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INTRODUCTION

Organisms, organic matter and nutrients are trans-
ferred between a variety of habitats, for example, be-
tween freshwater and the ocean via estuaries, pelagic
and nearshore coastal waters, and kelp beds, sea-

grasses and rocky reefs (Fairweather & Quinn 1993).
Links between these habitats are most often viewed
in terms of larval recruitment processes that trans-
port propagules from pelagic to benthic environments
(Underwood & Fairweather 1989, Fairweather 1991)
or as trophic transfers or relays (e.g. Kneib 1997). In a
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review of linkages between different parts of the sea,
however, Fairweather & Quinn (1993) highlighted the
fact that there are relatively few studies of movement
processes that link different habitats. In part, lack of
studies may be due to the difficulty of tracking organ-
isms between aquatic habitats, especially small prop-
agules and juveniles. The potentially large spatial
scale over which some linkages occur, and the fact
that these linkages may be episodic and thus difficult
to study, also accounts for the relatively few studies.

The horizontal transfer of organisms from juvenile
to adult habitats can result in substantial movement
of biomass, nutrients and energy (Deegan 1993). For
example, approximately 5 to 10% of the total annual
primary production of estuarine areas is exported to
surrounding coastal and offshore habitats (Deegan
1993). Due in part to this high potential for export of
biomass, estuarine habitats, such as seagrass mead-
ows, marshes and mangrove forests, are frequently
cited as nursery habitats. Generally, a habitat has
been identified as a nursery if juvenile fish or inverte-
brate species occur at higher densities, suffer lower
rates of predation or have higher rates of growth in
this habitat than in other habitats (Beck et al. 2001).
However, these criteria have not addressed whether
these juvenile habitats successfully transfer the higher
juvenile biomass to the adult populations (Beck et al.
2001).

Following Beck et al. (2001), a habitat is considered a
nursery for juveniles of a particular species if its contri-
bution per unit area to the production of individuals
that recruit to adult populations is greater, on average,
than production from other habitats in which juveniles
occur. Beck et al. (2001) suggested that it is critical to
measure the movement of individuals from juvenile to
adult habitats, and that this is a vital missing link in our
understanding of nurseries. The purposes of our paper
are (1) to review and evaluate evidence for movements
from juvenile to adult habitats, (2) to evaluate methods
that have been used to determine this movement, and

(3) to provide information on the spatio-temporal
scales of such movement. In particular, we assessed
whether or not evidence exists to suggest that organ-
isms move from any of the so-called nursery habitats
(e.g. marshes, mangroves and seagrasses) to adult
habitats, and describe the spatial scales over which
these habitats are linked via dispersal.

METHODS

The nursery role hypothesis as stated by Beck et al.
(2001) only relates to species that have at least some
spatial disjunction between juvenile and adult habitats
(Fig. 1). We have limited our review to such species.
Juvenile habitats are areas that are used for some
period of time by juveniles prior to movement to adult
habitat. Adult habitats are considered to be areas
where juveniles are not found and may encompass
sub-adult staging areas. Movement from juvenile to
adult habitats is usually associated with reproduction
or an ontogenetic or seasonal habitat shift probably
due to changing ratios of mortality risk to growth rate
(Gilliam & Fraser 1987, Dahlgren & Eggleston 2000).
Some juvenile habitats may fit the definition of nursery
habitats. However, in this review we make no distinc-
tion between juvenile and nursery habitats because
there is typically insufficient data to make this distinc-
tion (Beck et al. 2001).

We searched Aquatic Sciences and Fisheries Ab-
stracts (Cambridge Scientific Abstracts) for the period
January 1982 to October 2000 using a combination of
keywords: (1) movement or migration and (2) nursery,
juvenile, fish, shrimp, crab, prawn or decapod. From
these searches plus our personal libraries, relevant
publications that dealt with movement of organisms
from juvenile to adult habitats were examined. We
have generally avoided citing unpubl. papers and
those in the ‘grey’ literature, as these are difficult to
obtain and generally not available to most readers.
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Fig. 1. Relationship between juvenile, nursery, and adult habitats. The ovals represent the portions of habitats used during juve-
nile and adult stages. Nursery habitats are a subset of juvenile habitats. (a) Classic concept of species that have nursery habitats,
and (b) general concept of species that have nursery habitats. From Beck et al. (2001), published with permission. Copyright, 

American Institute of Biological Sciences
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Of the papers that met the above criteria, some were
missing data that would have assisted our analyses (e.g.
length of time in nursery habitats, spatial scale of move-
ment). We have included papers in the review even if
they only provide information on, for example, the
length of time in the nursery habitat and no information
on the spatial scale of movement. However papers were
not included in the review if the distribution and popu-
lation dynamics of all stages of the life history of indi-
vidual species were not examined in the same study.

