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INTRODUCTION

Chesapeake Bay provides a richly documented case
study of the limits to the control of phytoplankton by
filter-feeding benthos in estuaries. Overfishing for more
than a century and exotic parasitic diseases introduced
50 yr ago have reduced the population of the native
oyster Crassostrea virginica to a small fraction of its
original size. In addition, during the last 50 yr, extensive
spring phytoplankton blooms followed by summer hy-
poxia have become an increasingly serious problem.
Extrapolating from individual filtering rates to the num-
ber of oysters he estimated to have been present in
Chesapeake Bay in pre-colonial times, Newell (1988)
estimated that the oyster population would then have
cleared a volume of water equal to that of the bay in 2 to

4 d, and argued that filtration by oysters provided a
significant control of blooms. He further suggested that
restoration of the oyster population would control
spring phytoplankton blooms. On the basis of Newell’s
(1998) calculation, oysters in Chesapeake Bay have
been described as a lost keystone species that could
prevent the hypoxia resulting from microbial utilization
of phytoplankton not otherwise consumed (Jackson et
al. 2001). Ruesink et al. (2005) repeated and accepted
Newell’s (1998) hypothesis, and Kemp et al. (2005),
while emphasizing the overriding effect of anthro-
pogenic sources of eutrophication, nonetheless gave
credence to the Newell hypothesis. 

Because diseases and accumulation of sediment on
oyster beds have frustrated most efforts to rebuild
native oyster populations in Chesapeake Bay, intro-
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duction of the non-native oyster species Crassostrea
ariakensis, with putatatively higher resistance to dis-
ease, has been widely advocated to replace the native
oyster, based on the assumption that this species will
thrive, restore the oyster-fishing industry, and solve
‘the phytoplankton bloom problem’. Although caution
would seem to have been recommended in a recent
study by the Ocean Studies Board, National Research
Council (2004), even that report has been cited as
advocating introduction of an exotic oyster species into
Chesapeake Bay to control blooms and the resultant
hypoxia (Ruesink et al. 2005). We examine the Newell
hypothesis in terms of the hydrography, past and pre-
sent, of Chesapeake Bay, and the potential role of the
present oyster population relative to that of the sus-
pension-feeding guild as a whole.

Spatial limits to bloom control

Control of phytoplankton by oysters requires that the
oysters have access to all the spring bloom biomass at
the time it is developing and that they remove phyto-
plankton at a rate that equals or exceeds their growth
rate. Control of blooms is thus only effective if removal
rate exceeds the rate of phytoplankton production. In a
graphical presentation of clearance time by molluscs
versus residence time of estuarine water, Smaal &
Prins (1993) made such a calculation for many estuar-
ies including the Chesapeake Bay. The relationship, as
they presented it, is valid where the water is well
mixed in the short term, as for example in the freshwa-
ter reaches of the Potomac River, where Cohen et al.
(1984) showed that the introduced bivalve Corbicula
fluminea cleared the water of phytoplankton. How-
ever, not all estuaries are well mixed or rapidly mixed
(Monbet 1992). When mixing by wind and tidal cur-
rents is not complete in either the vertical or horizontal
axis, benthic suspension feeders will not have access to
all water in the short term, phytoplankton will repro-
duce until nutrient limited, and the simple calculation
will fail. Even relatively small, shallow estuaries some-
times are not fully mixed in the short term (e.g. Loo &
Rosenberg 1989, Hily 1991). Cloern’s (1982) study of
shallow South San Francisco Bay showed that stratifi-
cation of the water column, isolating the upper layer in
which phytoplankton grow from the filter-feeding ben-
thos, limits the ability of suspension feeders to control
phytoplankton. Although molluscs in San Francisco
Bay control phytoplankton most of the time, blooms
occur when stratification by river water coincides with
neap tides (Jassby et al. 1996).

