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ABSTRACT: Labyrinthula zosterae is clearly shown to be a primary pathogen of eelgrass Zostera
marina L., not merely a secondary infection of senescent leaves or an indication of decomposition.
The results of this investigation using a Diving-PAM fluorometer indicate that the regions of tissue
photosynthetically compromised by Labyrinthula are substantially larger than previously thought.
Labyrinthula moves through Zostera marina tissue at a rate of up to 0.8 mm h! during daylight peri-
ods. The photosynthetic efficiency of apparently healthy green leaf tissue can be reduced by almost
50% in areas up to 3 mm from a necrotic region infected with Labyrinthula. Once a necrotic spot
expands to bisect the eelgrass leaf, the condition of all acropetal tissue is diminished; leaf tissue up to
5 cm away has severely reduced photosynthetic activity.
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INTRODUCTION

During the 1930's, 'wasting disease' decimated the
eelgrass Zostera marina L. meadows along the Atlantic
Coast of North America and Europe with over 90 %
loss (Muehlstein 1989). Speculations concerning the
causative agents of the wasting disease have been
numerous, including pathogenic microorganisms, sal-
inity, temperature, irradiance, drought and oil pollu-
tion (Short et al. 1988, Muehlstein 1989). It has now
been shown that the eelgrass wasting disease is
caused by infection with a marine slime mould-like
protist, Labyrinthula zosterae Porter & Muehlstein (phy-
lum Labyrinthulomycota) (Short et al. 1987, Muehl-
stein et al. 1991). Wasting disease continues to affect
Z. marina meadows in North America and Europe with
variable degrees of loss, though none to date as cata-
strophic as the epidemic of the 1930s (Short et al. 1986,
1988, 1993).
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Wasting disease infection is spread either through
direct contact with an infected growing plant or drift-
ing detached plant parts. The initial symptoms are
black-brown dots or streaks on the leaves, which, as
the infection develops, coalesce to form patches, larger
blackened spots, and longer streaks; ultimately, the
plant dies (Short et al. 1988, Muehlstein 1989). Micro-
scopic examination of necrotic tissues has revealed
that the pathogen moves rapidly (175 um min™?)
through tissues, penetrating cell walls. The protist
appears to initiate enzymatic degradation of the cell
wall, followed by destruction of the cytoplasmic con-
tents of the seagrass leaf cell (Muehlstein 1992). The
exact mechanism of mortality resulting from Laby-
rinthula zosterae infection is still not known.

Both Renn (1936) and Young (1938) observed Laby-
rinthula cells within eelgrass leaf tissue outside of the
actual blackened region. Renn (1936) also described
the effect of infection on leaf cellular components,
including disorganisation of chloroplasts and disinte-
gration of cell nuclei, which resulted in 'dark resinous
inclusions' appearing along the cell walls. Vergeer et
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al. (1995) suggested that the characteristic spots were
the result of enzymatic browning from L. zosterae.

Den Hartog (1987, 1996) suggested that Labyrinthula
functions as a secondary decomposer of senescent leaf
material. Many authors have postulated that the onset
of Labyrinthula infection in Zostera marina is linked to
already stressed seagrasses (Young 1937, Tutin 1938,
Rasmussen 1977), as they believe healthy tissue can
generally resist infection by this ubiquitous marine
pathogen (Vergeer & den Hartog 1994). Labyrinthula
has been demonstrated to be the etiological agent of
the wasting disease using Koch's postulates (Short et
al. 1987). Further studies have demonstrated that the
infectious slime mold L. zosterae is a host-specific
pathogen transferred by direct contact of plants
(Muehlstein et al. 1988, 1991). Although it has been
demonstrated that salinity plays a role in regulating
disease activity (Burdick et al. 1993), the actual condi-
tions leading to broad-scale outbreaks of the disease
are yet to be understood.

The recent reoccurrence of the wasting disease in
the northwest Atlantic has provided an opportunity to
observe fluctuations in infected eelgrass populations
and to relate these changes to environmental condi-
tions. The role of salinity in regulating the activity of
Labyrinthula illustrates the importance of careful mon-
itoring and assessment of environmental factors in
conjunction with disease activity (Burdick et al. 1993).
Labyrinthula activity is clearly controlled by the salin-
ity of its surrounding media; salinities below 20 to 25 ppt
reduce disease activity and allow eelgrass to recover
from the infection (Muehlstein et al. 1988, Burdick et
al. 1993). Temperature and light were implicated in the
1930s epidemic, with reports of elevated temperature
associated with disease outbreak (Rasmussen 1977)
and increased wasting disease occurring at protracted
low levels of insolation (Tutin 1938). No recent conclu-
sive evidence further elaborates the possible impacts
of temperature and light on wasting disease (Short et
al. 1988), although they likely have a role through their
influence on eelgrass metabolism.