RESULTS AND DISCUSSION

Species with separate juvenile and adult habitats

A total of 110 studies fit our criteria and were in-
cluded in this review. Most of the studies (98%) show-
ing movement from juvenile to adult habitats focused
on fish (n = 67) or decapod crustaceans (n = 41; see
Table 1). The majority of studies (78%; n = 41) examin-
ing movement of crustaceans were limited to the eco-
nomically important penaeid shrimps and palinurid
lobsters (e.g. Costello & Allen 1966, Fry 1983, Booth
1986, Staples & Vance 1986). Studies focusing on
fish covered a wide range of families (e.g. Clupeidae,
Labridae, Paralichthyidae, Pleuronectidae, Salmon-
idae, Sciaenidae, Sparidae), but again most species
were of economic value. The queen conch Strombus
gigas (Gastropoda), which moves from shallow sand
and seagrass habitats to deeper seagrass, sand and
algal habitats, was the only mollusc for which evidence
of spatially segregated juvenile and adult habitats was
found (Stoner et al. 1988, Stoner 1989).

Of the 110 papers reviewed, over 60% of the studies
were conducted in the Northern Hemisphere; these
studies covered a range of latitudes. In the Southern
Hemisphere, however, almost 50% of studies were
conducted in the 10° latitude band between 30 and
40°S. Within each hemisphere the majority of studies
have been conducted in one country; Australia or USA.
Few studies were conducted in Europe, Asia, South
America or Africa (but see Benfield et al. 1990, Abello
& Macpherson 1991, Koutsikopoulos et al. 1995, Roa et
al. 1995, Griffiths 1996, Yamashita et al. 2000).

Types of juvenile habitat ranged from those tradi-
tionally viewed as ‘nursery’ habitats—the entire estu-
ary or specific habitats within estuaries (e.g. man-
groves, marshes, seagrasses)—to habitats outside of
estuaries, such as the surf zone along sandy beaches
and sulphide microbial communities (Table 1). Most
adult habitats were in coastal waters offshore of estu-
aries and included reefs, offshore regions and the
continental shelf. Specific habitats within estuaries or
coastal regions were not often identified.

Methods for determining movement

A variety of methods has been used to determine
movement from juvenile to adult habitats (Table 2).
These methods generally involve identifying changes
in size- or age-structure of organisms in different habi-
tats or sites over time either as individuals or as a
group. Intrinsic (related to the real nature of the organ-
ism) and extrinsic (dependent on external circum-
stances) methods for measuring movement have been
used (Buckley & Blankenship 1990). Extrinsic methods
may be either external, such as external tags, fin clips,
external parasites, or internal, such as tags, marks
or parasites that are completely enclosed within the
tissues of the organism. Movement can only be mea-
sured directly by observing individually recognised or
tagged organisms shifting from one place to another.
Though direct measurements are preferred, much of
the information on movement of juveniles comes from
indirect sources, including differences in distribution,
abundance and size structure, and differences in phys-
ical stages of maturity (e.g. Eggleston 1995).

Distribution, abundance and size structure

A total of 101 studies suggest movement from juve-
nile to adult habitats. A majority of these studies (55%)
relied on changes in abundance among separate habi-
tats or a progression of size classes among the separate
habitats to document movement (Table 2). However,
there are many problems associated with measuring
movement using these methods. One such problem is
under-sampling of the juvenile and adult habitats. For
example, some studies have sampled only one location
in each of the juvenile and adult habitats and have
assumed a size progression between the 2 habitats. In
other studies, only one type of juvenile habitat (e.g.
seagrass) has been sampled and there is no informa-
tion on whether juveniles may also occur in other
habitats including part of the adult habitat (but see
Gillanders 1997b). An exception to this general trend
was the work of Deegan (1990) who sampled 4 loca-
tions in juvenile habitat (marsh) and 4 locations in
adult habitat (open bay). Deegan (1990) found that
density of Gulf menhaden Brevoortia patronus was
highest in tidal creeks (average fish length 30–40 mm)
and that abundances in creeks declined when fish
grew to 45–50 mm, when they likely moved to open
bay areas and then offshore.

The fact that organisms have frequently been col-
lected using different methods in each of the juvenile
and adult habitats is another problem (e.g. Deegan
1990) because gear biases may influence the data. It
is, however, acknowledged that the different physical
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structure of some habitats means that each habitat
often needs to be sampled using different methods
(e.g. Blaber et al. 1989). In addition, using the same
sampling method in all habitats would not necessarily
alleviate this problem, because the efficiency of the
same sampling technique used across a range of habi-
tat types is seldom known (Eggleston & Dahlgren
2001).

