Chemical control of epibiosis by Hong Kong sponges: the effect of sponge extracts on micro- and macrofouling communities

Sergey Dobretsov, Hans-Uwe Dahms, Mandy Y. Tsoi, Pei-Yuan Qian*

Marine Coastal Laboratory and Department of Biology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR

ABSTRACT: The relationship between antifouling metabolite production and epibiosis on the surfaces of the sponges Haliclona cymaeformis, Haliclona sp. and Callyspongia sp. was investigated in this study. Densities of macrofoulers and diatoms were suppressed on the surfaces of all examined sponges, while densities of bacteria on the surfaces of H. cymaeformis and Callyspongia sp. were similar to those on the reference surfaces and were more than double the densities of bacteria on the surfaces of Haliclona sp. compared with a reference surface. Bray-Curtis similarity matrices of the tRFLP (terminal restriction fragment length polymorphism) analysis of PCR-amplified bacterial 16S rRNA genes obtained from the surfaces of the sponges demonstrated that the bacterial communities on the sponge surfaces were different from each other and from those on the reference surfaces. In field experiments, both methanol and dichloromethane extracts from all tested sponges incorporated in a Phytigel matrix inhibited recruitment of diatoms, algae and invertebrates, but extracts of only 2 sponges deterred bacterial film development. The tRFLP analysis revealed that the sponge extracts decreased diversity in the bacterial community. Strong negative effects of the sponge extracts on the Shannon-Wiener diversity values, as well as the species-richness values of the diatom community were found. ANOSIM (analysis of similarity) and SIMPER (similarity percentage) analyses demonstrated that the type and species specificity of the extracts affected the diatom composition. Results suggest that metabolites of sponges can control recruitment of propagules, change the composition of micro- and macrofouling communities and, in this way, regulate epibiosis on sponge surfaces.

KEY WORDS: Sponge · Chemical defense · Secondary metabolites · Microfouling community · Macrofouling community · Bacteria · Diatoms · Epibiosis

INTRODUCTION

Surfaces in the marine environment are continuously exposed to and colonized by microorganisms and propagules of metacellular organisms (Wahl 1989). As a result, complex communities of fouling organisms populate many marine surfaces. Bacteria and diatoms are among the first organisms that attach onto surfaces (Characklis & Cooksey 1983) and form natural biofilms that are highly variable over time and heterogeneous in composition (Qian et al. 2003). The settlement of organisms on the surfaces of living organisms (i.e. epibiosis) can be both advantageous and disadvantageous to the host. Advantages could be the production of antifouling substances by symbiotic epibiota (Walls et al. 1993, Harder et al. 2003, Piel 2004) and furnishing the host with nutrients (Mercado et al. 1998, Faulkner et al. 2000). The disadvantages include the possible inhibition of growth, necrosis, or death of host organisms (Wahl & Mark 1999). On soft-bodied marine organisms, such as sponges, the extent of microbial colonization is possibly influenced by the chemical effects of bioactive metabolites produced either by the host itself or by symbiotic microorganisms (Lee et al.
Callyspongia pulvinata diatoms in the sea (Dobretsov et al. 2005). The sponge is capable of reducing or inhibiting the recruitment of bacteria and sponge species in Hong Kong waters have the potential to overcome the disadvantages associated with culture-dependent techniques and revealed the effects of sponge metabolites on bacterial colonization under natural conditions (Harder et al. 2004).

In the present study, we posed the following questions: (1) Are there differences in the density and composition of microbial communities on the surfaces of the 3 sponge species Haliclona cymaeformis, Haliclona sp. and Callyspongia sp. compared to inanimate surfaces? (2) Do sponge extracts affect the formation of microfouling and macrofouling communities in field experiments? (3) Is there a correspondence between epibiosis on the surfaces of sponges and the antifouling activity of sponge extracts?