Buchsbaum et al. (1990) found that eelgrass with
higher phenolic levels was less susceptible to Laby-
rinthula infection. Vergeer et al. (1995) found that
Labyrinthula infection resulted in elevated levels of
phenolics in Zostera marina leaves, levels that were
greater when samples were taken closer to a lesion.
The role of such secondary compounds, as well as the
regulation of plant metabolism, requires additional
research. Infections of Labyrinthula have been shown
to affect various aspects of seagrass physiology. For
example, it was found that Labyrinthula reduced Tha-
lassia testudinum production to below zero when more
than 25% of the leaf blade was infected (Durako &
Kuss 1994). Also, respiration rates of infected tissue

were up to 3 times higher than rates in non-infected
leaves. Changes in the slope of the light limiting region
of the photosynthesis-irradiance curve (0) were found
for seagrass tissue with extensive necrosis. It was
demonstrated that Labyrinthula impairs photosynthe-
sis in T. testudinum (Durako & Kuss 1994).

The aim of this investigation was to demonstrate
the extent of photosynthetic impairment due to Laby-
rinthula infection beyond the blackened leaf tissue,
and estimate the rate of impact of photosynthetic activ-
ity. We used the Diving-PAM and Microfibre-PAM to
test levels of photosynthetic activity (Ralph et al. 1998,
Beer et al. 2000) within leaves from healthy to infected
eelgrass tissue, and changes in photosynthetic rates as
the necrotic tissue expanded.

MATERIALS AND METHODS

Culture of diseased Zostera marina. Eelgrass plants
were maintained in a series of flow-through mesocosms
(1 m®) in a glasshouse at the Jackson Estuarine Labora-
tory, University of New Hampshire, USA (43°5'N,
70°50" W). The eelgrass was transplanted from beds in
Great Bay, New Hampshire, 8 mo before the photosyn-
thesis experiments. Disease symptoms developed on
eelgrass in 5 of the 8 mesocosms as a result of the
presence of the pathogen in the field-collected plants.
Disease spread to all shoots in the infected mesocosms.
At the time of the experiments in July 1999, water tem-
perature was 22 + 1°C and salinity was 32 to 34 ppt.
Young diseased leaves were randomly selected in the
infected mesocosms, and chl a fluorescence measure-
ments (Schreiber et al. 1994) were performed in situ us-
ing a Diving-PAM (Walz GmbH, Effeltrich, Germany)
to determine effective quantum yield (AF/F,) and
maximum quantum vyield (F,/F,). Measurements were
performed on either leaf nos. 2 or 3 of the plant, so that
epiphyte interference was minimal.

Disease profile along an infected leaf blade. Laby-
rinthula infection was detected by visual assessment of
young growing leaf blades of Zostera marina. Black-
ened tissue was identified on sample leaves. Chl a flu-
orescence measurements were taken with the Diving-
PAM with a 1 mm acrylic fibre-optic probe from the
edge of the black tissue, moving in 1 mm increments
into the green tissue in both directions, towards the
leaf tip (acropetal) and towards the meristem (basipetal).

Effect of disease band across entire leaf blade. Sam-
ple leaves were selected where Labyrinthula infection
had advanced to the point that the necrotic (black-
ened) area extended across the entire width of the eel-
grass blade, while leaving zones of green tissue above
and below the blackened band (Fig. 1). Fluorescence
measurements were made in situ with the Diving-
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Fig. 1. Photograph of infected eelgrass tissues, showing com-
plete blackened region across entire blade, black spots and
black streaks

PAM, basipetal and acropetal to the infected black
band. The measurements were made about 5 cm from
the black tissue. Control measurements were per-
formed on healthy leaves (no blackened band or
apparent infection) to illustrate that the response was
not associated with age of tissue (i.e. senescence).
Control measurements of maximum quantum yield
(F,/F,) were made at least 10 cm above the sheath and
separated by approximately 10 to 15 cm.

Migration of Labyrinthula and effect on tissue
photosynthesis. Sample leaves having new active
Labyrinthula infection (with a single black spot 1 to
3 mm in diameter) were selected and monitored over a
period of 24 h to track the progress of the infection,
using the Microfibre-PAM (Walz GmbH) with a 100 pm
fibre-optic. The 100 pm fibre-optic was gently placed
on the surface of the leaf tissue beyond the apparent
disease front, using a micromanipulator MM33 (Maérz-
hauser, Wetzlar, Germany). Leaves were maintained in
a submerged trough within a mesocosm, to prevent
movement while being measured, but allowing full
irradiance and water flow. Every 2 h the length of the
blackened spot was measured and the effective quan-
tum yield of the tissue at the location of the probe was
also recorded. Control leaves were measured that did
not have Labyrinthula symptoms (n = 6).