Differences in the distribution of size classes among
different habitats have been used frequently to infer
movement from juvenile to adult habitats. However,
other explanations may also account for spatially
explicit patterns of organism size distribution among
habitats (Table 2). For example, differences in growth
rates or differential mortality among habitats may
result in patterns similar to those due to movement
from juvenile to adult habitats. Few studies provide
estimates of mortality in juvenile habitats (but see
Kramer 1991, Able 1999) and it has often been as-
sumed that movement is of primary importance (but
see Sheaves 1995, Gillanders 1997a). Knowledge of
the distribution of age classes among different habitats
can provide complementary information to size and
provide additional evidence for movement. Only a
few studies have provided this additional information
(e.g. Rogers 1993, Symonds & Rogers 1995, Gillanders
1997a). As an example, spatial patterns in density and
size structure of blue groper Achoerodus viridis (Labri-
dae) showed that the proportion of small fish de-
creased from estuarine sites to open coastal reefs and
that large fish showed the reverse pattern (Gillanders
1997b). Growth of A. viridis was then investigated to
determine to what extent the differences in size-
frequency distributions could be explained by slower
growth at estuarine reefs compared to open coastal
reefs. No significant differences in growth of A. viridis
were found and therefore spatial differences in size-
frequency distributions were most likely due to move-
ment of fish from estuarine to coastal reefs (Gillanders
1997a).

Spatial partitioning of maturity stages was used to
indicate movement from juvenile to adult habitats in
3 studies (3%; Chong et al. 1990, Eggleston 1995,
Sheaves 1995). For example, Sheaves (1995) found that
only immature lutjanids (Lutjanus argentimaculatus
and L. russelli) and serranids (Epinephelus coioides
and E. malabaricus) were found in estuaries and that
these fish were much smaller and younger than fish of
the same species found offshore. Similarly, early juve-
nile Nassau grouper E. striatus (30 to 120 mm total
length [TL]) use macroalgal meadows in back-reef
mangrove areas, and apparently migrate to nearby
patch reefs (120 to 300 mm TL) and eventually offshore
to adult reef (>300 mm TL) 3 to 4 yr post-settlement
(Eggleston 1995). In these studies, the complete ab-

285

C
om

m
on

 n
am

e
S

ci
en

ti
fi

c 
n

am
e

S
p

at
ia

l 
sc

al
es

 o
f 

m
ov

em
en

t 
(m

)
Ju

ve
n

il
e 

h
ab

it
at

A
d

u
lt

 h
ab

it
at

S
ou

rc
e

10
0

10
2

10
3

10
4

10
5

10
6

A
tl

an
ti

c 
m

en
h

ad
en

B
re

vo
or

ti
a 

ty
ra

n
n

u
s

E
st

u
ar

ie
s

O
ff

sh
or

e 
w

at
er

s
50

B
al

ti
c 

fl
ou

n
d

er
P

la
ti

ch
th

ys
 f

le
su

s
R

iv
er

 a
n

d
 n

ea
rs

h
or

e 
ti

d
al

 m
u

d
fl

at
s

O
ff

sh
or

e 
w

at
er

s
51

Ja
ck

as
s 

m
or

w
on

g
N

em
ad

ac
ty

lu
s 

m
ac

ro
p

te
ru

s
S

h
al

lo
w

 b
ay

s 
an

d
 i

n
le

ts
M

id
d

le
 a

n
d

 o
u

te
r 

co
n

ti
n

en
ta

l 
sh

el
f

52
T

ro
p

ic
al

 s
h

ad
T

en
u

al
os

a 
m

ac
ru

ra
S

h
al

lo
w

 c
oa

st
al

 w
at

er
s

S
h

el
te

re
d

 c
oa

st
al

 w
at

er
s

53
A

u
st

ra
li

an
 s

al
m

on
A

rr
ip

is
 t

ru
tt

ac
eu

s
S

h
al

lo
w

 b
ay

s 
an

d
 e

st
u

ar
ie

s
E

xp
os

ed
 b

ea
ch

es
 a

n
d

 s
u

rg
e 

zo
n

es
54

A
tl

an
ti

c 
sa

lm
on

S
al

m
o 

sa
la

r
R

iv
er

s
O

ce
an

s
55

P
ac

if
ic

 s
al

m
on

O
n

ch
or

h
yn

ch
u

s 
sp

p
.

F
re

sh
w

at
er

 s
tr

ea
m

s 
an

d
 e

st
u

ar
ie

s
N

ea
rs

h
or

e 
an

d
 o

ff
sh

or
e 

w
at

er
s

56
, 5

7,
 5

8

S
ou

rc
es

: 1
, 2

: S
to

n
er

 e
t 

al
. (

19
88

),
 S

to
n

er
 (

19
89

);
 3

: C
ar

r 
(1

99
1)

; 4
: C

ar
r 

&
 R

ee
d

 (
19

92
);

 5
: N

or
ri

s 
(1

96
3)

; 6
: C

ar
r 

(1
99

4)
; 7

: J
on

es
 (

19
84

);
 8

: M
cC

or
m

ic
k

 (
19

89
);

 9
: K

an
ci

ru
k

 &
 H

er
rn

k
in

d
 (

19
78

);
 1

0,
11

: M
oo

re
 &

 M
ac

F
ar

la
n

e 
(1

98
4)

, S
k

ew
es

 e
t 

al
. (

19
97

);
 1

2:
 M

u
ll

er
 (

19
82

);
 1

3:
 P

h
il

li
p

s 
(1

98
3)

; 1
4:

 S
al

m
an

 e
t 

al
. (

19
90

);
 1

5,
 1

6:
 F

ry
 (

19
81

),
 R

ie
ra

 e
t 

al
. (

20
00

);
 1

7:
 O

’B
ri

en
 (

19
94

);
 1

8,
 1

9,
 2

0:
 S

ta
p

le
s

(1
97

9,
 1

98
0)

, V
an

ce
 e

t a
l.