MATERIALS AND METHODS

Collection of sponges and preparation of extracts. Specimens of the sponges Haliclona cymaeformis (ZMAPOR 17602), Haliclona sp. (ZMAPOR 17600) and Callyspongia sp. (ZMAPOR 17596) were collected from Hong Kong coastal waters at depths of 1 to 3 m, near the Hong Kong University of Science and Technology Pier (22° 21' N, 114° 17' E). The sponges were carefully retrieved to the water surface. Five sponge specimens were cut into several portions. One piece of about 10 ml biovolume of each sponge was used for tRFLP analysis. Another portion was stored in 70% ethanol for subsequent taxonomic identification by Prof. Rob van Soest (Zoological Museum, University of Amsterdam). A small intact piece of sponge tissue was fixed in 3% glutaraldehyde (in artificial seawater free of calcium and magnesium) for SEM analysis. We measured the wet weight of the major part of the sponge (>500 g) at the pier, and the tissue volume was measured by water displacement. The sponge species were transferred to large buckets with aerated seawater and brought to the laboratory.

In the laboratory, the remaining intact sponge tissues were cut into 2 equal portions of a wet weight of about 180 to 200 g. One portion was extracted twice with dichloromethane (DCM, Fisher Chemicals) for 8 h with gentle agitation; the other portion was extracted with 99.9% methanol (MeOH, Merck) in the same way. The extracts were filtered through Whatman No. 1 filter.
paper and reduced by rotary evaporation to a concentration that was volumetrically equivalent to 10% of the original sample tissue. Tissue-level concentrations (Jensen et al. 1996) were adjusted prior to the experiments described below.

Gel-immobilization of sponge tissue extracts. The method for immobilization of the organic tissue extracts into gels was adapted from that described by Henriksen & Pawlik (1998) and Harder et al. (2004), with slight modification. The sponge extracts were dissolved in dimethyl sulfoxide (DMSO) at a concentration 10 times that of the tissue level. Gels were prepared by adding Phytagel (Sigma Chemical) to a stirred beaker containing boiling double-distilled water to yield a 4% (w/v) gel concentration. After the gel solution cooled down to 70°C, the crude extracts were diluted to tissue-level concentrations with the gel solution and vigorously mixed for even distribution of the extract in the gel. A control was prepared with a pure DMSO solution instead of the crude extracts. Finally, 5-ml portions of the hot Phytagel solution were poured to Falcon Petri dishes and allowed to solidify slowly. The Petri dishes were stored overnight at 4°C to allow for homogeneous diffusion of the extract components throughout the gel. These dishes were used in the experiments described below.

Scanning electron microscopy. Small pieces of the 3 sponge species and reference substrata (stones and shells from the close vicinity of the sponges) were dehydrated in an alcohol series, dried by critical-point drying and coated with gold (for details see Dobretsov et al. 1998). The specimens were then examined by a JEOL 6300F (70 eV) scanning electron microscope (magnification: 1000x; diagonal beam size = 359 nm, wavelength = 441 nm). Three other Petri dishes were used for the analysis of bacterial communities developed on the dishes. After 3 wk, 5 additional Petri dishes were fixed in 4% formaldehyde solution in seawater for subsequent analysis of the macrofouling communities. Denstities of the settlers (ind. cm−2) were determined under the microscope (magnification: 0.63x).

Analysis of bacterial communities. We compared bacterial communities by tRFLP analysis (Liu et al. 1997). For this purpose, the entire surface area (19.625 cm²) of the experimental and control Petri dishes or 10.0 cm² surface areas of the sponges and reference substrata were completely swabbed with sterile cotton buds. Swabs from each gel were individually suspended in 1 ml of extraction buffer (100 mM Tris-HCl, 100 mM EDTA, 100 mM sodium phosphate, 1.5 M sodium chloride, 1% CTAB; at pH 8) in 2-ml microcentrifuge tubes. For lysing, the samples were subjected to 3 cycles of freezing and thawing followed by 2 h of incubation in 20% sodium dodecylsulfate (SDS) at 65°C. The cotton buds were removed, and, after centrifugation (10 000 rpm for 5 min), the total DNA in the supernatant was extracted and purified twice in a volume of 24:1 chloroform:isoamyl-alcohol, followed by precipitation in isopropanol at room temperature for 15 min. The precipitated DNA was washed with cold 70% ethanol and resuspended in 50 µl of autoclaved, double-distilled water and frozen until use.

The 16S rRNA genes (rDNA) of the bacterial community were amplified by polymerase chain reaction (PCR) in a total volume of 25 µl, containing 1 µl of DNA template, 250 µM of each deoxynucleotide triphosphate (dATP, dCTP, dGTP, dTTP; Pharmacia Biotechnology, USA), 1 U of DNA Tag polymerase (Amersham Biosciences, USA) and 0.8 µM of each universal primer: 341F forward (5’-CCTACGGGAGGCAGCAG-3’) and 926R reversal (5’-CCGTCAATTCCTTTRAGTTT-3’) (Amann et al. 1990, Lee et al. 1993). The 926R primer was labeled at the 5’-end with 6-carboxy fluorescein (FAM) dye.