Although the effects of stratification in limiting
access of benthic suspension feeders to phytoplankton
are widespread (Cloern 1996), stratification is only a

partial limit in Chesapeake Bay, because some oyster
beds are, or were, within the upper mixed layer and
would have potential access to the bloom. However,
because of its large size and small tidal amplitude, lat-
eral circulation of water in the main stem of the bay,
where spring blooms develop, limits access of suspen-
sion feeders to phytoplankton. Gerritsen et al. (1994)
developed a model of water movement for Chesa-
peake Bay, taking into account the lateral movement of
water between the main stem, its margins, and the
tributaries. Simulating clearance rates by the existing
biomass of species of suspension-feeding molluscs,
including the remaining oysters, the model predicts
that all the present mollusc populations, even without
the former oyster reefs, potentially control or signifi-
cantly affect phytoplankton along the sides of the main
stem and in most tributaries. However, molluscs cannot
filter the water in the main stem over a time period
short enough to control phytoplankton. Since that is
where the core of the spring bloom develops, control in
the main stem is essential. 

The results of Gerittsen et al.’s (1994) simulation are
supported by empirical findings of Malone et al. (1986),
which indicate that less than half the spring bloom is re-
moved by all the extant grazers, including zooplankton
and menhaden. Gerritsen et al.’s (1994) model predicts
that the pre-colonial oyster reefs, situated along the
margins in the same shallow parts of the bay as most
present mollusc populations, would not have had suffi-
cient access to all water in the main stem of the bay to
control spring blooms (Fig. 1). Chesapeake Bay has a
small tidal amplitude, typically <1 m, and its central
main stem is 5 to 18 km in width. Even though pre-
colonial oyster reefs were partially in the upper mixed
layer, the main stem of the bay was (and is) too large
and lateral water exchange too limited to permit control
of spring phytoplankton production by organisms along
the shoals. Gerritsen et al.’s (1994) model also implies
that the assumption of short-term access by oysters to
all bay water limits interpretations based on the 1-
dimensional model of Ulanowicz & Tuttle (1992). Be-
cause events are not the same under each square meter
of the Chesapeake Bay, a model of 1 representative
square meter of the bay misses the disconnection oc-
curring in the horizontal axes. The horizontal spatial
disconnection between oysters and phytoplankton
blooms in the main stem of the bay would by itself seem
to place top-down control of spring phytoplankton in
doubt, but additional limitations need to be addressed.

Seasonal temperature limits

Newell’s (1988) calculation of the effect of oysters
was based on a summer filtration rate for oysters.
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Since the diatom bloom that causes summer hypoxia
usually begins in March, or even late February (Hagy
et al. 2005), it is then that control by filter-feeding
organisms must suppress the bloom. The appropriate
filtration rate to apply to the calculation is that for
March. The March filtration rate of oysters used by
Newell et al. (2005) to estimate seasonal biodeposition
is 1 order of magnitude lower than the summer rate
used in Newell’s (1998) original calculation (0.45 vs.
5 l h–1 g–1). Repeating Newell’s (1988) calculation
using this later estimate of the spring filtration rate
suggests that at the time of year when control of the
spring bloom could occur, the estimated pre-colonial
oyster population would have required some tens of
days — more than the doubling time of the bloom — to
filter the volume of the bay if, in fact, it had access to
all the water (Table 1). 

Temperature effects on filtration rates are, however,
complex and have been debated extensively. Labora-
tory experiments have shown a linear response to
acute temperature change, but have also shown accli-
mation to temperature change over periods of 2 wk or
more (Widdows & Bayne 1971). It should be noted,
however, that the experiments of Widdows & Bayne
(1971) were over a limited range of temperature. East-
ern North America experiences a wider range of sea-
sonal temperature changes than does Western Europe.
In the original work on clearance rates of oysters in
Long Island Sound over a temperature range of 0 to
39°C, Loosanoff (1958) found empirically that many
oysters were closed or not pumping at temperatures
below 10°C and that most pumping ceased below 5°C.
Between 16 and 32°C, all oysters pumped at rates that
increased with increasing temperature, with rates
declining at still higher temperatures (>32°C). Jør-
gensen et al. (1990) critically reviewed the extensive
work that has since been done on the mollusc pump,
concluding that it is ‘a viscous, leaky, constant-force
pump’ that processes water autonomously. However,
the outcome resulting from variations in valve gape
and water viscosity seems to be a quasi-linear positive
relation to temperature vs. clearance rate in Fig. 2
(Jørgensen et al. 1990). 

