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INTRODUCTION

Disturbance plays an important role in determining
the structure and dynamics of ecological communities
(Sousa 1984, Pickett & White 1985). Although moder-
ate disturbances can promote species diversity by
reducing the impact of competitive dominants, severe
disturbances invariably have a negative impact on the
majority of species. On coral reefs, both physical (e.g.
storms) and biological (e.g. crown-of-thorns starfish,
coral bleaching, coral disease) disturbances can dra-
matically impact on coral reef habitat and associated

organisms (Karlson & Hurd 1993, Aronson & Precht
1995, Jones & Syms 1998, Jones et al. 2004, Wilson et
al. 2006). Although physical disturbances that break
down reef structure generally have the most severe
impacts on the associated animal communities (Gra-
ham et al. 2006), biological disturbances that affect
only living coral tissue can be equally detrimental for
some groups of animals (Wilson et al. 2006). Species
may be resistant to or recover from some disturbances,
but the point at which disturbances become intolerable
is not well understood. Mass coral-bleaching, caused
primarily by elevated sea-surface temperatures as a
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result of climate change, is one of the most critical dis-
turbances that coral reef ecosystems currently face
(Hoegh-Guldberg 1999, Wilkinson 2004). When corals
are exposed to temperatures 1 to 2°C above their aver-
age maximum for several consecutive days, they
become stressed and expel their symbiotic dinoflagel-
lates (their main source of energy and pigmentation).
Heat-stressed corals can either recover or die from
bleaching, although corals that recover may suffer
from reduced growth, fitness and physiological condi-
tion (Jokiel & Coles 1977, Baird & Marshall 2002). Dif-
fering susceptibilities to bleaching among corals can
then lead to dramatic shifts in the structure of coral
communities. In a recurring pattern, the branching
corals that provide greatest habitat structure for other
organisms are often replaced by less structurally com-
plex massive and encrusting growth forms (Marshall &
Baird 2000, Loya et al. 2001, McClanahan et al. 2007).

Coral decline due to bleaching can have far-reach-
ing and detrimental consequences for organisms that
rely on corals for food, shelter or living space (Pratchett
et al. 2008, 2009). To date most studies have docu-
mented the impact of coral mortality caused by bleach-
ing on associated animal communities (e.g. Lindahl et
al. 2001, Booth & Beretta 2002, Spalding & Jarvis 2002,
Garpe et al. 2006). Information about the effects of
bleaching per se is very limited. Given that bleaching
is becoming a chronic disturbance during which corals
can remain bleached for months prior to recovery or
death (e.g. Baird & Marshall 2002), it is crucial to
understand how bleaching itself influences basic
demographic processes of coral-associated organisms.

Although sparse, the available evidence suggests
that the effects of bleaching on animals that depend on
live corals for food and shelter can be significant. Sym-
biotic coral crabs of the genus Trapezia suffer reduced
abundance and physiological condition when living
and feeding on bleached host corals compared to crabs
living and feeding on healthy host colonies (Glynn et
al. 1985, Iglesias-Prieto et al. 2003). Although very lit-
tle is known about the influence of bleaching on ani-
mals that use corals primarily for shelter rather than
nutrition, the significant declines in abundance of
coral-dwelling species shortly after bleaching, and
prior to habitat erosion, suggests that habitat bleach-
ing may also have rapid effects on persistence (Lindahl
et al. 2001, Bellwood et al. 2006). For example, in sur-
veys conducted immediately after the 1998 bleaching
event on the Great Barrier Reef, when some corals
were still bleached, Bellwood et al. (2006) found that
the abundance of coral-dwelling damselfishes and
gobies had already declined significantly. However, it
is generally unclear if these declines in abundance
occur as a result of bleaching itself or subsequent coral
mortality. This information is critical to understand

the level of resistance to and potential recovery from
bleaching episodes of different intensity. For coral-
dwelling fishes, healthy coral tissue often appears to
be just as important a component of the habitat as
structural complexity (Booth & Beretta 2002, Wilson et
al. 2006, Feary et al. 2007a), and bleaching itself may
prompt resident fishes to vacate affected host corals in
search of undisturbed habitat.