 (1
99

8)
; 2

1:
 H

yl
an

d
 e

t a
l.

 (1
98

4)
; 2

2:
 K

oe
n

ig
 &

 C
ol

em
an

 (1
99

8)
; 2

3,
 2

4,
 2

5:
 G

il
la

n
d

er
s 

&
 K

in
g

sf
or

d
 (1

99
3,

 1
99

6)
, G

il
la

n
d

er
s 

(1
99

7b
);

 2
6:

 E
g

g
le

st
on

 (1
99

5)
; 2

7:
 R

u
el

lo
 (1

97
7)

;
28

: 
B

en
fi

el
d

 e
t 

al
. 

(1
99

0)
; 

29
: 

K
la

ou
d

at
os

 e
t 

al
. 

(1
99

2)
; 

30
, 

31
: 

R
u

el
lo

 (
19

75
),

 M
on

tg
om

er
y 

(1
99

0)
; 

32
: 

S
om

er
s 

&
 K

ir
k

w
oo

d
 (

19
91

);
 3

3:
 G

u
n

d
er

so
n

 e
t 

al
. 

(1
99

0)
; 

34
, 

35
: 

M
oo

re
 &

 R
ey

n
ol

d
s 

(1
98

2)
,

R
u

ss
el

l 
&

 G
ar

re
tt

 (
19

85
);

 3
6,

 3
7:

 A
ll

en
 &

 H
er

b
in

so
n

 (
19

90
),

 K
ra

m
er

 (
19

91
);

 3
8,

 3
9:

 O
ls

on
 &

 P
ra

tt
 (

19
73

),
 G

u
n

d
er

so
n

 e
t 

al
. 

(1
99

0)
; 

40
: 

M
at

h
ew

s 
&

 B
ar

k
er

 (
19

83
);

 4
1:

 C
h

u
b

b
 e

t 
al

. 
(1

98
1)

; 
42

, 
43

:
K

ou
ts

ik
op

ou
lo

s 
et

 a
l.

 (
19

95
),

 S
ym

on
d

s 
&

 R
og

er
s 

(1
99

5)
; 4

4:
 M

or
to

n
 e

t 
al

. (
19

93
);

 4
5,

 4
6:

 B
oo

th
 (

19
79

, 1
98

6)
; 4

7,
 4

8:
 T

ab
b

 e
t 

al
. (

19
62

),
 C

os
te

ll
o 

&
 A

ll
en

 (
19

66
);

 4
9:

 H
in

es
 e

t 
al

. (
19

95
);

 5
0:

 K
ro

g
er

&
 G

u
th

ri
e 

(1
97

3)
; 5

1:
 K

er
st

an
 (1

99
1)

; 5
2:

 T
h

re
sh

er
 e

t a
l.

 (1
99

4)
; 5

3:
 B

la
b

er
 e

t a
l.

 (1
99

9)
; 5

4:
 C

ap
p

o 
et

 a
l.

 (2
00

0)
; 5

5:
 M

cC
or

m
ic

k
 e

t a
l.

 (1
99

8)
; 5

6,
 5

7,
 5

8:
 R

oy
ce

 e
t a

l.
 (1

96
8)

, G
ro

ot
 &

 M
ar

g
ol

is
 (1

99
1)

,
F

u
k

u
w

ak
a 

&
 S

u
zu

k
i 

(1
99

8)

T
ab

le
 1

 (
co

n
ti

n
u

ed
)



Mar Ecol Prog Ser 247: 281–295, 2003

sence of both post-juvenile size organisms in the juve-
nile habitat and juvenile size organisms in the adult
habitat implied movement of organisms from the juve-
nile to adult habitats.

Artificial tags

Traditional tagging methods (e.g. external tags with
internal attachments such as dart or T-bar tags) have
been used primarily on diadromous species or on
larger juveniles of marine fish species. Small organ-
isms have generally not been tagged (see Table 3).
Many of the studies using conventional tagging meth-
ods to determine movements of juveniles have differ-
ent objectives than determining movement from juve-
nile to adult habitats. Some studies have reported
limited movement, even for diadromous species, which
would be expected to move large distances. For ex-
ample, Russell & Garrett (1988) found that only 2.5%
of all tagged barramundi Lates calcarifer were caught
away from the tidal creeks in which they were tagged.
Limited movement was also found for tailor/bluefish
Pomatomus saltatrix that were tagged in Morton Bay

estuary (Queensland, Australia), with no fish moving
outside of Morton Bay, and all fish being recaptured
within 85 km of tagging, a relatively small distance
considering the wide range of the species (Morton et
al. 1993). Results suggesting limited movement may be
due to the fact that recapture efforts are usually con-
centrated near the site(s) where tagging occurred.