Since early spring water temperature in Chesa-
peake Bay is 5 to 7°C, clearance rates may be
expected to be low at that time. The rates reported by
Newell et al. (2005) are those of in situ acclimated
oysters measured by Jordan (1987). Similar low
spring rates might be expected for the entire suspen-
sion-feeding guild. Hagy et al. (2005) report little bio-
turbation of sediments in March; as a surrogate mea-
sure of activity of infauna, this suggests reduced
filtration by the infauna. Newell’s (1988) original
summer filtration rate was also used uncritically in
the Gerritsen et al. (1994) model, which found a lim-
ited effect of molluscs on the spring bloom. If a lower
filtration rate applies in spring, the model should pre-
dict even less effect.
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Fig. 1. Crassostrea virginica. Spatial separation of principal
mass of oysters (darker gray) in central Chesapeake Bay, be-
tween the mouths of the Choptank and Potomac rivers, on
1893 navigation chart (Paynter 2003) (at a time when original
oyster reefs were still intact) from the active core of a major
spring diatom bloom (stippled) in central Chesapeake Bay
during the high runoff year 1996 (Hood & Boicourt 2005).
Year-to-year variation occurs, but this should be typical of

separation in space of blooms and oysters

l g–1 h–1 m3 d–1 m3 d–1 m2 Days to
filtered filter 9 m

5 2.3 × 1010 2.1 4
0.45 2.0 × 109 0.18 34

Table 1. Crassostrea virginica. Comparison of the time re-
quired to filter the upper 9 m of Chesapeake Bay as a whole
assuming  a summer filtering rate of 5 l g–1 h–1 (assumptions,
dimensions and rates of Newell 1988) with time required as-
suming a spring filtering rate of 0.45 l g–1 h–1 (Newell et al.
2005). This comparison does not address the issue of mixing
rate of bay water and potential access of suspension feeders

to all bay water. Oyster biomass was 1.88 × 1011 g
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Present and former suspension-feeders

As Gerritsen et al. (1994) pointed out, clearance of wa-
ter in Chesapeake Bay is not by oysters alone. When
the suspension-feeding guild as a whole is enumer-
ated, including worms, barnacles, tunicates, cnidari-

ans, and echinoderms, its biomass significantly ex-
ceeds that of molluscs and it is resistant to transitory
episodes of hypoxia during summer (Sagasti et al.
2000, Schaffner & Thompson 2002). Hypoxia does not
occur during early spring, which is the critical time
for controlling blooms. One polychaete species,
Chaetopterus variopedatus, has a significant filtration
rate in the lower bay (Thompson & Schaffner 2001),
and even though data on the abundance of epifauna in
Chesapeake Bay are limited, a more complete inven-
tory of filter-feeding biomass suggests present-day
community filtering rates that equal or exceed
Newell’s (1988) original estimate of water clearance by
pre-colonial oysters (Schaffner & Thompson 2002). The
mean filtering rate of suspension feeders g–1 dry
weight (at optimal temperatures) for 44 species, from
sponges to ascidians, is 7.8 l g–1 h–1 (SE ± 0.5; data from
Hily 1991, Dame et al. 2001, Hughes 2001). The esti-
mate of total filter-feeding biomass by Schaffner &
Thompson (2002) suggests that it should process a vol-
ume of water at least comparable to that of the pre-
colonial oyster reefs (17 g for pre-colonial oysters vs.
18 g for present-day suspension-feeding benthic
fauna). This estimate does not include filter-feeding
epifauna (Sagasti et al. 2000). In current research on
the Chesapeake Bay ecosystem, the benthic biomass is
estimated to be a 1.3 power function of primary pro-
duction (Hagy 2000, Schaffner et al. 2002). In spite of
the loss of oysters, the biomass of the total filter-feed-
ing guild has probably increased in response to in-
creasing eutrophication of the bay, even taking into
consideration the effects of periodic hypoxia on those
communities. 