The effects of bleaching may also extend beyond
species with an obligate relationship to live coral by
influencing settlement and early post-settlement sur-
vival of a wide range of species. Many reef fish species
use live coral as settlement habitat (Jones et al. 2004,
Garpe & Öhman 2007), and although it is clear that set-
tlers can distinguish between live and dead coral
(Öhman et al. 1998, Feary et al. 2007b), it is currently
unknown if they avoid settling onto bleached corals.
Reef fish use visual and chemical cues to recognise
their settlement habitat (Booth 1992, Elliott et al. 1995)
and the loss of pigmentation and physiological stress
corals experience during bleaching could potentially
disrupt these cues. If this is the case, bleaching could
have significant and persistent effects on population
replenishment, particularly in locations where sea-
sonal recruitment peaks coincide with periods of
increased risk of bleaching (e.g. the Great Barrier
Reef). Moreover, if recruits do settle onto bleached
corals, the pigment loss associated with bleaching
could further increase their already high vulnerability
to predation. Healthy live coral tissue is thought to help
camouflage resident fishes (Wilson et al. 2006), and
bleaching could make recruits more visually conspicu-
ous to predators.

The present study was conducted during a natural
coral bleaching event in Kimbe Bay, Papua New
Guinea and is the first to investigate the immediate
effects of bleaching per se on coral reef fish recruit-
ment and persistence. We began by documenting the
extent of bleaching at the study site and then used in
situ monitoring of fishes living on host colonies across
a range of bleaching degradation categories to quan-
tify the immediate effects of this biological disturbance
on recruitment and persistence of coral-associated
fishes. Like trapezid crabs, coral-dwelling gobies of the
genus Gobiodon are live-coral symbionts, and their
high degree of live-coral dependence and site fidelity
make them ideal candidates for in situ study. The 2
species monitored here, G. histrio and G. quinquestri-
gatus, occur in only a small suite of corymbose Acrop-
ora spp. in Kimbe Bay (Munday 2000). Once breeding
pairs are established, Gobiodon spp. may spend their
entire lives within the branches of their home coral
colony (Wall & Herler 2008). Similarly, the lemon dam-
selfish Pomacentrus moluccensis is well-suited to study
the effects of bleaching on recruitment because it
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exhibits a strong preference for live coral at settlement
(Öhman et al. 1998), recruits directly into adult habitat
(Brunton & Booth 2003) and is highly site-attached,
with tagging studies showing little movement on con-
tiguous reef environments (Beukers et al. 1995). The
specific questions we examined were: (1) How does
host-colony bleaching and mortality influence persis-
tence of adult resident gobies? (2) Do settlement-stage
P. moluccensis avoid settling onto bleached corals? (3)
How does host-colony bleaching and mortality influ-
ence the post-settlement persistence of recruits?

MATERIALS AND METHODS

Study site. The present study was conducted from
April to June 2008 during a natural coral bleaching
event in Kimbe Bay. The first reports of bleaching in
the area in 2008 were at the end of March (V. Messmer
pers. comm.) so the study period encompassed the
majority of the coral bleaching, recovery and mortality
that occurred during the event. The study took place
on the exposed side of Garbuna Reef, a large platform
reef approximately 1 km from shore.

Extent of bleaching to branching coral habitats. To
determine the extent of bleaching of branching corals,
4 replicate 50 m line-intercept transects were deployed
and benthic substratum was identified under 100
random points along each transect. Surveys were con-
ducted along the reef flat, crest, upper slope and lower
slope (0, 2, 6 and 10 m respectively) to document dif-
ferences in the extent of bleaching across these depth-
stratified habitats. Live corals were identified to genus
and growth form and were categorised as either
healthy (e.g. normal pigmentation) or affected by
bleaching.

Effect of coral bleaching and mortality on adult
goby persistence. To determine how host-colony
bleaching affected the persistence of coral-dwelling
gobies, 25 healthy and 20 severely bleached colonies
of Acropora nasuta that hosted breeding pairs of either
Gobiodon histrio or G. quinquestrigatus were tagged
and monitored for 7 wk. A. nasuta was chosen because
it is a preferred host coral for both gobies (Munday
2000) and is abundant at the study site. In order to cat-
egorise host-colony bleaching degradation we used a
4-point scale similar to that developed by Marshall &
Baird (2000): (1) healthy = no visible loss of colour, (2)
moderately bleached = 1 to 50% of colony affected or
entire colony pale, (3) severely bleached = 51 to 100%
of colony with strong pigmentation loss (colony ap-
pears white), (4) dead = 80 to 100% of colony covered
by light algal overgrowth. Only host colonies that were
categorised as severely bleached at the initial inspec-
tion were tagged for inclusion in the study. At each

subsequent census, colony inter-branch spaces were
searched using an underwater torch to identify and
count remaining gobies. Bleaching severity of the host
colony was then scored using the 4-point scale and
proportional mortality was estimated to the nearest 5%
in order to monitor progress in the recovery or death of
each colony over time.