The thermocycling conditions were as follows: a hot start at 95°C for 2 min (1 cycle) and 15 cycles of 95°C for 30 s, 56°C for 30 s and 72°C for 30 s. The annealing temperature started at 56°C and was reduced to 40°C in increments of 1°C cycle−1. The amplified DNA (4 µl of the PCR mixtures) was visualized by gel electrophoresis on a 1.5% agarose gel in Tris-acetate-ethylenediaminetetraacetic acid (TAE) buffer.
Fluorescently labeled PCR products were then purified with the Wizard PCR prep DNA purification system (Promega) according to the manufacturer’s protocol. Purified amplicons were digested with 20 U MspI (Boehringer Mannheim Biochemicals) at 37°C for 6 h. Aliquots of digested products (10 µl) were mixed with 0.5 µl of internal size standard (ET550-R, Amersham Biosciences). This mixture was denatured for 2 min at 95°C and immediately chilled on ice prior to capillary electrophoresis on a MegaBACE genetic analyzer (Amersham Biosciences) operated in the genotyping mode. After electrophoresis, the lengths of the fluorescently labeled terminal restriction fragments (TRFs) were determined by comparison with internal size standards by using the software ‘Fragment Profiler’ (Amersham Biosciences). TRFs that differed by <1 bp were considered identical. Fragment lengths that were present in 3 samples were used to produce a representative TRF profile of each bacterial community.

Statistical analyses. The densities of bacteria, diatoms and macrofoulers on the Petri dishes and on the surfaces of the sponges were log-transformed in order to ensure normality of variance (Zar 1999). In the case of the absence of diatoms in a field of view, a value of log(y+1) was assigned to improve the transformation. In all cases, the normality assumption was verified with the Shapiro-Wilk test (Shapiro & Wilk 1965). The differences between the experimental and control treatments were determined by 1-way ANOVA, followed by the Tukey HSD (honestly significant differences) post hoc test (Zar 1999). In all cases, the threshold for significance was 5%. TRF patterns of different bacterial community DNA samples were subjected to cluster analysis. Bray-Curtis similarities were used to produce a similarity matrix based on the total number of TRFs observed in all samples and the presence or absence of these TRFs in individual samples. For the construction of a dendrogram demarcating the similarity of microbial communities on the gels, group average linkage in the hierarchical, agglomerative clustering algorithm was performed using the PRIMER program (Plymouth Marine Laboratory, UK). As a measure of diatom and macrofouling species diversity, Shannon’s diversity index (H) and evenness (Warwick & Clarke 1995, Clarke & Gorley 2001) were calculated by using PRIMER. Margalef’s species richness (Warwick & Clarke 1995) was also calculated. Similarity percentage analysis (SIMPER) (Clarke 1993) was used to determine the taxa contributing most to the dissimilarity between groups. All these analyses were done using the Bray-Curtis similarity coefficient (Clarke 1993) applied to the 4th-root-transformed diatom species-abundance data. Analyses were performed using the PRIMER software package. Assemblage similarity was compared between the sponge species (sponge effect) and among the different solvents (solvent effect) using 2-way ANOSIM (Clarke & Warwick 1994).

RESULTS

Microbial epibiosis on the surfaces of sponges

The densities of epibiotic bacteria revealed by SEM on the surfaces of *Haliclona* sp. were higher (ANOVA, F = 17.8; HSD, p < 0.05) than on the surfaces of other sponges and on the reference surfaces (Fig. 1). The densities of epibiotic bacteria on the surfaces of *H. cymaeformis* and *Callyspongia* sp. were not significantly different from each other or from the reference surfaces (ANOVA, HSD, p > 0.05). No invertebrates, diatoms, or macroalgae were found to be attached onto any surface of the sponges, while diatoms (density: 2000 cells mm⁻²), the tubeworm *Hydroides elegans* (density: 3.2 ind. cm⁻²) and the barnacle *Balanus trigonus* (density: 0.2 ind. cm⁻²) were dominant on the reference surfaces.