Although our estimate of the biomass and filtering
potential of the suspension-feeding community in
Chesapeake Bay exceeds Newell’s (1988) estimate of
the potential of pre-colonial oysters (Sagasti et al. 2000,
Schaffner & Thompson 2002), it is clearly not control-
ling present spring blooms. In addition to the con-
straints of space and temperature, multiplying filtering
rates by biomass is not a true indication of community
filtering capacity. Water flow past filter-feeding organ-
isms is not always optimal: disturbance by other organ-
isms occurs, excessive sediment interferes with filter
efficiency, organisms in close proximity filter the same
water repeatedly and, in a stratified estuary, some
water is not accessible to the benthos in the short term.
A community of benthic suspension feeders in a shal-
low bay in the Kattegat (not aggregated in reefs) was
found to ingest only one-half of its potential (Loo &
Rosenberg 1989). Similar limiting effects are seen in
mussel beds (Wildish & Kristmanson 1997). Benthic
suspension feeders reside in a benthic boundary layer
of water that limits their access to particles suspended
throughout the water column (Wildish & Kristmanson
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Fig. 2. Multi-year means of annual cycles of phytoplankton
production, suspension-feeding, and ammonium regenera-
tion in Chesapeake Bay. (A) Maximum clearance by filter-
feeders (h) and maximum phytoplankton production (d) in
summer. (B) Euphotic zone chlorophyll (j) peaks during the
spring bloom, with a lesser peak coinciding with maximum
primary production and maximum top-down control in sum-
mer; regeneration of ammonium (M) from collapse of spring
bloom, as well as from ongoing production and its utilization,
peaks in summer, coincident with maximum primary produc-
tion and maximum temperature (s). Primary production and
euphotic zone chlorophyll from Harding et al. (2002); water
clearance rate by oysters Crassostrea virginica from Newell
et al. (2005); ammonium flux from Kemp & Boynton (1992)
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1997). In turbulent flow, they have short-term access to
1–2 m of the water column (Fréchette et al. 1989),
while during periods of laminar flow they may access a
layer that is only centimeters thick. Even during turbu-
lent flow, water is being filtered repeatedly (Fréchette
& Bourget 1985, Wildish & Kristmanson 1997). Kemp &
Boynton (1992) found the response of benthic suspen-
sion feeders to food supply to be less in Chesapeake
Bay than in most other systems that have been studied,
attributing this to the inhibitory effects of summer
hypoxia on aerobic benthic organisms. However, many
members of the suspension-feeding guild are resilient
to all but very persistent hypoxia and flourish in inter-
mediate or moderately hypoxic conditions (Sagasti et
al. 2000, Schaffner et al. 2001). While it is not certain
that populations of filter-feeding organisms are at an
all-time high for the bay as a whole, they may have
increased in regions that experience mild or periodic
hypoxia. If suspension feeders are food limited, and
were originally competing with strategically located
oyster reefs, their abundance may have been some-
what less in pre-colonial Chesapeake Bay. The num-
ber of epifauna that were dependent on oysters for
living space may have been higher than at present (we
are not aware of any published data regarding this).
We do know that spring blooms were smaller (Cooper
1995), river flow was less, and saline water extended
farther up the bay (Mountford 1986).