Chlorophyll fluorescence measurements. Effective
quantum vield (AF/E,"' = (F,' - F)/F,') is a measure of
Photosystem II photosynthetic activity, which is mea-
sured under ambient light conditions, whereas maxi-
mum quantum yield (F,/F, = (Fy, — F,)/Fy,) is measured
after 5 min dark-adaptation. Both of these variables
have no units, as they are ratios of fluorescence mea-
surements. The ratio F,/F,, indicates the proportion of
Photosystem II reaction centres that are capable of
converting captured light into photosynthetic energy.
This ratio is a convenient measure of the maximum
potential quantum yield of Photosystem II, and is there-
fore inversely proportional to photochemical stress.

Minimum fluorescence (F,) occurs when all Photosys-
tem Il reaction centres are open. Subsequently, a satu-
rating pulse of light closes the traps, the maximum
fluorescence yield (F,) is measured. F, and F,, are
measured after a period of darkness when the photo-
chemical process has completely relaxed. F,' and F
(used for effective quantum yield) are the equivalent of
F,, and F, but are measured under ambient light con-
ditions. Effective quantum yield also measures Photo-
system II photosynthetic activity; however, it is strongly
influenced by irradiance, down-regulation and non-
photochemical quenching (Schreiber et al. 1994).

Rapid light curves (RLC) describe the relationship
between electron transport rate (ETR) and irradiance.
ETR is determined according to the following equation
(Schreiber et al. 1994):

ETR = AF/F,' x0.84 x 0.5 x PAR

where AF/F,' is the effective quantum yield, 0.84 is the
absorption coefficient, 0.5 compensates for irradiance
being split between 2 photosystems, and PAR is the
photosynthetically active radiation. Rapid light curve
measurements were performed using 8 incremental 10 s
steps of irradiance from 0 to 1520 pmol photon m™2 57!
(Ralph et al. 1998). A series of RLCs were measured on
infected (necrotic) regions of eelgrass leaves (n = 6),
intermediate regions (5 cm from necrotic tissue), and
healthy tissue (10 cm from necrotic).

Statistics. One-way ANOVA was used to assess dif-
ferences between zones around the necrotic areas
(Fig. 2). Tukey's HSD test was subsequently performed
to identify which treatments in the ANOVA model
were similar. A 2-sample t-test was performed to
assess differences between the impact of Labyrinthula
on either side of the necrotic area (Table 1).

RESULTS

Disease profile along an infected leaf blade

A zone of green tissue up to 4 mm from a black-
ened (diseased) region had significantly reduced

Table 1. Effect of disease across the entire leaf width on the
maximum quantum yield (F,/F,,) above and below the band of
diseased tissue. Mean F,/F, ratio + SE (n = 6). Results
of 2-sample (-test, samples grouped by position. p < 0.05 is

significant
Position Diseased tissue Control tissue
Basipetal (towards base) 0.509 + 0.050 0.484 + 0.065
Acropetal (towards tip) 0.337 + 0.091 0.490 + 0.082
P 0.004 0.885
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Fig. 2. Disease profile along an infected eelgrass leaf blade.

Mean value of effective quantum yield + SE (n = 6). Mea-

surements were taken in both directions (basipetal and

acropetal from the infected (blackened) zone. Letters iden-

tify treatments that are significantly different according

to Tukey's HSD test. Units of effective quantum yield are
arbitrary

photosynthetic activity compared to tissue unaffected
by Labyrinthula (Fig. 1), demonstrating that the
infection is located in tissues beyond the immediate
region of blackened tissue. The green tissue immedi-
ately adjacent to the blackened zone (1 mm) had an
effective quantum vyield of ~50% that of healthy tis-
sue (10 mm away). The further away from the black-
ened tissue (2, 3 and 4 mm), the greater the effective
quantum vyield (i.e. the healthier). There was no sig-
nificant difference in effective quantum yield of the
samples taken 4, 5 and 10 mm from the disease
front.

Effect of disease across entire leaf blade

Patches of diseased tissue that extend across the
entire width of a leaf appear to influence the maxi-
mum quantum yield (F,/F,) of tissue sampled above
(acropetal to) such patches. Although tissue at the
distal end of the blades is older and therefore might
be expected to produce lower quantum yields due
to age, the control data show that the response is
due to infected tissue across the width of the leaf
(Table 1). Acropetal regions showed significantly
lower maximum quantum yield than did either the
corresponding basipetal region or the control tissue.
There was no significant difference between the
response of the basipetal side and the control (p =
0.483).

