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ABSTRACT: Changes in the prey composition of the stomachs of opportunistic-feeding fishes can
provide information on various ocean-ecosystem dynamics. From 1981 to 2000, stomach samples of
the spiny dogfish Squalus acanthias showed a major increase in the overall occurrence (and hence
implied abundance) of Ctenophora, gelatinous zooplankton that range throughout the ecosystem.
There have been a few such major increases in ctenophores in enclosed (e.g. Caspian Sea) and semi-
enclosed (e.g. Mediterranean Sea) ecosystems, with concomitant significant effects on those ecosys-
tems and the productivity of their fishery resources. We show the first such increases in ctenophores
in an open ecosystem, persistent over 2 decades, with implications for the productivity of the fishery

resources in any large marine ecosystem.
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INTRODUCTION

The world's oceans are experiencing a wide range of
perturbations on an unprecedented scale, including
atmospheric and water mass warming (e.g. Walther et
al. 2002, Hughes et al. 2003), eutrophication (e.g. Jack-
son et al. 2001, Deegan 2002), and overfishing (e.g.
Pauly et al. 1998, Jackson et al. 2001). Yet it is often
difficult to detect overall systemic responses indicative
of and sensitive to these perturbations at scales mean-
ingful to large marine ecosystems. One potentially use-
ful indicator of major marine ecosystem alteration is
changes in the abundance of gelatinous zooplankton
(Mills 2001).

Instances of gelatinous zooplankton blooms are ex-
tant for a wide range of marine ecosystems. Both short-
term, seasonal increases (‘blooms’ or ‘outbreaks') and
long-term, multiyear increases of Ctenophora have
been documented for enclosed (e.g. Black Sea,
Caspian Sea, Sea of Azov, Sea of Marmara) and rela-
tively enclosed/semi-open (e.g. Adriatic Sea, Baltic
Sea, Gulf of Mexico, Bering Sea, Mediterranean Sea)
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marine ecosystems, (Purcell et al. 2001, Shiganova et
al. 2001, Brodeur et al. 2002, Gucu 2002, Bilio & Nier-
mann 2004). These increases have been variously
attributed to eutrophication, water mass warming, and
overfishing (Purcell et al. 2001, Shiganova et al. 2001,
Sullivan et al. 2001, Brodeur et al. 2002, Gucu 2002,
Weisse et al. 2002, Purcell 2005). These increases can
also have significant, negative, ecosystem-wide im-
pacts (e.g. Arai 1988, Mills 1995, Purcell & Arai 2001).

However, sampling gelatinous zooplankton remains
a major challenge for biological oceanography (Ham-
ner et al. 1975, Weisse et al. 2002). One way to over-
come sampling difficulties for gelatinous organisms is
to use a low-tech, in situ sampling device. Using fish
stomachs as integrative samplers has become increas-
ingly widespread for obtaining basic but vital informa-
tion on difficult-to-sample marine organisms (Fahrig et
al. 1993, Frid & Hall 1999, Link 2004).

The objectives of our study were to evaluate poten-
tial changes in ctenophore abundance and distribution
while describing an approach that may have broad
application for sampling the relative abundance of
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these types of organisms. We used stomach contents of
the spiny dogfish Squalus acanthias, a known omni-
vore in the NE US shelf ecosystem, to ascertain the fre-
quency of occurrence of common gelatinous zooplank-
ton, Ctenophora. We then used these occurrences to
serve as a potential indicator of the relative abundance
of these gelatinous organisms in this large marine
ecosystem.

MATERIALS AND METHODS

The broad-scale, long-term sampling program of
stomach contents of fishes from the NE US shelf eco-
system serves directly to identify changes in fish diets
and indirectly to identify changes in the underlying
ecosystem (Link & Almeida 2000, Link et al. 2002a,
Link 2004). The standard Northeast Fisheries Science
Center (NEFSC) bottom trawl survey program has
been conducted annually since 1963 (Azarovitz 1981,
NEFC 1988). During these surveys, food habits data
are collected from a variety of species. These multi-
species surveys are designed to monitor trends in
abundance and distribution and to provide samples to
study the ecology of the large number of fish and
invertebrate species inhabiting the region. These
broad-scale trawl surveys cover continental shelf
waters from Cape Hatteras, North Carolina to Nova
Scotia (approximately 290000 km?). All 4 seasons are
sampled, but the major focus has been in spring
(March to May) and fall (September to November),
with winter and summer surveyed more sporadically.
The surveys generally utilize a No. 36 Yankee (or sim-
ilar) bottom trawl towed at approximately 6.5 km h™!
for 30 min at each station. Trawl stations are selected
using a stratified random design. Within each depth—
region stratum, stations are assigned randomly, and
the number of stations allotted to a stratum are in pro-
portion to its area. Station allotments are approxi-
mately 1 station 690 km™2 The surveys are conducted
at depths from approximately 27 to 366 m; however,
greater depths are occasionally sampled in the ca-
nyons along the continental shelf break. Once on-
board, fish are sorted to species, weighed (to the near-
est 0.1 kg) and measured (to the nearest cm), sex and
maturity are determined, and subsamples of key spe-
cies are eviscerated for feeding ecology studies. Azaro-
vitz (1981) and NEFC (1988) provide a more detailed
description of the survey program.