Bacterial community profiles on sponge surfaces

Terminal restriction fragment length polymorphism revealed that the bacterial community profiles were different on the sponge surfaces and on the inanimate (reference) surfaces. The lowest number of bacterial densities x10³ cells mm⁻²

Fig. 1. Bacterial densities (cells mm⁻²) on the surfaces of the sponges *Haliclona* sp., *Callyspongia* sp. and *Haliclona cymaeformis* and a reference site (stones and mussel shells from the close vicinity >0.5 m). Bars indicate mean ± SE of 5 replicates. Data that are significantly different according to a Tukey test (ANOVA: p < 0.05) are indicated by different letters above the bars.
ribotypes (TRFs = 28) was recorded from the reference surfaces, while the bacterial communities that developed on the surfaces of the sponges Haliclona sp. and H. cymaeformis had double the number of bacterial ribotypes. The highest number of ribotypes (TRFs = 73) was found in the bacterial communities from the surfaces of Callyspongia sp. Bacterial communities that developed on the surfaces of the sponges had specific TRFs that were not found on reference surfaces (e.g. 43, 122 and 247 bp). At the same time, each sponge had specific TRFs that could not be found on the surfaces of the other sponges: e.g. H. cymaeformis had a specific TRF at 138 bp; Callyspongia sp., at 314 bp; and Haliclona sp., at 72 bp. Haliclona sp. and H. cymaeformis shared similar TRFs at 120 and 313 bp. The presence of common TRFs at 245, 312, 367, 369 and 420 bp on all sponge and reference surfaces might indicate that some bacterial species were not affected by sponge metabolites.

According to the Bray-Curtis similarity matrices, based on the presence (indicated by 1) or absence (indicated by 0) of a given TRF in a pattern, the bacterial communities were divided into several groups (Fig. 2). The bacterial communities that developed on the reference surfaces had a low similarity (<40%) compared with the bacterial communities that developed on the sponge surfaces, which formed separate clusters. Bacterial communities from the surface of Haliclona sp. and H. cymaeformis shared some similarities and could be combined into 1 sub-cluster in the dendrogram, while communities from the surface of Callyspongia sp. were different from communities on the surfaces of the other sponges.

Effect of sponge metabolites on bacterial communities developed on gels

After 7 d of the experiments, rod-shaped and coccoid bacteria dominated the bacterial communities on the gels. Epifluorescence microscopical counting revealed that the densities of bacteria on the gel surfaces were significantly different among the treatments (Fig. 3A: ANOVA, $F = 14.7$, $p < 0.05$). The highest density of bacteria was found on the control dishes and on dishes with MeOH and DCM extracts of the sponge Haliclona cymaeformis. The lowest densities of bacteria were discernible on dishes with MeOH extracts of the sponge Haliclona sp., whereas dishes with MeOH and DCM extracts of Callyspongia sp. had moderate densities of bacteria (Fig. 3A). The MeOH and DCM extracts
of the sponges equally affected bacterial attachment to the dishes.

The maximal number of bacterial ribotypes (TRFs = 166) was found on the control gels, whereas the minimal number (TRFs = 35) was observed on gels with MeOH extracts of *Callyspongia* sp. Other gels had a moderate number of TRFs. Absence as well as presence of certain TRFs characterized the bacterial communities developed on dishes with or without sponge extracts. TRFs with lengths of 129, 235, 236 and 240 bp were found only on the control gels. Some bacteria were identified that were not affected by sponge metabolites; their ribotypes (particularly 120, 312 and 584 bp) were present on both the control and on the experimental gels.

According to the Bray-Curtis similarity matrices, the bacterial communities could be divided into several groups (Fig. 4). The bacterial communities developed on the control gels with DCM and MeOH extracts had a low similarity (about 30%) compared with the bacterial communities formed on gels with MeOH and DCM extracts of the sponges. We found similar bacterial communities on gels with MeOH and DCM extracts of the sponges affected the density of the diatoms in a similar way, with the exception of extracts of *Callyspongia* sp.