In contrast to the spring bloom, summer phytoplank-
ton (80% nanoplankton consisting of smaller diatoms
and other nanophytoplankton, and 20% picoplankton
consisting largely of autotrophic cyanobacteria; Mc-
Carthy et al. 1974) appears to be more closely con-
trolled by the combined action of benthic suspension
feeders (Gerritsen et al. 1994; their Fig. 9) and zoo-
plankton, including microzooplankton — protozoans,
invertebrate larvae, and rotifers (McManus & Edering-
ton-Cantrell 1992, Gallegos & Jordan 1997). During
summer, microzooplankton also control heterotrophic
bacterioplankton, whose numbers, although high, are
similar to those in other eutrophic estuaries. Evidence
that microzooplankton can reproduce quickly enough
to control the smaller autotrophs was given by Yeager
et al. (2005), who found summer blooms consisting
mostly of the larger  (>20 µm) autotrophs following a
wind-induced pulse of ammonium. Nanophytoplank-
ton and microzooplankton are within the size range of
organisms that suspension feeders can filter efficiently
(Langdon & Newell 1990), and macrozooplankton also
consume microzooplankton. Nanophytoplankton and
microzooplankton are a probable significant source of
nutrition for suspension feeders and zooplankton dur-
ing summer. More significant top-down control during
summer does not, of course, have any effect on the
intensity of spring blooms.

Cause and cure for blooms

Studies of the microfossils and geochemistry of cores of
Chesapeake Bay sediments give us extensive insight
into changes that have occurred in the bay during the
past 2700 yr (Bratton et al. 2003). Sediments show a
>150% increase in algal and bacterial production since
pre-colonial times (Zimmerman & Canuel 2002), with a
35 to 50% increase in sediment organic carbon between
1934 and 1948 (Zimmerman & Canuel 2000). Since 1600,
biogenic silica flux to sediments, indicative of diatom
production, has increased by a factor of 4 to 5 (Colman &
Bratton 2003). This evidence, as well as that from studies
of changes in recent decades, suggests that phyto-
plankton blooms in Chesapeake Bay are nutrient-driven
and have increased with nutrient loading (Malone et al.
1988, Glibert et al. 1995, Harding & Perry 1997, D’Elia et
al. 2003, Kemp et al. 2005, Adolf et al. 2006). 

The large year-to-year variation in the extent of
spring blooms is related to winter–spring river flow
and its inputs of N, P, and Si, plus strong stratification
of the bay by freshwater in high-flow years that stabi-
lizes blooms in the euphotic layer. Interannual varia-
tion in flow is driven by regional and global climatic
cycles (Malone et al. 1986, Kemp & Boynton 1992,
Malone 1992, Kemp et al. 1997, Acker et al. 2005). The
annual timeline of events related to phytoplankton
blooms and hypoxia in Chesapeake Bay shows that the
greatest accumulation of phytoplankton occurs during
the spring bloom (Fig. 2). Years with high river flow
have the largest spring blooms and the greatest sum-
mer hypoxia (Harding & Perry 1997, Hagy et al. 2004).
Once any essential nutrient element (N, P, or Si)
becomes limiting, the spring bloom, dominated by
diatoms, collapses and disappears from the water
rapidly (Harding & Perry 1997, Hagy et al. 2005). Sum-
mer hypoxia in Chesapeake Bay is initiated by micro-
bial utilization of the uneaten part of the spring phyto-
plankton bloom that is concentrated on or near the
bottom of the stratified main stem during April and
May  by the estuarine counter-current (Roden et al.
1995). A lesser peak in chlorophyll occurs in summer
(Fig. 2), supported by nutrients (especially ammonium)
regenerated microbially during summer from the
remains of the spring bloom (Kemp & Boynton 1992,
Glibert et al. 1995) and dispersed by oscillations of the
pycnocline (Malone et al. 1986). During summer, how-
ever, despite continuing high rates of primary produc-
tion, chlorophyll concentrations (i.e. phytoplankton
populations) remain lower than in spring, implying
more top-down control at this time of year  (Malone
1992). While the suspension-feeding benthos may
experience some inhibition by anoxia at this time, zoo-
plankton, including larval stages of both zooplankton
and benthos, are abundant and active.
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Reduction of inputs of nutrients from the watershed
is seen as the means by which summer hypoxia of the
bay can be reduced (Boesch et al. 2001, D’Elia et al.
2003). Although hypoxia had been noted earlier (New-
combe & Horne 1938), regular monitoring of nutrient
loading, chlorophyll concentrations, and hypoxia did
not begin until about 1950 (Fig. 3). By this time, the
oyster harvest (our best measure of oyster abundance)
had fallen to approximately 30% of peak rates. Chloro-
phyll was relatively low in 1950 compared to that in
recent years (1975 to 1995), although it was  probably
already above the pre-colonial baseline (Cooper 1995,
Colman & Bratton 2003). A significant annual summer
hypoxic volume was being recorded (1950 to 1995)
(Fig. 3). Nitrogen loading has increased since 1950,
with the high variance reflecting interaction of loading
with river flow. Chlorophyll concentrations have
increased less rapidly, but the volume of hypoxic water
in the bay during summer continues to increase
(Fig. 3). Kemp & Boynton (1992) suggested that this
results from a positive feedback related to inhibition of
benthic suspension feeders by hypoxia. In view of the
evidence for limited control of phytoplankton by sus-
pension feeders, other possibilities might also be con-
sidered, such as multi-year accumulation of organic
nitrogen. Although Boynton et al. (1995) suggested
that the bay has little nutrient ‘memory’, the active
layer in the sediments contains >90% of the nitrogen
in the system and would appear to represent at least
5 yr of accumulation. In the exceptional low-flow years
of 1988 and 1989, nitrogen loading from rivers was
comparable to that in the 1950s, but chlorophyll con-