Although the program started in 1973, we focused
our study of spiny dogfish stomachs (n = 43489) from
1981 to 2000 throughout the entire range of the NMFS
NE Shelf surveys (i.e. from Cape Hatteras, North Caro-
lina to Nova Scotia). Full details of the food habits sam-
pling and data are given in Link & Almeida (2000) and

are only summarized here with particular respect to
spiny dogfish. We omitted earlier years of the food
habits program to mitigate any concerns over slight
differences in sampling methodology. In each year of
this study, at least 1000 spiny dogfish stomachs were
sampled; usually the number was over 2000. During
the period of the study, spiny dogfish stomachs were
examined and prey identified on board ship immedi-
ately after the catch had been sorted on deck. Thus,
concerns over the degradation of any gelatinous zoo-
plankton due to the effects of preservation in formalin
or ethanol (Purcell 1988) or rapid digestion (Arai et al.
2003) are largely unmerited. Data on total stomach
volume (x0.1 cm?®), prey composition (%), numbers
and lengths were collected on board ship. In addition,
a conversion from volumetric measurement of prey
(0.1 cm?) to mass (g) was executed.

Ctenophora were readily identifiable in the stom-
achs of spiny dogfish by macroscopic inspection at sea,
by their obvious firm-gelatin constitution, small and
clear ball-like shape, uniquely (relative to any other
spiny dogfish prey) colored, pinkish-gray masses, and
obvious ‘comb’ structures. Even after partial digestion,
Ctenophora in spiny dogfish stomachs were identi-
fiable, particularly the ctene. It appears that spiny
dogfish do not masticate Ctenophora, but rather ingest
these as whole prey items. Compared to direct
methods of sampling gelatinous zooplankton in the
marine environment (e.g. nets), our stomach sampling
methods largely eliminated concerns over specimens
breaking apart and becoming unidentifiable and/or
indistinguishable (Hamner et al. 1975, Bailey et al.
1994, Weisse et al. 2002).

We used frequency of occurrence instead of diet
composition as an index of Ctenophora abundance
because (1) diet composition is much more dynamic
and liable to be influenced by predator density and
alternate prey than frequency of occurrence; (2) the
evidence from other studies suggests that this eco-
system is a donor-controlled, bottom-up driven eco-
system (Fogarty & Murawski 1998, Link & Brodziak
2002), and any occurrence of a prey item in the stom-
ach of a predator is ultimately indicative of its abun-
dance in the ecosystem; and (3) frequency of occur-
rence is less biased than other estimators and simply
represents how often a prey item was eaten or
‘sampled’ relative to the number of stomachs exam-
ined (Link 2004).

Spiny dogfish are known omnivores and oppor-
tunistic pelagic feeders, which feed as they swim
through the water column. Thus, heightened selectiv-
ity for or against ctenophore prey should not be a
major consideration. The concern of prey selectivity is
further mitigated by the consistent percent diet com-
position of Ctenophora in dogfish and the known
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opportunistic feeding nature of this fish
(sensu Fahrig et al. 1993, Frid & Hall 1999,
Link et al. 2002b, Link 2004). To validate
the relative consistency that Ctenophora
comprise of spiny dogfish diets, we present
percent diet composition (by weight) of
Ctenophora and the average amount (g) of
Ctenophora consumed.