The diatom communities that developed on the surfaces of the control gels with DCM and MeOH extracts were similar and were grouped in separate clusters according to the Bray-Curtis similarity matrix (Fig. 5). The diatom communities that formed on the gels with MeOH and DCM extracts of the sponges were different from each other and formed separate groups. The diatom communities from gels with the MeOH extract of *Haliclona* sp. had a low similarity (20%) with the other diatom communities, forming an independent cluster, while the DCM extracts of this sponge were similar to the DCM extracts of *H. cymaeformis*. Com-

Effect of sponge metabolites on diatom communities

After 7 d, 12 species of diatoms were found on the gels, including *Nitzschia longissima*, *N. constricta*, *Nitzschia* sp. 1, *Bacillaria* sp., *Licismphora* sp., *Navicula* sp. 1, *Navicula* sp. 2, *Navicula* sp. 3, *Pleurostigma* sp., *Diploneis* sp., *Mastigloia pumila* and *Achnantes* sp. We observed the highest densities of diatoms on the control gels. The densities of diatoms on the gels with sponge extracts were significantly lower than those on the control gels (Fig. 3B: ANOVA, $F = 9.3$; HSD, $p < 0.05$). On the surface of gels with MeOH extracts of *Haliclona* sp., we observed only 1 species, the diatom *N. longissima*, at very low densities. The densities of diatoms on the gels with MeOH extracts of *Callyspongia* sp. and *H. cymaeformis* were moderate. The MeOH and DCM extracts of the sponges affected the density of the diatoms in a similar way, with the exception of extracts of *Callyspongia* sp.

The diatom communities that developed on the surfaces of the control gels with DCM and MeOH extracts were similar and were grouped in separate clusters according to the Bray-Curtis similarity matrix (Fig. 5). The diatom communities that formed on the gels with MeOH and DCM extracts of the sponges were different from each other and formed separate groups. The diatom communities from gels with the MeOH extract of *Haliclona* sp. had a low similarity (20%) with the other diatom communities, forming an independent cluster, while the DCM extracts of this sponge were similar to the DCM extracts of *H. cymaeformis*. Com-

![Fig. 4. Cluster analysis of the similarity between bacterial communities that developed on the surfaces of Phytagel gels with immobilized sponge extracts of *Haliclona* sp. (H), *H. cymaeformis* (Hc) and *Callyspongia* sp. (C) derived from methanol (Me) and dichloromethane (DCM) extraction after 7 d of exposure at the university pier at a depth of 1 m below the low water mark. Different replicates (n = 3) identified by corresponding numbers. In the control (Con), a 4% (v/v) solution of DMSO was used](image-url)

![Fig. 5. Cluster analysis of the similarity between diatom communities that developed on the surfaces of Phytagel gels with immobilized sponge extracts of *Haliclona* sp. (H), *H. cymaeformis* (Hc) and *Callyspongia* sp. (C) derived from methanol (Me) and dichloromethane (DCM) extraction after 7 d of exposure at the university pier at a depth of 1 m below the low water mark. Different replicates (n = 5) are identified by corresponding numbers. In the control (Con), a 4% (v/v) solution of DMSO was used](image-url)
munities developed in the presence of DCM and MeOH extracts of *Callyspongia* sp. formed distinctly related clusters in the dendrogram.

The ANOSIM test provided evidence that the diatom communities on the gels were significantly different according to sponge species (treatment effect: global R = 0.72, p = 0.001) and the method of extraction (extract effect: global R = 0.35, p = 0.04) (Table 1). The SIMPER analysis revealed that 6 diatom species accounted for >84% of the total Bray-Curtis dissimilarity among communities from different treatments. The diatom species *Nitzschia longissima* and *Navicula* sp. 1 accounted for almost 50% of the total between-group dissimilarity.

The highest richness and diversity in the diatom communities were found on the control dishes and dishes with DCM extracts of *Haliclona* sp. and *Haliclondria* sp. (Fig. 6A,B: ANOVA, \(F = 60.95; \) HSD, \(p < 0.01 \) and ANOVA, \(F = 72.02; \) HSD, \(p < 0.01 \), respectively). The lowest diversity and richness were found on dishes with MeOH extracts of *Haliclona* sp. The lowest evenness was observed in the diatom communities formed in the presence of MeOH extracts of *Haliclona* sp., while the evenness of other communities formed in the presence of sponge extracts was similar.