Effect of coral bleaching on settlement of Pomacen-
trus moluccensis. Prior to the new-moon settlement
pulse in May 2008, 20 healthy and 19 severely
bleached colonies of corymbose Acropora were tagged
along the reef crest. Because the presence of con-
specifics is a known settlement cue for P. moluccensis
(Öhman et al. 1998), at least one older recruit was pre-
sent on all of the tagged colonies. Colonies were then
monitored weekly for 5 wk to track changes in recruit
abundance and coral health over time. At each census,
the number of P. moluccensis recruits was counted, the
degree of bleaching severity of the host coral was
scored and proportional mortality estimated. Small
body size and pale coloration of the new settlers
allowed them to be clearly distinguishable from older
recruits on the colonies.

Effect of coral bleaching and mortality on post-
settlement persistence of recruits. In the first few days
following the settlement pulse, the reef crest was again
searched for corymbose Acropora colonies in various
stages of health that hosted newly settled Pomacentrus
moluccensis. A total of 67 coral colonies were located
and tagged: 30 healthy, 22 severely bleached and 15
dead colonies. Colonies categorised as severely
bleached at the initial census appeared very white
with little to no pigmentation, and colonies categorised
as dead had between 80 and 100% mortality at the
time of tagging (Fig. 1). Weekly monitoring of each
colony was then conducted to document the response
of the colony to bleaching and associated changes in
the number of P. moluccensis recruits remaining. Per-
cent mortality of the host coral was also estimated to
the nearest 5%.

Data analysis. Data from the coral-bleaching surveys
was averaged across transects at each depth to esti-
mate the proportion of branching corals affected by
bleaching and a 1-way ANOVA was used to compare
the extent of bleaching between depths. For the goby
persistence, Pomacentrus moluccensis settlement, and
recruit persistence studies, 1-way ANOVA was used
on each data set to compare the density of fish remain-
ing on host corals in each degradation category at the
end of the study. Type III sums of squares was used to
account for unequal sample sizes and residual analy-
ses were conducted to ensure data conformed to
ANOVA assumptions. No data transformations were
necessary. When ANOVA produced significant results,
Tukey’s honestly significant difference (HSD) post hoc
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tests were used to determine which means differed. In
addition, 1-tailed Fisher’s exact tests were used to
compare the frequency of recruit retention between
healthy, bleached and dead colonies after 4 wk.

RESULTS

Extent of bleaching to branching coral habitats

The branching coral community covered ~25% of
the benthos and was dominated by corals from the
genus Acropora. Mean cover of branching corals did
not differ significantly between depths (ANOVA:
F3,12 = 0.179, p = 0.909), although the proportion of
these corals affected by bleaching decreased signifi-
cantly with increasing depth (Fig. 2; ANOVA: F3,12 =
6.977, p = 0.006). On the reef flat ~80% of branching
corals were bleached, compared to 23% on the lower
reef slope.

Effect of coral bleaching and mortality on adult goby
persistence

The 25 healthy colonies of Acropora nasuta that hosted
coral gobies remained healthy with no bleaching or
mortality during the 7 wk study, whereas the 20 severely
bleached hosts either showed signs of recovery (n = 16)
or died (n = 4). There were significant differences in the
density of gobies remaining in healthy, bleached and
dead host corals after 7 wk (ANOVA: F2,42 = 16.702,
p < 0.001). Although the mean density of gobies on
bleached corals tended to be slightly lower than on
healthy corals (Fig. 3), a Tukey’s HSD test revealed that
this difference was not significant. However, goby den-
sity was significantly lower on dead corals after 7 wk
compared to both healthy and bleached corals. On
healthy and bleached host colonies, ~2 fish remained
in each colony throughout the study, whereas goby
abundance on dying colonies declined moderately
during the first month and then dropped sharply so that
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Fig. 1. Colonies of corymbose Acropora spp. were monitored over time to compare recruitment and persistence of coral-dwelling
fishes on hosts that were (a) healthy, (b) severely bleached or (c) dead. (d) Living on bleached corals could make coral reef fish

recruits more visually conspicuous to predators
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at the end of the study no gobies remained on colonies
that died from bleaching (Fig. 3).

Effect of coral bleaching on settlement of
Pomacentrus moluccensis

There was no difference in the number of Pomacen-
trus moluccensis settling on healthy and severely
bleached coral colonies (ANOVA: F1,37 = 0.350, p =
0.558). During a settlement pulse, both healthy and
bleached host corals received an average of 4 to 5 set-
tlers per coral, and persistence of these settlers did not
differ between healthy and bleached colonies over the
next month (Fig. 4).