Internal artificial tags, such as coded wire tags
(CWT) and visible implant fluorescent elastomer (VIF),
have a number of advantages over more traditional
tagging methods (see Table 3 for advantages). Many
hatchery-reared salmonids are tagged with CWT on
release in rivers, enabling their origins to be deter-
mined when they are recaptured as either juveniles or
adults at sea (Courtney et al. 2000). We are not aware
of any studies that have used VIF tags to track move-
ment of organisms from juvenile to adult habitats. Most
studies using VIF tags have monitored juvenile fish
over only a few months (e.g. Beukers et al. 1995, Fred-
erick 1997a,b) or focused on larger freshwater fishes
(Bonneau et al. 1995, Dewey & Zigler 1996). Since
juvenile invertebrates and fishes may spend many
months in juvenile habitats before moving to adult
habitats, the feasibility of using these sorts of tags may
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Type of study Invertebrates Fishes No. of studies

(1) Distribution and abundance Stoner et al. (1988), Stoner (1989), Weinstein & Heck (1979), Kerstan 16
Vance et al. (1998) (1991), Dorf & Powell (1997), 

Henriques & Almada (1998) 

(2) Distribution, abundance and Gunderson et al. (1990), Salman Blaber et al. (1989), Rooker & Dennis 30
(2) size structure et al. (1990), Cattrijsse et al. (1997), (1991), Bell & Worthington (1993),

Skewes et al. (1997) Gillanders (1997b)

(3) Size structure Coles & Greenwood (1983), Wicker Shlossman & Chittenden (1981), 9
et al. (1988), O’Brien (1994), Roa Griffiths (1996)
et al. (1995)

(4) Spatial partitioning of maturity Chong et al. (1990) Chong et al. (1990), Sheaves (1995) 3
(2) stages

(5) External tags (e.g. dart tags, Booth (1979), Hyland et al. (1984), Mathews & Barker (1983), Morton et 20
(2) T-bar tags) Montgomery (1990), Somers & al. (1993), Koutsikopoulos et al. (1995)

Kirkwood (1991)

(6) Internal tags (e.g. microwire, Coded wire tags, van Montfrans Ferromagnetic tags, Nicholson (1978) 3
(2) visual implant) et al. (1991)

(7) Ultrasonic tags Hines et al. (1995) Szedlmayer & Able (1993) 5

(8) Thermal marking of otoliths – Urawa et al. (2000) 1

(9) Other artificial tagging (e.g. marked by injection of (e.g. freeze branding) Koenig & 2
(2) methods biological stains) Costello & Coleman (1998)

Allen (1966)

(10) Parasites as natural tags – Olson & Pratt (1973) 1

(11) Stable isotopes as natural Fry (1981), (1983), Fry et al. (1999), Fry (1983) 8
(11) tags (e.g. δ13C, δ34S, δ15N) Riera et al. (2000)

(12) Micro- and trace elements as – Thresher et al. (1994), Gillanders &  3
(12) natural tags (e.g. Sr, Ba, Mn) Kingsford (1996), Yamashita et al. (2000)

Table 2. Types of studies used to determine movement from juvenile to adult habitats, including examples
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depend on the visibility of the tags over longer time
periods. Juvenile organisms grow fairly rapidly and
therefore it is possible that growth of surrounding
tissue may limit visibility of tags.

Telemetry techniques, which track and determine
the location of individuals in ‘real-time’, show great
promise as a method to determine links between juve-
nile and adult habitats. Szedlmayer & Able (1993) used
ultrasonic transmitters to estimate residence time and
movements of juvenile summer flounder Paralichthys
dentatus in a subtidal creek. All tagged fish eventually
moved out of the creek and it was suggested that this
was part of a seasonal migration to the adult habitat.
With continued miniaturisation of electronic compo-
nents and micropower transducers, telemetry may offer
a viable alternative to other artificial tagging methods
for very small organisms (Sibert & Nielson 2001). This
may be especially likely with archival (e.g. West &
Stevens 2001) and pop-up tags (e.g. Block et al. 1998).

