-level image to the frequency histogram, and this 
compression has advantages for a network simulation, 
namely of network size, giving faster simulation times, 
and of learning speed. Simpson (1989) has previously 
reported on experiments that show that low spatial 
frequencies contain sufficient information to dis- 
criminate between images of angles of different sizes. 
Since it appears that angular data play a role in iden- 
tifying Ceratium species, spatial frequency data can be 
regarded as being both efficient and meaningful. 

It had been observed that the gross structure present 
in the lowest 16 spatial frequencies was sufficient for 
a Ceratium specimen to be identified by an expert. 
Reconstructing an image from an FT from which 
higher frequencies have been removed results in a 
somewhat blurred and wavy image (Fig. 3c). In the 
case of Ceratium it was observed that such a recon- 
structed image could be classified by an expert with 
ease. The higher frequencies naturally represent the 
finer structure of the image such as fore- and back- 
ground texture, and such details are not usually neces- 
sary for a successful classification (in this domain) to 
be made. Given this fact, only the lowest 16 spatial 
frequencies were used in the final stage of pre- 
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processing. This reduces the amount o f  information 
being used b y  a factor of  4 ,  while retaining important 
information. It had previously been found that training 
a back-propagation network on the raw spatial 
frequency amplitudes led to the total system error's 
oscillating and failing to be  reduced to a satisfactory 
level (Simpson 1990). A solution to this problem was 
to take the 'frequency gradient' as the data to be  given 
to the network. This is simply the result o f  subtracting 
the power of  frequency n + l  from the  power of  
frequency n .  Thus 16 frequencies are converted into 
15 differences of  frequencies - a simple gradient 
measure (Fig. 3d) .  These values were then normalised 
(i.e. sum to 1) .  

For each trial a network with 15 input, 4 hidden and 
2 output nodes was set up .  Each layer in  the network 
was fully connected to the layer above (i.e. the input 
layer was connected to the hidden layer, and the 
hidden layer to the output layer). Fully connected 
imphes that each node in  one layer was connected to 
each node in  the  layer above. Training the network on  
a set o f  patterns consisted of  the following: first a pat- 
tern (plus a small amount o f  noise) would b e  clamped 
onto the input layer of  the network, so that the values 
of  those nodes would become the values of  the ele- 
ments o f  the input pattern. This activation was then 
allowed to propagate through the hidden layer, to the 
output layer. The  error at the output layer (i.e. the 
difference between actual output and the desired out- 
put) was then used to calculate the changes in the 
weights o f  the whole network (for an exposition of  this 
see Rumelhart et al. 1986). Then  the  network was 
trained on another pattern from the training set, and so 
on  until all the  patterns in the training set had been 
used. This constituted one epoch of  learning. Many 
training epochs are performed until the network is per- 
forming the classification task appropriately well, and 
then the network is tested on the test set o f  data, none 
of  which it has been exposed to. I f  the network per- 
forms significantly well, generalisation is said to have 
occurred. 

RESULTS 

One-hundred simulations were carried out. For each 
trial, a random number between 2 and 45 inclusive was 
generated, and taken as the number of  both Ceratium 
arcticum and C. lonqipes patterns in the  training set. 
Hence the  network was be  trained on  between 4 and 
90 patterns, with an equal number of  the 2 species 
being presented. Each n e w  network was initialised 
with random weights, and trained until the root mean 
squared (RMS) error (of  actual outputs compared with 
desired outputs) reached 1 % or less, or 1000 presenta- 