Migration of Labyrinthula and effect on tissue
photosynthesis

Tracking the expansion of a single black spot
showed the movement of the disease front through the
leaf and documented the photosynthetic response as
the disease approached and overtook the location of
the probe. The zone of diseased tissue increased at a
constant rate of just under 1 mm h™! during daylight
hours from time 0 (08:00 h) until late afternoon (16:00 h)
(Fig. 3). During the night, the region of blackened tis-
sue did not expand substantially (<0.012 mm h™'). The
measurement of quantum vyield (AF/F,') beyond the
margin of the single black spot was initially equivalent
to the control leaf but showed a substantial decrease in
photosynthetic activity (Schreiber et al. 1994) as the
spot expanded over the 24 h period, dropping from
0.65 (healthy response) to approximately 0.2. As the
disease front migrated further through green tissue, a
decline in effective quantum yield occurred.

Paired rapid light curves

Rapid light curves of healthy Zostera marina tissue
showed a normal response to increasing irradiance
(see Ralph et al. 1998). Healthy tissue showed in-
creasing ETR up to 400-800 pmol photon m™2 s7!, with
down-regulation occurring only at the highest irradi-
ance levels (Fig. 4). In comparison, the blackened tis-
sue showed limited photosynthetic activity and only at
low irradiance levels (Fig. 4). Intermediate tissue (at
the edge of the diseased areas) showed increasing
photosynthetic activity only at irradiances <200 pmol
photon m=2 s7!, while at higher irradiances the ETR
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Fig. 3. Rate of increase in blackened tissue in comparison to

effective quantum yield (AF/F,'). Mean value of effective

quantum vyield (diseased and control tissue) and distance of

expanding blackened region + SE (n = 6). Units of maxi-
mum quantum yield are arbitrary
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Fig. 4. Rapid light curves of 3 stages of Labyrinthula infection:
damaged (blackened), intermediate (adjacent to blackened)
and healthy tissue samples. Data are the mean + SE (n = 6).
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declined significantly (Fig. 4). This response was lower
than for healthy tissue, but greater than for blackened
tissue. There was substantially reduced ETR at irra-
diances greater than 200 umolphoton m~2 s™! in black-
ened tissue, and intermediate tissue also showed a
similar photoinhibitory or photodamage response (i.e.
loss of photosynthesis at high irradiances). Photosyn-
thesis did not recover overnight, indicating that this
response was due to chronic photoinhibition or photo-
damage, not merely diurnal down-regulation. Healthy
tissue did not show down-regulation until at least
1200 pmolphoton m~2 s7!, Rapid light curves are effec-
tive for demonstrating the impact of Labyrinthula on
photosynthesis in eelgrass leaves. The slope of the
light-limiting region of the RLC (a) was also consider-
ably reduced in infected tissue (Fig. 4).

DISCUSSION

Muehlstein et al. (1991) isolated Labyrinthula in
green eelgrass tissue up to 5 mm from a lesion. The
expansion of areas infected by the wasting disease and
the concomitant movement of Labyrinthula through
eelgrass tissue caused a measurable impact on eel-
grass photosynthesis in our study. We show that much
greater amounts of eelgrass tissue are compromised by
the damage caused by Labyrinthula than simply the
visibly blackened tissue, as previously thought.

Impairment of photosynthesis in the infected Zostera
marina blades was apparent when examining the rate
of photosynthetic activity at the light-limited region of
the RLC (Fig. 4). Renn (1936) observed that as the dis-

ease progressed, chloroplasts initially clumped in the
centre or perimeter of the cells, changed colour, and
then as the chloroplasts disintegrated their fragments
dispersed throughout the cell. A similar response was
demonstrated by Durako & Kuss (1994) using tradi-
tional P-I curves with Thalassia testudinum.

Once the disease has made substantial progress and
created a disease band across the blade, the photosyn-
thetic activity of tissue above (acropetal to) the dam-
aged band is strongly inhibited, through the tissue
remains green. Solute transport through the vascular
system appears to be affected by the development of
Labyrinthula infection, which could be associated with
a reduction or loss of vascular transport through the
diseased band (Renn 1936, Durako & Kuss 1994). The
unidirectional response of the leaf to infection implies
that some form of transport is impacted, as the photo-
synthetic activity remains the same as in the unin-
fected control tissue below the diseased band. It is
unclear whether the diseased band blocks the flow of
nutrients to the acropetal portion of the leaf, whether
transport of photosynthetic products to the meristem is
restricted, or if oxygen transport is inhibited. Durako &
Kuss (1994) suggested that loss of oxygen transport in
the plants may cause root hypoxia as well as additional
stress conditions, leading to die-off. The implication of
such reduction to overall plant photosynthesis would
be reduced eelgrass health and productivity beyond
the local areas of infected tissue. Such infection across
the width of a leaf could cause substantial photosyn-
thetic stress to the eelgrass, and limit its ability to with-
stand the impact of additional synergistic stress con-
ditions, such as root anoxia, salinity fluctuations,
turbidity or temperature changes.