Effect of sponge metabolites on macrofouling communities

After 3 wk of experiments, we found 1 brown alga (Phaeophyta: Ectocarpales, unidentified brown alga) and 5 invertebrate species [the hydrozoan *Obelia* sp. [Cnidaria: Hydrozoa]; 2 polychaete species *Hydroides elegans* and *Spirobranchus* sp. [Annelida: Polychaeta]; the barnacle species *Balanus amphitrite* [Crustacea: Cirripedia]; and the bryozoan species *Bugula neritina* [Bryozoa: Cheilostomata)] on the experimental plates. The dominant species on the dishes were the tubeworm *H. elegans* and the barnacle *B. amphitrite* (Fig. 7). Overall, the settlement of macrofoulers was low, which was not surprising in the cold season in Hong Kong.

Table 1. Results of ANOSIM (global R, p) and SIMPER analysis on the diatom species composition on dishes with Phytagel containing methanol or dichloromethane extracts (extract effect) of sponges and control dishes (treatment effect). The percentage contribution of each factor is averaged over all significant comparisons

<table>
<thead>
<tr>
<th>Species</th>
<th>Treatment effect (%)</th>
<th>Extract effect (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global R = 0.72, p = 0.001</td>
<td>Global R = 0.35, p = 0.04</td>
</tr>
<tr>
<td>Nitzschia longissima</td>
<td>36.7</td>
<td>38.0</td>
</tr>
<tr>
<td>Navicula sp. 1</td>
<td>13.8</td>
<td>16.4</td>
</tr>
<tr>
<td>Navicula sp. 3</td>
<td>11.2</td>
<td>12.2</td>
</tr>
<tr>
<td>Bacillaria sp.</td>
<td>9.1</td>
<td>14.6</td>
</tr>
<tr>
<td>Diploneis sp.</td>
<td>7.8</td>
<td>5.6</td>
</tr>
<tr>
<td>Achnanthes sp.</td>
<td>5.6</td>
<td>3.6</td>
</tr>
<tr>
<td>Other species</td>
<td>15.8</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Fig. 6. Effect of methanol (MeOH) and dichloromethane (DCM) extracts of the sponges *Haliclona* sp., *H. cymaeformis* and *Callyspongia* sp. on (A) richness, (B) diversity and (C) species evenness of diatom communities after 7 d of exposure at the university pier at a depth of 1 m below the low water mark. Data are expressed as means ± SE of 5 replicates. Data that are significantly different according to a Tukey test (ANOVA: \(p < 0.05 \)) are indicated by different letters above the bars.
Mean number of settlers (10^2 ind cm^-2)

Fig. 7. Densities of macrofoulers (ind. cm^-2) on the surface of gels with methanol (MeOH) and dichloromethane (DCM) extracts of the sponges Haliclona sp., H. cymaeformis and Callyspongia sp. or without them (control) after 3 wk of exposure at the university pier at a depth of 1 m below the low water mark. Data are expressed as means ± SE of 5 replicates. Data that are significantly different according to a Tukey test (ANOVA: p < 0.05) are indicated by different letters above the bars.

DISCUSSION

The present investigation focused on the relationship between the antifouling activity of Haliclona cymaeformis, Haliclona sp. and Callyspongia sp. extracts and epibiosis on the surfaces of these sponges. Our investigation demonstrated that the bacterial diversity on the surfaces of the sponges was higher than the bacterial diversity on inanimate surfaces and that the bacterial composition on the surfaces of the sponges and an inanimate surface was different as well. The density of epibiotic bacteria, according to the SEM pictures, was similar, except on the sponge Haliclona sp., which had double the density of bacteria. We did not detect any diatoms or macrofouling invertebrates on the surfaces of the sponges. These results suggest that sponges can regulate the composition of microbial communities and the assemblages of macroorganisms on their surfaces and that some bacteria may be specifically associated with particular species of sponges. Similar results have been observed by other investigators. Chloroflexi bacteria have been found to be specific to all Aplysina species (Hentschel et al. 2003). The sponges Aplysina aerophoba and Theonella swinhoei from the Mediterranean Sea, Red Sea and Pacific Ocean have a uniform microbial community that is phylogenetically different from that of marine plankton and marine sediments (Hentschel et al. 2002). Moreover, internal (Burja & Hill 2001, Taylor et al. 2004) and external (Lee & Qian 2003, 2004) bacterial communities associated with sponges are different from bacterial communities on inanimate objects in close vicinity to the sponges.