Effect of coral bleaching and mortality on post-
settlement persistence of recruits

All healthy colonies remained unbleached with no
partial mortality throughout the 4 wk study and all the
colonies categorised as dead had lost 100% of their live
tissue by the time of the second census. The bleached
colonies remained bleached throughout the study,
although most showed signs of recovery by the end of
the fourth week. These bleached host colonies had a
low incidence of partial mortality, with only 3 colonies
experiencing 15 to 30% tissue loss. The abundance of
Pomacentrus moluccensis recruits declined steadily
over time on host corals in all 3 degradation categories
and consequently there was no significant difference
in the mean density of recruits remaining on healthy,
bleached or dead corals after 4 wk (ANOVA: F3,64 =
2.25, p = 0.113). However, significantly fewer dead
colonies retained recruits compared to bleached
(Fisher’s exact: p = 0.043) and healthy (Fisher’s exact:
p = 0.024) colonies, although there was no difference in
recruit retention between bleached and healthy
colonies (Fisher’s exact: p = 0.423). Only 2 of the 15
dead colonies had recruits after 3 wk and abundance
on those 2 colonies continued to decline during the
fourth week. In contrast, recruits persisted to the end of
the study on approximately half of both bleached (n =
22) and healthy (n = 30) colonies and declines in abun-
dance on these colonies appeared to stabilise by the
third week (Fig. 5). Although recruits of other species
did settle on some of the experimental corals during
the study, the presence of these recruits was rare com-
pared to the numerically dominant P. moluccensis
recruits, and therefore assumed not to strongly influ-
ence the persistence patterns observed.
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DISCUSSION

Despite the increasing prevalence of coral bleaching
on reefs worldwide, the present study is one of the first
to directly examine the effects of bleaching on the
associated fish community. This was possible because
we monitored fish settlement patterns and abundance
during a natural bleaching event. Our results suggest
that recruitment and persistence of specialised coral-
dwelling fishes is resistant to this level of disturbance,
provided it does not progress to coral death. Habitat
bleaching in itself did not negatively affect settlement
patterns or post-settlement survival of recruits and had
minimal effects on persistence of adult resident fishes.
In contrast, host-colony mortality ultimately led to
lower abundance of recruits and caused all adult fish to
disappear from their host colonies.

Although several monitoring studies have docu-
mented significant declines in the abundance of coral-
dwelling fishes shortly after bleaching (e.g. Lindahl et
al. 2001, Bellwood et al. 2006), it was previously
unclear at what stage between bleaching and coral
mortality these effects occurred. The results of the pre-
sent study indicate that bleaching itself is not likely to
be the cause of these declines and if corals bleach and
recover it should have minimal effects on numerical
processes (e.g. recruitment, mortality and movement)
in the associated reef fish community. However, if
corals suffer widespread mortality following bleaching
the loss of live coral tissue will have rapid negative
effects on persistence of both recruit and adult coral
associated fishes. These effects of live tissue loss were
evident well before the structural erosion of the habi-
tat, providing further support for an emerging view

that live coral tissue itself is an important resource for
many coral-specialised reef fishes (Booth & Beretta
2002, Wilson et al. 2006, Feary et al. 2007b, Holbrook
et al. 2008).

The similarity in the number of Pomacentrus moluc-
censis settlers arriving at healthy and severely
bleached corals indicates that bleaching does not dis-
rupt settlement cues. Although P. moluccensis demon-
strate a strong preference for live coral as settlement
habitat and avoid settling into dead, algal-covered
colonies (Öhman et al. 1998), settlers did not avoid
corals that showed signs of stress due to bleaching.
After settlement, declines in abundance of recruits on
all colony types was expected because predation mor-
tality at this life-history stage is exceptionally high
(Almany & Webster 2006). Less expected was that the
persistence trajectories of P. moluccensis recruits living
on healthy and severely bleached colonies would be so
similar. In order to explain why live coral tissue is such
an important resource for reef fishes, Wilson et al.
(2006) hypothesised that coral tissue may provide cam-
ouflage to fish living in close association to corals. If
this is the case, bleaching would remove this attribute
of the habitat and make recruits more conspicuous to
predators. The present study provided a first test of
that prediction under natural conditions, and the very
similar persistence of recruits on both healthy colourful
host corals and those with bleached white tissue sug-
gests that pigmentation of host corals does not affect
overall survival of recruits, at least for P. moluccensis.
However, there could be more subtle effects of this
type of habitat change, such as changes to predator
and recruit behaviour in association with bleached
corals, which warrant future study.