Additionally, we sought corroborating
evidence for ctenophore increases, but
although we examined some NW Atlantic
regional zooplankton databases (NESFC 0

40

30

204

104

Frequency of occurrence (%)

unpubl. data), the data were inconclusive 1980
given the caveats of the sample processing
protocols. The protocols did not specifically
target ctenophores or other gelatinous zoo-
plankton nor treat the processing of such
organisms consistently over time. 307
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Fig. 1. Percent frequency of occurrence of Ctenophora in spiny
dogfish Squalus acanthias stomachs from 1981 to 2000. Regression
line shown; trend is significant (F-test, p < 0.001, ?= 0.35)

changed across the decades. We did not plot ?980
occurrences of stations where we caught

dogfish, nor where we examined dogfish
stomachs that did not contain Ctenophora,
since by so doing we would have obscured
any patterns in Ctenophora occurrence. Al-
though spiny dogfish abundance increased over the
period of the study (NEFSC 1998), the range, distribu-
tion and sampling of dogfish, and particularly the sam-
pling of their stomachs, remained consistent (Link &
Almeida 2000).

RESULTS

The frequency of occurrence of Ctenophora has
increased in the NE US shelf ecosystem by 2 to 8 times
since the early 1980s (Fig. 1). This increase has per-
sisted; it is more than a transient, localized, bloom-like
phenomenon. That the change has occurred and been
sustained over 2 decades likely indicates major
changes in the structure and function of this ecosystem
(sensu Fogarty & Murawski 1998, Link & Brodziak
2002, Link et al. 2002a).

There was no significant trend in the percent compo-
sition of Ctenophora in spiny dogfish stomachs (Fig. 2),
which varied between 5 and 15%, with a long-term
average of 11%. There was also no significant trend in

1985 1990 1995 2000

Fig. 2. Mean + SE percent diet composition (by weight; g) of Cteno-
phora in spiny dogfish Squalus acanthias stomachs. No significant

trend was observed over the study period

the amount of ctenophores consumed by spiny dogfish
over the time series (Fig. 3), with a long-term average-
of 2.1 g, varying between 0.5 and 5 g. This indicates
that feeding by spiny dogfish on Ctenophora is a com-
mon, routine, non-selective, maintenance-feeding type
of process that is primarily dependent upon ambient
abundance of Ctenophora, and in effect depends on
the spiny dogfish encountering ctenophores.

The increase in Ctenophora has also been wide-
spread, exhibiting the classical expansion of range
over time when a population continues to increase
(Fig. 4). Most occurrences of Ctenophora have been in
the Southern New England and Georges Bank regions
(Fig. 4). However, there was a clear expansion both
north into the Gulf of Maine and south into the Mid-
Atlantic over the period of the study.

Taking into consideration the distribution of these
occurrences, the stomach contents identified as Cteno-
phora could have been Mnemiopsis leidyi, Pleuro-
brachia pileus or Bolinopsis infundibulum. The lobate
ctenophore M. leidyi has been observed from Georges
Bank/Cape Cod to the southern extent of our study
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Fig. 3. Average amount of Ctenophore consumed by spiny dogfish Squalus acanthias. No significant trend was observed over
the study period

region (e.g. Kremer 1994, Purcell et al. 2001). P. pileus,
a tentaculate ctenophore, has been observed in the
Gulf of Maine and on the Scotian Shelf (Frank 1986,
Mills 1995), suggesting that this species is common in
more northern waters. B. infundibulum is a lobate
ctenophore found in coastal waters from New England
to Labrador, and extending as far as the Arctic and
Baltic Seas (Bailey et al. 1994). It is possible that one, a
combination, or all 3 of these species were present in
the stomach contents of Squalus acanthias in our study,
but our sampling protocol precluded definitive identi-
fication at the species level.

DISCUSSION

Our observations of major increases in Ctenophora
occurrence, and hence implied abundance, at the scale
of an entire large marine ecosystem (i.e. major portions
of ocean basins) and over such a long period are signi-
ficant. We attribute this persistent and widespread
increase in Ctenophora in the NE US shelf ecosystem
to a combination of local warming of water masses
(Sullivan et al. 2001, Mountain 2003) and overfishing
(Fogarty & Murawski 1998, Link et al. 2002a). Such an
increase at the scale of an entire large marine eco-
system and over more than 2 decades has not been
previously documented. It coincides with, to some ex-
tent contributes to, and may be a useful indicator of
major changes in the structure and function (e.g. ener-
gy flow) of this ecosystem (Fogarty & Murawski 1998,
Link & Brodziak 2002).