Regions of mature leaves with advanced disease
damage will have reduced photosynthetic activity in
the region acropetal to a large black spot. Extrapolated
to the population level, the impact of Labyrinthula
would therefore affect much more tissue than previ-
ously considered. The results of the present study sug-
gest that a wasting index (visual assessment of necrotic
tissue, Burdick et al. 1993) implies a far greater impact
on the plant's photosynthetic activity. For example, in
eelgrass leaves with 50 % wasting index, no net photo-
synthetic production is likely and plants with leaves
having even higher (>50 %) wasting index often drop
their most infected leaves (F.T.S. pers. obs.). Durako &
Kuss (1994) found that once the Labyrinthula lesions
affected >25% of Thalassia leaf tissue, the net photo-
synthetic rate was zero. Once infection has reached
25%, it is also likely that infected bands will bisect the
leaf blade, further reducing the overall photosynthesis
of the leaf, especially in the acropetal region (Fig. 2).

Vergeer & Develi (1997) suggested that this disease
is ‘mostly restricted to the senescent tissue of old leaves’
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and is therefore the beginning of a decomposition pro-
cess. While the highest levels of Labyrinthula exist in
the blackened and decaying parts of eelgrass plants,
Muehlstein et al. (1991) also found Labyrinthula pre-
sent, albeit less frequently than in black tissue, in the
green tissue within 5 mm of a lesion. We have shown
that these green areas of 'healthy-looking’ tissue have
severely reduced photosynthetic activity.

Earlier, Rasmussen (1977) stated that Labyrinthula
could be found in what he called 'healthy, normal
Zostera without any signs of disease’' (ahead of the
infection zone: Renn 1936, Young 1938). Rasmussen
(1977) concluded that Labyrinthula 'is not of primary,
but secondary, importance as a disease carrier’; finding
the pathogen in green tissue without obvious disease
symptoms, he had no means of identifying that the
green tissue was impacted by the pathogen. His
assumption was that if tissue was green, it was healthy.
The present investigation illustrates that Labyrinthula
damages green leaf tissue, not only blackened areas or
senescent leaves. Our study clearly confirms the previ-
ous demonstration of Koch's postulates (Short et al.
1987) that Labyrinthula is a primary pathogen, by
showing that the apparently healthy tissue around the
infection is also compromised, with a decline of photo-
synthesis proportional to the proximity of the black-
ened region (Fig. 2). Labyrinthula zosterae is more
than a secondary infection agent or a secondary
decomposer of damaged eelgrass tissue, but rather is a
primary pathogen.

The rate of spread of Labyrinthula within eelgrass
leaves reached 0.8 mm h™! during daylight periods and
was much slower during the night. As the disease pro-
gresses into green tissue, the photosynthetic activity of
the tissue in that region declines dramatically. Durako
& Kuss (1994) postulated that Labyrinthula infection
reduced the pigment level; we have demonstrated that
photosynthetic efficiency is substantially reduced when
the disease progresses. Muehlstein et al. (1991) de-
monstrated that the motility of Labyrinthula spindle
cells on culture plates was 175 mm min~!, which is
~10 mm h~!, indicating that the rate of progress of the
disease front we measured within Zostera marina
leaves is achievable by this pathogen. Beyond this, our
work shows that the effective quantum yield of eel-
grass photosynthesis decreases directly with disease
advancement. Additionally, as the disease progresses
and the blackened tissue expands, the photosynthetic
response to light of the still green (intermediate) tissue
diminishes at higher light levels. Thus, the spread of
the pathogen not only affects the blackened tissue but
alters the photosynthetic capability of the surrounding
green leaf.

The ecological significance of this study requires a
rethinking of the disease infection condition of eel-

grass populations. Even apparently healthy eelgrass
beds, with minor disease symptoms, could be exposed
to substantial photosynthetic stress by low levels of
Labyrinthula infection. The impact of Labyrinthula
infection is particularly important with the confirma-
tion that the pathogen is a primary infectious agent of
otherwise healthy green eelgrass tissue.
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