Some sponges have been shown to contain large numbers of bacteria (up to 57% of the sponge volume, cf. Hentschel et al. 2003). This fact may explain the high density of epibiotic bacteria (about 58 × 10^3 cells mm^-2) that we found on the surface of Haliclona sp. compared with the bacteria that we observed on the inanimate surfaces and on the surfaces of the other sponge species. No previous work has been done on the density of epibiotic bacteria and other microorganisms on the surfaces of other sponge species, with 3 exceptions. Kelman et al. (2001) reported that no bacteria were found on the surface of Amphimedon viridis. Thakur & Anil (2000) concluded that the number of colony-forming bacteria on the surface of the sponge Ircinia ramosa ranged from 7 to 9 × 10^6 colony-forming units cm^-2. Since most of bacteria do not readily form colonies on standard agar media (Hentschel et al. 2003), Thakur & Anil’s (2000) experimental work may provide only a rough estimate of actual bacterial abundances on the surfaces of sponges. Finally, Amsler et al. (2000) found a low density of diatoms was on the surfaces of the Arctic sponges Dendrilla membranosa, Leucetta leptocephalis and Homaxinella balfourensis in January. Although our investigation provides initial evidence on the densities of epibiotic microorganisms on the surfaces of some sponges, further investigations are necessary in order to compare densities of epibionts on different species of sponges and nearby substrata.

The density of the bacteria on the surfaces of the gels with the extracts of the sponges Haliclona sp. and Callyspongia sp. was lower than that on the surfaces of the control gels and on gels with the extracts of H. cymaeformis. The bacterial communities that developed on the control and experimental gels were different from each other and were characterized by the absence of certain terminal restriction fragments and the presence of others. Overall, the number of ribotypes on the surface of the experimental gels was
lower than that on the surface of the control gel. Similar results were obtained in our previous experiments with crude extracts of sponges from Hong Kong and Hainan (Harder et al. 2004, Dobretsov et al. 2005). These differences may be caused by the antibacterial activity of the sponge or by sponge-symbiont-derived metabolites, which decrease the density and the diversity of the bacteria.

In our experiments, bacterial community profiles were compared by using a culture-independent approach, tRFLP. This fingerprinting method is a relatively fast and easy way to provide a semi-quantitative ‘snapshot’ of community diversity (Fuhrman et al. 2002). It permits quick comparisons of different communities, providing a minimum estimate of the number of different taxa in the sample and some idea about the evenness of their distribution. Nonetheless, tRFLP has certain inherent limitations, including: (1) possible PCR bias, preventing the quantification of the relative abundance in the community (Suzuki & Giovanni 1996), and (2) the inability to identify different bacterial species, because different bacteria, regardless of taxon, may produce identical TRFs with a given restriction enzyme (Liu et al. 1997). Therefore, false negative results may be obtained in the unlikely event that a sponge extract is utilized by certain bacterial colonizers whose TRFs are the same as those produced by the susceptible bacteria.

The present study revealed that sponge extracts reduced the density of benthic diatoms on gel surfaces. SIMPER analysis showed that the diatoms Nitzschia longissima and Navicula sp. 1 accounted for almost 50% of the total dissimilarity between communities developed on the control and treatment gels. Similar to the bacteria, our results on diatoms indicate that sponge metabolites affect the recruitment of diatoms, not only in terms of abundance, but also qualitatively in terms of community structure.

After 3 wk, we observed the presence of a macrofouling community, which contained 1 algal and 5 invertebrate species. The tubeworm Hydrodides elegans and the barnacle Balanus amphitrite were dominant in the community. Similar results were observed in our earlier studies (Qiu et al. 2003). The densities of the macrofoulers were reduced in the presence of sponge extracts. We did not find any differences in macrofouler density between extracts of different sponges, which may have been caused by the low settlement rate during the period of experiments.