Other hypotheses could explain the patterns ob-
served in the data. For example, an overall change in

the diet of spiny dogfish Squalus acanthias arising
from changes in the distribution or relative abundance
of other prey, changes in S. acanthias physiology such
that the total amount of food consumed changed, or
changes in S. acanthias behavior (either foraging or
otherwise) are all possible feeding-related explana-
tions. Relative to the ‘sampling device’, changes in the
sampling protocol, in the frequency of sampling S.
acanthias stomachs, or in S. acanthias distribution or
catchability might also explain the observed patterns.
These and similar considerations are all possible rea-
sons for an increase in the frequency of occurrence of
Ctenophora in S. acanthias stomachs. Of these, we can
rule out major changes in sampling protocol (Link &
Almeida 2000), catchability of spiny dogfish in the
surveys (Azarovitz 1981, NEFSC 1998), sampling
frequency of stomachs (Link & Almeida 2000) and
changes in the distribution of S. acanthias (NEFSC
1998, unpubl. data).

Other studies have shown that the diet composition
of spiny dogfish has changed over time (Link et al.
2002b, Link & Brodziak 2002). However, most changes
in their diet have not concerned major functional
groups of prey, but rather species compositions within
those groups (e.g. varying species of small pelagic
fishes) in response to the relative abundance of such
prey in the environment. However, the studies of Link
et al. (2002b) and Link & Brodziak (2002) and the pre-
sent study show that the diet composition of Cteno-
phora in the spiny dogfish has remained consistent,
with no significant trends, and generally averaging
between 5 and 15%. Certainly, changes in alternate
prey could influence spiny dogfish feeding, but again,
ctenophores comprised a relatively consistent amount
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Fig. 4. Location of stations at which spiny dogfish Squalus acanthias stomachs contained Ctenophora. (A) to (D) illustrate
5 yr intervals; 200 m isobath is shown. Area plotted is from 46° 20’ to 32° 00" N latitude and 64°40’ to 79°00' W longitude

of the diet throughout the study period (Link et al.
2002b, Link & Brodziak 2002). Additionally, there was
no clear trend in the amount of ctenophores eaten
by spiny dogfish, suggesting a relative constancy in
the factors that determine the amount of Ctenophora
they consume.

Although we believe that our observations strongly
indicate that ctenophores have indeed increased in
abundance, without direct sampling we cannot be
absolutely sure. Although other explanations con-

nected with changes related to spiny dogfish feeding
or ‘ctenophore sampler' protocols are possible, none
of them provide a convincing explanation for the
observed patterns. Of all the possible alternatives, the
explanation of increased Ctenophora abundance is the
most logical, given the available evidence.

Although instances of increased ctenophore abun-
dance have previously been reported for partially or
fully enclosed systems (Purcell et al. 2001, Shiganova
et al. 2001, Brodeur et al. 2002, Gucu 2002, Weisse et
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al. 2002, Bilio & Niermann 2004), our study of the open
system of the NE US shelf ecosystem suggests that
virtually all the world's marine ecosystems are vulner-
able to such increases in ctenophore abundance.
Given the difficulty of sampling gelatinous zooplank-
ton (Hamner et al. 1975, Weisse et al. 2002), both long-
term and short-term increases in ctenophore abun-
dance may already be more common than previously
recognized (sensu Mills 2001), particularly in response
to climate change (Purcell 2005).

The ecological effects of increasing ctenophore abun-
dance can be significant, especially through competi-
tion with and predation upon other organisms (Arai
1988, Mills 1995, Purcell & Arai 2001). Increased cteno-
phore abundance has altered food webs, either directly
or indirectly, and in particular via predation by cteno-
phores on larval and juvenile stages of commercially
valuable fish species (Arai 1988, Mills 1995, Purcell &
Arai 2001, Purcell et al. 2001, Bilio & Niermann 2004),
which has been suspected of hindering recruitment in a
wide range of species (Purcell & Arai 2001, Purcell et al.
2001, Bilio & Niermann 2004). A negatively reinforcing
feedback loop has been described, whereby overfish-
ing contributes to conditions suitable for increased
ctenophore abundance, which in turn contributes to de-
creased fish recruitment, which contributes to decreased
fish stocks, which contributes to overfishing, with the
loop then iterating (Mills 1995, Purcell & Arai 2001, Pur-
cell et al. 2001, Weisse et al. 2002, Bilio & Niermann
2004). Other possible effects of increased ctenophore
abundance include an increase in the amount of unac-
counted-for or difficult-to-sample biomass in a system,
declines in future fish yields, increased production of
ctenophore predators (which may not be desirable
organisms), in addition to further unintended and/or
indirect effects that have not yet been detected.

Some scientists have jokingly suggested that con-
tinued ocean perturbations may leave us with marine
ecosystems populated predominantly by jellyfish (Pauly
et al. 1998, sensu Jackson et al. 2001, Pauly & Watson
2003); we may be closer to such a situation than we
suspect.
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