Although many of the tagging methods mentioned
above allow individuals to be recognized, this may not
be necessary in detecting movement from juvenile to
adult habitats. Compounds that are incorporated into
calcified tissues, such as fluorescent chemicals (e.g.
alizarin complexone, calcein, tetracycline), trace- and
micro-elements (e.g. rare earth elements, strontium)
and radioactive isotopes, may be applied as artificial
marks to batch tag organisms (e.g. Ennevor & Beames
1993, Jones et al. 1999). We are not aware of any stud-
ies that have used these methods to determine move-
ment from juvenile to adult habitats, although Jones et
al. (1999) successfully used tetracycline to mark oto-
liths of developing embryos of a coral reef fish (Poma-
centrus amboinensis) to determine whether or not
populations were self-recruiting.

Temperature fluctuations have also been used to
induce patterns onto otoliths as a means of mass-
marking (Table 3, Volk et al. 1999). The geographic
origins of chum salmon from the high seas have been
determined using thermal marks in otoliths (Urawa et
al. 2000).

Natural tags

In an effort to overcome some problems with artifi-
cial tagging methods, alternative techniques such as
natural tags have been investigated. In some instances
individual marks have been used to identify marine
mammals and turtles. There are a few studies that
have used this approach for fishes (e.g. Grimes et al.
1986, Connell & Jones 1991). In 12% of the studies
reviewed, parasites, trace elements, and stable iso-
topes have been used as natural tags to determine
movement from juvenile to adult habitats (e.g. Fry

1981, 1983, Thresher et al. 1994, Gillanders & Kings-
ford 1996, Fry et al. 1999, Riera et al. 2000).

Natural parasites have been used as biological tags
(e.g. Olson & Pratt 1973) to detect movement from
estuary to adult habitat. Olson & Pratt (1973) found that
certain parasites (e.g. the acanthocephalan, Echino-
rhynchus lageniformis) were acquired by English sole
Pleuronectes vetulus only while in the estuary and not
whilst offshore. The incidence of infection in estuarine
fish before emigration was similar to the incidence in
0-group fish collected offshore after emigration, sug-
gesting that there was little or no influx of young from
potential non-estuarine habitats (Olson & Pratt 1973).

Stable isotopes can be used to trace the origin or
movement of organisms because isotopic signatures in
animal tissues reflect those of local food webs or of the
aquatic habitat in which they have grown (Table 3).
Isotopic signatures of food webs or water masses vary
spatially depending on biogeochemical processes
(Hobson 1999, Kennedy et al. 2000). The contribution
of diet versus water to the isotopic signal is likely to
depend on the isotope. Several studies have used a
variety of stable isotopes (e.g. δ13C, δ15N, δ34S) to inves-
tigate movement, including Fry (1981), who examined
δ13C values in tissues of brown shrimp Penaeus aztecus
as they moved from inshore seagrass beds to offshore
areas. Offshore habitats with a phytoplankton-based
food web are depleted in 13C relative to a seagrass-
based food web. Sub-adult individuals collected off-
shore had δ13C values typical of individuals in seagrass
meadows, suggesting that they had moved from sea-
grass to offshore regions (Fry 1981).

Elemental signatures (e.g. Sr, Mn, Ba) in otoliths of
fish have also been used to evaluate links between
juvenile areas and adult stocks (e.g. Thresher et al.
1994, Gillanders & Kingsford 1996). The acellular and
metabolically inert nature of otoliths means that many
of the elements that are used as a natural tag and
accreted onto the growing surface of the otolith are
permanently retained (Campana 1999). The otolith
continues to grow through time, ensuring that the
entire lifetime of the fish has been recorded and differ-
ences in chemistry between layers can be resolved to
within days or years of their deposition. The calcium
carbonate and trace elements that make up 90% of the
otolith are derived primarily from the water (Milton &
Chenery 2001), although there are likely to be physio-
logical filters that prevent a simple linear relationship
between the concentration of elements in the water
and the otolith (Campana 1999). Analysis of either
whole otoliths or small areas within the otolith have
been used to distinguish stocks or sub-populations of
marine species (e.g. Edmonds et al. 1989, 1991, 1992,
Campana et al. 1994, Campana & Gagne 1995, Proctor
et al. 1995), to reconstruct the history of water temper-
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atures experienced by a fish throughout its life (e.g.
Patterson et al. 1993), to detect anadromy (e.g. Kalish
1990, Secor 1992, Coutant & Chen 1993) and to deter-
mine connectivity between populations (e.g. Gillan-
ders & Kingsford 1996, DiBacco & Levin 2000, Yama-
shita et al. 2000, Thorrold et al. 2001, Gillanders 2002).

Two different approaches have been used to deter-
mine geographic origins of fish using elemental chem-
istry of otoliths. Gillanders & Kingsford (1996) found
significant differences in the elemental signatures of
otoliths of juvenile blue groper Achoerodus viridis
collected from 2 habitats: seagrass and rocky reef. The
central region of adult otoliths corresponding to that
laid down when the fish was a juvenile was then
analysed to determine the relative importance of the
2 juvenile habitats in supporting adult stocks and to
demonstrate links between juvenile and adult habitats.
Conversely, Thresher et al. (1994) assessed the otolith
composition at the primordium—an area correspond-
ing to a spawning ground tag—of adult jackass mor-
wong Nemadactylus macropterus. The samples were
suggested to group into 3 offshore breeding popula-
tions. Juveniles were then collected from 2 known
‘nursery’ grounds and the composition of their primor-
dial region analysed. The data from adults were then
used to classify each juvenile and calculate the proba-
bility that it originated in each of the 3 breeding popu-
lations (Thresher et al. 1994).