Settlement is a major population bottleneck in coral-
reef fish communities and the widespread reliance on
live coral as settlement habitat makes these communi-
ties particularly vulnerable to disturbances that affect
live coral (Jones et al. 2004, Wilson et al. 2008). How-
ever, the observation that settlement and early post-
settlement survival is not negatively affected by habi-
tat bleaching lends support to emerging evidence that
replenishment of coral-reef fish communities is resis-
tant to at least the early stages of coral degradation.
The species richness of fish colonising experimental
plots in Moorea was largely resistant to changes in
coral cover and only declined sharply when the cover
of live coral was <10% (Holbrook et al. 2008). Simi-
larly, in laboratory choice experiments, Feary et al.
(2007b) found that many settlement-stage reef fish,
including Pomacentrus moluccensis, would settle into
both healthy live corals and those degraded by up to
75% partial mortality. However, even fish that associ-
ate with dead habitats as adults avoided settling into
totally dead, algal-covered colonies (Feary et al.
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2007b). Furthermore, in the present study, significantly
fewer dead colonies retained recruits compared with
those that did not bleach, or bleached but did not die.
Consequently, total colony mortality appears to be the
tipping point at which the habitat becomes un-
favourable to coral-associated fishes.

If dead corals are unsuitable as settlement habitat,
why were we able to find some settlers living on dead
host corals? It may be that when many corals in an area
are bleached and dying, priority effects and competi-
tion for the few remaining healthy colonies forces infe-
rior competitors to use degraded habitats. Competition
for microhabitats among recent settlers can be intense
(Bonin et al. 2009), and early post-settlement survival
for Pomacentrus moluccensis decreases with increas-
ing group size on a colony (Brunton & Booth 2003).
Using a less crowded, lower-quality habitat is likely
to be a short-term solution to avoid competition when
high-quality habitat is in short supply. However, this
strategy does not seem to be effective in the long
run given the ultimately lower persistence on dead
colonies.

The response of adult resident fishes to host coral
bleaching and mortality paralleled that of recruits.
Goby persistence was largely resistant to habitat
degradation from bleaching and partial mortality, with
some pairs not vacating severely bleached colonies
until 50 to 90% of the live coral tissue had died. Like
recruits, small-bodied gobies face a high risk of preda-
tion when moving away from shelter, so migration is
only likely over relatively short distances. For both
Gobiodon histro and G. quinquestrigatus, successful
re-location depends upon suitable coral habitat being
within 3 m of their original host colony (Feary 2007).
The risk involved in re-location is further compounded
by the fact that if preferred host corals are not avail-
able nearby, gobies will be forced to take up residence
in alternative habitats where they can suffer substan-
tial reductions in growth and survival (Munday 2001).
This high degree of habitat specialisation may help to
explain the unwillingness of these live-coral symbionts
to vacate host corals even when they suffer substantial
degradation. The lack of a bleaching effect on the
abundance of coral-dwelling gobies contrasts with the
response to host-coral bleaching in another live-coral
symbiont, the trapezid crab. These crabs feed primarily
on the mucus produced by their host corals, and
bleaching to the coral on which they feed will signifi-
cantly reduce their body condition (Glynn et al. 1985).
Perhaps as a result of this strong dependence on coral
mucus as a food source, Iglesias-Prieto et al. (2003)
observed a decline in the density of Trapezia ferrug-
inea living in bleached corals compared to healthy,
unaffected corals during the 1997–1998 El Niño South-
ern Oscillation (ENSO) event in the southern Gulf of

California. Although the diet of Gobiodon spp. does
include coral tissue, they also feed on zooplankton
(Patton 1994), and this greater flexibility in diet may
allow gobies to persist on bleached host corals when
crabs cannot. However, there may be sub-lethal conse-
quences for fishes that inhabit and feed on degraded
host colonies, and this is an important area for future
research (see Feary et al. 2009).

Although reef fish communities do appear to be
resistant to considerable degradation to live coral, the
fact that fish will settle into or use degraded patches of
suitable habitat should not be taken as a safeguard
against predicted changes to coral habitats as a result
of climate change. Corals with branching growth forms
are highly susceptible to bleaching, and coral commu-
nities that suffer recurrent bleaching may lose the
structural complexity necessary to support diverse reef
fish communities. For species with a strong depen-
dence on live branching coral, adaptation to habitat
degradation is unlikely (Munday et al. 2008) and there
are already indications that the risk of extinction from
habitat loss is real (Munday 2004). Finally, although
habitat bleaching does not appear to affect the imme-
diate survival of coral-dwelling fishes, future research
is required to determine if there are sub-lethal effects
of living in degraded habitats.
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