tions of  each training example had been presented, 
whichever occurred first. In 66 % of  the trials the learn- 
ing was halted because the network had satisfactorily 
learned to classify the training data. The  results of 
these 'successful' trials are illustrated in Fig. 4 .  In those 
cases where the learning was halted due to 1000 itera- 
tions having been  completed, it was found that the 
network was in fact learning (i.e. the error was still 
decreasing), but at a very slow rate. In no cases did the 
network not appear to be  learning the training set, and 
indeed in  all but 8 cases (92 % of  the time) significant 
generalisation occurred. In Fig. 4 those cases when 
the generalisation is not considered significant (the 
binomial probability is > 0.05) are indicated. The  net- 
work is then said to have learned the training set, 1.e. 
given a pattern from this set, the correct classification 
pattern (within some degree of  accuracy) will be 
generated on the output nodes. In fact, b y  treating an 
output pattern as representing that allowable classifi- 
cation to which it is nearest, the output can be con- 
sidered to be  that classification - a nearest neighbour 
classifier in ef fec t .  In this way the network is 'forced' to 
decide between the allowed classes. Using this tech- 
nique for assessing the performance, the network was 
then tested on  the unseen test data. The  results are 
shown in  Fig. 4 .  The  generalisation performances 
attained on the very small training sets are near 0.5. 
There is clearly a trend for a network's generalisation 
ability to improve with an increase in the size of train- 
ing set (Pearson's product-moment correlation; for all 
successful trials, r = -0.626, d f  = 64, p < 0.001, and 
C(-0.754 < p < -0.452) > 0.95; for all trials, successful 
or not, r = -0.561, d f  = 98, p < 0.001, and C(-0.683 < 
p < -0.409) > 0.95). These trends cannot, however, be  
regarded as linear since it would be impossible for the 
network to exceed 100 % performance. Since any 
underlying trend must therefore be  non-linear, the 
correlation measure will underestimate the association 
between the 2 variables. Performance in  the 'unsuc- 
cessful' trials was often as good as in the 'successful' 
trials: indeed, a performance of  less than 10 % error 

Number o f  patterns in training set 

Fig. 4. Generalisation on test data vs size of training set 
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w a s  at ta ined over a test se t  of 30 pat terns,  a l though 
this is not shown i n  Fig. 4,  t h e  network hav ing  b e e n  
hal ted after 1000 iterations. Even  wi th  small training 
sets  most networks a r e  a b l e  to  demonstrate  a classi- 
ficatory ability beyond  chance  (1.e. generahsing signifi- 
cantly),  This suggests  that  over-learning, or s m p l e  
memorisation of t h e  da ta ,  is not occurring. This is  
probably d u e  to  t h e  small n u m b e r  of h idden  nodes  pro- 
viding a bottleneck for t h e  input  pat terns,  a n d  thereby  
enforcing encoding o n  those nodes  alone. This, 
together  with t h e  t rends  demonstrated above,  suggests  
that  a larger  training se t  size t h a n  u s e d  a t  p resen t  will 
result i n  a network ab le  t o  classify a l a r g e  test set  with 
a h igh  d e g r e e  of accuracy. 

CONCLUSION 

It h a s  b e e n  shown tha t  a neura l  network with 3 
layers of weights  is capable  of learning numerous  
real-world d a t a  b y  t h e  backward  error  propagat ion 
method.  This  technique h a s  been u s e d  t o  assess t h e  
possibility of enabl ing a network to classify a n  
u n k n o w n  d a t a  set  i n  t h e  Ceratium domain,  b y  training 
t h e  network o n  a finite training set.  Given  t h e  small 
amount  of d a t a  u s e d  in this experiment ,  a n d  t h e  h igh  
proportion of significant results,  i t  seems  that  such  a 
technique h a s  t h e  possibility of be ing  ex tended  i n  2 
ways.  Firstly, a larger  d a t a  set  would enab le  us  t o  train 
a network to a m u c h  grea te r  d e g r e e  of skill, a n d  t h e  
suggestion is that  such  a network could b e  capable  of 
robust a n d  accurate  classification. This would not  be a 
negligible achievement ,  s m c e  t h e  task of Ceratjum 
classification requires  m u c h  experience i n  o rder  to  b e  
performed competently. Even  with such  experience it 
remains a part ly  unde te rmined  taskp  as evidenced b y  
t h e  ratings of h u m a n  classifiers i n  Table  1. Secondly, it 
is thought  that  this technique m a y  successfully be 
applied to  other  Ceratjum species, such  a s  C. horridum 
(Cleve) Gran , ,  a n d  C, trjpos (0. F. Muller) Nitzch. It 
appears  that  discriminating b e t w e e n  these  fur ther  
classes a n d  C. longipes a n d  C. arcticum is qualitatively 

Thzs arhcle was submztted to the editor 

a similar task,  generally relying o n  observation of t h e  
characteristics of t h e  apical  a n d  t h e  2 antapical  horns. 
Work i n  this direction is  i n  progress  a t  Polytechnic 
South West  i n  conjunction with t h e  Alister Hardy  
Foundat ion for O c e a n  Science, 
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