centrations were higher than in the 1950s (Harding &
Perry 1997). Reversal of trends toward more phyto-
plankton and hypoxia will probably require long-term
reduction in inputs of nitrogen from the watershed and
its airshed below some as yet undefined threshold
(Malone 1992, Harding & Perry 1997).

Sediment cores show that detectable eutrophication
and hypoxia actually began early in Chesapeake Bay
(between 1750 and 1800), coinciding with deforestation
and the rise of agriculture in the watershed (Bratton et
al. 2003). Organized oyster harvesting began at about
the same time, prior to significant depletion of the
oyster population. Although most of the Chesapeake
oyster population was subsequently lost to fishing and
disease, the suspension-feeding guild as a whole may
now be as large and as able as it ever has been to con-
trol phytoplankton blooms. However, we argue that it
does not control blooms now owing to spatial separa-
tion of phytoplankton production and its consumers,
limited mixing in a large, microtidal estuary, and the
constraints of low spring temperatures on filtration
rates. The desire for a rapid and inexpensive way to
control hypoxia has led to repeated calls for the intro-
duction of non-indigenous species of oysters. This may
be desirable for economic, cultural, aesthetic, or other
reasons (as it has been on the west coast of North
America and in many estuaries of Europe), but it
seems doubtful that their presence will moderate spring
phytoplankton blooms or hypoxia significantly in
Chesapeake Bay. In their revision of the keystone spe-
cies concept, de Ruiter et al. (2005) see interactive feed-
ing guilds, rather than single species, as influential in
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the food web. In Chesapeake Bay, the abundance of
individual species within the suspension-feeding guild
may have changed, owing to human or natural pre-
dation or to other changes in the system, but the collec-
tive biomass is probably limited by food supply. 

Because of the multiple factors involved, including
nutrient loading, the size and morphology of estuaries,
the extent and location of filter-feeding populations of
plankton and benthos, and the effects of tidal ampli-
tude and river flow on mixing estuarine water, sweep-
ing generalizations about the effect of any single vari-
able across all estuaries are problematic. For example,
Monbet (1992) found that in most cases phytoplankton
were more abundant in microtidal than macrotidal
estuaries but, because of other factors, extreme outliers
occurred. The macrotidal Tagus estuary behaved like
a microtidal estuary because of its morphology, and the
microtidal Hudson estuary fell within the range of
macrotidal estuaries. We should be wary of generaliza-
tions about the effect of suspension-feeding benthos
on phytoplankton without due consideration of estuar-
ine size, circulation patterns, and morphology, as well
as the other factors that may regulate community filter-
ing rates.
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