How do sponge extracts suppress both micro- and macrofouling? First, sponge metabolites might be toxic to the fouling organisms (Beccerro et al. 1997, Amsler et al. 2000, Lee & Qian 2003, Dobretsov et al. 2004). Compounds exuded by the sponge Aplysina fistularis, occurring in intertidal areas, were toxic to gastropod veliger larvae of nudibranchs and caused abnormal behavior in all invertebrate adults, as reported by Thompson et al. (1985). The sponge Mycale adhaerens inhibited the larval settlement of the tubeworm Hydrodides elegans by excreting toxic waterborne compounds (Lee & Qian 2003). In our previous experiments, conditioned seawater from the sponge Callyspongia pulvinata was toxic to the benthic diatom Nitzschia paleacea and to H. elegans larvae (Dobretsov et al. 2004). Second, sponge compounds might repel propagules of fouling organisms. Although repellent properties of sponge extracts have not yet been described, repellent activities of algal compounds (Sieburth & Conover 1965, Dobretsov 1999) and bacterial compounds (Chet & Mitchell 1976, Boyd et al. 1999) have been identified. A third possibility is that the chemical compounds of sponges might affect micro- and macrofouling adhesion. Crude extracts of the Caribbean sponges Aiolochroia crassa, Chondrilla nuculata, Ectyoplasia ferox and Iotrochota birotulata inhibited the attachment of the bacterium Vibrio harveyi (Kelly et al. 2003). Finally, sponge metabolites might inhibit growth of micro- and macrofoulers. Inhibition of the growth of diatoms by sponge extracts was described earlier in our laboratory and field experiments (Dobretsov et al. 2004, 2005). However, the actual mechanisms of the suppression of fouling by sponge compounds require further investigation.

The present investigation revealed that, in most cases, there was not much difference in the antifouling activity of the MeOH and DCM extracts of the sponges. This may be so because most non-polar and medium-polar compounds and organic salts dissolved successfully in both solvents. In the field experiments, only the MeOH extracts of Haliclona sp. and Callyspongia sp. changed the composition of diatom communities, but the DCM extracts did not initiate any changes. These observations may be explained by the presence of some water-soluble metabolites in the MeOH extracts of the sponges, which may have antidiatom activity (Dobretsov et al. 2004).

In this study, the results of the field experiments with sponge extracts in most cases corroborated the laboratory observations of epibiosis on the sponge surfaces; in some cases, they did not. For example, we did not observe diatoms on the surfaces of the sponges, but found low diatom fouling on the gels with sponge extracts in the field experiments. We observed high bacterial density and high diversity of bacteria on the surfaces of the sponge Haliclona sp., but extracts of this sponge inhibited formation of bacterial biofilms in the field experiments. We suggested several possible reasons for this surprising result. First, the concentrations of the compounds used in our experiments were different from those to which that bacteria was
exposed in natural conditions. We used the tissue-level concentration of sponge metabolites, which assumes that there is an equal distribution of sponge compounds (Jensen et al. 1996). However, the distribution of the antifouling compounds in sponges may be different. Moreover, the metabolites released by extraction with solvents may not be released at any appreciable concentration on the sponge surface, but stored inside cells that have no effect on surface biota in the natural environment. Secondly, antifouling protection by the sponges may be a result of various antifouling mechanisms, e.g. phagocytosis, slime production, production of chemical compounds, and/or mechanical defenses by skeletal spicules. Thirdly, the high pumping activity of sponges may cause the passive accumulation of bacteria on the surface of sponges and cause the high density and diversity of bacteria on the surfaces of sponges compared with the surfaces of gels with sponge extracts.

The present investigation demonstrated that sponge metabolites may affect the formation of micro- and macrofouling communities in situ. The presence of high numbers of bacteria on the surfaces of some sponge species was also observed. At the same time, our investigation provided only preliminary information about the antifouling effect of sponge compounds on fouling communities. Further investigations to elucidate the chemical composition of sponge-derived compounds, their mode of action and their effectiveness at natural concentration levels are warranted. Also, other antifouling mechanisms, such as sponge surface topography, wettability, production of slime and the presence of phagocytic surface cells, should be considered.

Acknowledgements. This investigation was supported by Hong Kong RGC grants (HKUST6119/01M, HKUST6100/02M, HKUST6240/04M) to P.-Y.Q. The authors thank Y. V. Plakhontnikova and Y. K. Tam (Hong Kong) for assistance in community fingerprint analysis. We thank Prof. Rob von Soest (Amsterdam) for his identification of the sponges collected from Hong Kong waters and Dr. V. Unkefer (Hong Kong) for proofreading the manuscript. The authors thank Prof. U. Hentschel (Germany) for useful comments.

LITERATURE CITED

Dobretsov et al.: Antifouling activity of sponges

129

Sieburth JMN, Conover JT (1965) *Sargassum* tannin, an antibiotic which retards fouling. Nature 208:52–53

Submitted: October 8, 2004; Accepted: May 16, 2005

Proofs received from author(s): July 7, 2005