Results from several studies indicate that juveniles
from individual estuaries can be distinguished using
elemental signatures (Thorrold et al. 1998, de Pontual
et al. 2000, Gillanders & Kingsford 2000), thereby sug-
gesting that the recruitment and/or natal origins of
adult fish can be determined (see Gillanders 2002).
Thorrold et al. (2001) used elemental and stable isotope
signatures in otoliths of weakfish Cynoscion regalis to
determine natal sources and found that 60 to 81% of
fish returned to natal estuaries for spawning. Swearer
et al. (1999) have also used otolith chemistry to recon-
struct the dispersal history of recruiting larvae. These
studies demonstrate that there is much promise in
using geochemical signatures to determine population
connectivity such as links between juvenile and adult
habitats.

Spatial and temporal scales of movement

The scale of movement from juvenile to adult habitat
ranged from movements over metres (e.g. queen conch
Strombus gigas, Stoner et al. 1988, Stoner 1989) to
movements over thousands of kilometres (e.g. Aus-
tralian salmon Arripis truttaceus; Cappo et al. 2000)
(Table 1). The majority of fish and crustaceans, however,
moved distances of kilometres to hundreds of kilo-

metres from juvenile to adult habitats (Fig. 2, Table 1).
Some organisms moved a range of scales depend-
ing on the study. For example, eastern king prawns
Penaeus plebejus moved tens of kilometres in one
study (Ruello 1975), but up to hundreds of kilometres
in another (Montgomery 1990).

The duration of time spent in juvenile habitats
ranged from days to years, but averaged 13 mo (±2 mo;
n = 67). For example, juvenile blue crabs Callinectes
sapidus spent as few as 8 d (but up to 65 d) in tidal
marsh creeks before moving to sub-adult and adult
habitats (van Montfrans et al. 1991). Similarly, adult
Caribbean spiny lobster Panulirus argus move back
and forth on a seasonal basis between offshore adult
reef habitats where mating occurs, and inshore shal-
low foraging grounds during summer and fall (Lipcius
& Eggleston 2000). By comparison, yellowtail rockfish
Sebastes flavidus and rock lobster Panulirus cygnus
could spend up to 5 yr in the juvenile habitat (Mathews
& Barker 1983, Phillips 1983).

Although a number of studies have shown connec-
tivity between juvenile and adult habitats, very few
have determined the relative contribution of different
juvenile habitats to the adult population (e.g. Gillan-
ders & Kingsford 1996, Yamashita et al. 2000, Gillan-
ders 2002). Using Sr:Ca ratios, Yamashita et al. (2000)
showed that 65 and 32% of the adult stone flounder
Platichthys bicoloratus population were produced from
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estuarine nursery areas in 1994 and 1995, respectively.
The estuarine nursery grounds made up only 6% of the
total nursery grounds, but juvenile density was 5 to
50 times higher in estuaries than in exposed offshore
waters, indicating that estuaries are important nursery
grounds (Yamashita et al. 2000). These results suggest
that the relative contribution of different habitats may
vary over time (e.g. among years). The contribution of
different habitats or estuaries to the adult population
may also vary between different regions.

Management implications

Overall, there were few studies (Table 4) that de-
monstrated good evidence for movement from juvenile
to adult habitats. A large part of this may be due to the
fact that little of the research was aimed at directly
answering questions relating to this type of movement
(e.g. Bell & Worthington 1993). In addition, many stud-
ies focused either on the juvenile or adult stage of the
life history, rather than on both stages. For example,
many studies have sampled juvenile habitats and
assumed that once organisms are no longer found
there, they have moved to adult habitats. While this

may be the case, it does not provide strong evidence
that organisms have successfully moved to adult habi-
tats or which juvenile habitats may contribute the most
individuals to the adult population. Further, sampling
was often limited to one type of habitat or to one loca-
tion within each type of habitat, which restricts the
conclusions that may be drawn. There is a clear need
to obtain information on abundance and size distribu-
tion of organisms from a range of juvenile and adult
habitats, and to sample at multiple locations within
each type of habitat.

Although direct tagging is in theory the most effec-
tive method for showing movements between juvenile
and adult habitats, there are problems when dealing
with large numbers of wild fish that need to be tagged
at a small size (see Table 3). The evidence is strongest
for penaeid prawns, where individuals that were
tagged in estuaries have been recaptured offshore
(Ruello 1975, 1977, Montgomery 1990). Ruello (1977)
found recapture rates from 0 to 7.7%, depending on
the estuary in which the prawns were released, sug-
gesting that large numbers need to be tagged to make
strong inferences regarding habitat linkages. Studies
on fish have generally focused on tagging larger juve-
niles rather than smaller, newly recruited individuals.
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Organism Spatial scale Temporal scale Method Source

Queen conch Tens of metres 1–3 yr Distribution and abundance, tag- Stoner et al. (1988),
Strombus gigas ging and direct observations Stoner (1989)

Brown shrimp Kilometres to tens of kilo- <3 mo Stable isotopes (δ13C) Fry (1981)
Penaeus aztecus metres

Pink shrimp Tens of kilometres <6 mo Stable isotopes (δ13C and δ15N) Fry et al. (1999)
Farfantepenaeus duorarum

Pink shrimp Not indicated Not Mark-recovery experiments with Costello & Allen (1966)
Farfantepenaeus duorarum indicated biological stains

Eastern king prawns Less than 100 km from juve- Not Atkins-type tags (external tag) Ruello (1975, 1977)
Penaeus plebejus nile to adult habitats, but up indicated

to 1000 km to reproductive 
habitat

Eastern king prawns 10–160 km, but up to 1200 km <3–4 mo Streamer tags (external tag) Montgomery (1990)
Penaeus plebejus to spawning grounds

Sole 40–80 km <2 yr Petersen disc attached with a Koutsikopoulos et al.
Solea solea titanium wire just in front of (1995)

pectoral fin (external tag)

Atlantic menhaden Kilometres to hundreds of <1 yr Numbered ferromagnetic tag Kroger & Guthrie
Brevoortia tyrannus kilometres (7.0 × 2.5 × 0.4 mm) (1973)

English sole Tens of kilometres <1 yr Natural parasites Olson & Pratt (1973)
Pleuronectes vetulus

Blue groper Kilometres to tens of kilo- 3–4 mo Elemental signatures (Mn, Sr Gillanders & Kingsford
Achoerodus viridis metres and Ba in otoliths) (1996)

Stone flounder Tens of kilometres <1 yr Elemental signatures (Sr:Ca Yamashita et al. 
Platichthys bicoloratus ratios in otoliths) (2000)

Snapper Kilometres to tens of kilo- <2 yr Elemental signatures (Mg, Mn, Gillanders (2002)
Pagrus auratus metres Sr and Ba in otoliths)

Table 4. Studies that show good evidence of movement between juvenile and adult habitats. Spatial and temporal scales of move-
ment between juvenile and adult habitats, and method used to determine movement is shown
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In the future, further evidence for movement from
juvenile to adult habitats is likely to come from mark-
recapture methods using artificial tags, especially as
the size of tags continues to decrease. Natural tags,
such as stable isotopes and trace elements, also show
great potential for determining movement from juve-
nile to adult habitats and are currently providing
the best results (e.g. Fry 1981, Gillanders & Kingsford
1996). Future research needs to focus on the temporal
stability of such signatures and the spatial scale over
which differences in signatures are found, as few
studies currently address these issues.

As human activities continue to eliminate or fragment
habitats, an understanding of connectivity between
juvenile and adult populations becomes increasingly
important. Connectivity is likely to depend not only on
the distance between the 2 habitats, but also on the
presence of movement corridors or stepping-stones of
natural habitat. Failure to protect habitats and the ca-
pacity of fish to move freely among them may have
detrimental effects on adult populations. For example,
if organisms only move from juvenile to adult habitats
along vegetated corridors, and do not move over un-
vegetated habitats, then factors contributing to degra-
dation of vegetated habitats may also contribute to a
decline of the adult populations that rely on these
juvenile habitats as sources of recruits. Telemetry
techniques may be most appropriate for addressing
questions related to movement along corridors.

Knowledge of connectivity between juvenile and adult
populations and determination of potential habitats that
supply more recruits to adult populations (e.g. Fig. 4 in
Beck et al. 2001) have considerable implications for
fisheries management and the effective conservation of
organisms. If some habitats or sites (e.g. estuaries) show
strong links to adult populations, and these sites
contribute to replenishing adult populations, then such
sites may indicate source areas and should potentially be
set aside as marine protected areas. Efforts in manage-
ment and habitat conservation could also be more
judiciously invested in particular sites rather than
focusing on all seagrass, marsh or mangrove habitats.

It is critical to measure movement of individuals if we
are to understand better the role of so-called nursery
habitats in the life cycle of marine organisms. Move-
ment must be monitored from all types of habitat in
which the juvenile is found, because the nursery role
hypothesis focuses on the different types of habitat
utilised by juveniles, and not just a selected subset of
habitats (Beck et al. 2001). Determining which juvenile
habitats contribute more per unit area to the produc-
tion of individuals that recruit to adult populations will
allow management and conservation efforts to focus
on those habitats that make the greatest contribution
to adult populations.
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