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INTRODUCTION

Conservation scientists and resource managers may
be able to improve delphinid distribution and abun-
dance estimates by developing quantitative predictive
habitat models that relate the abundance or distribu-
tion of these marine predators to the distribution of

their prey and the underlying physical oceanography
(Redfern et al. 2006). Most quantitative cetacean habi-
tat models have been built from ship-based and aerial-
based visual survey data (Forney 2000, Ferguson et al.
2006, Becker 2007). These visual surveys are capable
of covering large spatial areas, but are limited in their
temporal coverage due to survey platform, personnel
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and cost constraints. The inability to sample during
night and rough weather conditions may affect the
accuracy or precision of resulting models. Additionally,
visual survey data are limited to times when cetaceans
are conspicuous at the surface. Models based on these
data may not represent ‘prime’ habitat (i.e. habitat that
is important to feeding or breeding, and hence the
animals’ overall fitness) if the animals are more easily
observed when resting or transiting to such key areas
(Hamazaki 2002). Alternate sampling methods, such as
passive acoustic monitoring, may provide a better
representation of cetacean presence and activity in
prime habitats and thereby improve model accuracy
and precision.

The accuracy and precision of habitat models is also
dependent on the environmental data upon which they
are built. Habitat models developed for predictive pur-
poses should include environmental variables that are
easily accessible and available across regions and
times of interest (Hamazaki 2002, Becker 2007), such
as remotely sensed sea surface temperature, chloro-
phyll, and altimetry data, upwelling indices, and
bathymetric descriptors. While increased delphinid
occurrence may result from increased prey abundance
related to biological and physical oceanographic con-
ditions (Jaquet & Whitehead 1996, Fiedler et al. 1998),
measures of prey abundance are not readily attainable
and oceanographic conditions are often used as prox-
ies. The relationship between delphinid occurrence
and oceanographic variables, such as sea surface
temperature, upwelling and phytoplankton abun-
dance, may include a time lag depending on whether
zooplankton blooms are created by successional or
aggregational mechanisms (Jaquet 1996, Gregr &
Trites 2001, Croll et al. 2005). For successional zoo-
plankton blooms, a lag time may be as great as 4 mo
between initial physical oceanographic conditions,
phytoplankton bloom development, zooplankton
bloom development and the aggregation of fish, squid
and dolphins (Vinogradov 1981). Conversely, aggrega-
tional zooplankton blooms, such as those found at con-
vergence zones where downwelling aggregates buoy-
ant organisms, are related to current oceanographic
conditions (Gregr & Trites 2001). This mechanistic dif-
ference in zooplankton bloom development may bias
the successful dolphin habitat models based on con-
temporaneous (zero-lagged) remotely sensed data
toward those that describe or quantify aggregational
systems.

The development of habitat models that include
acoustic delphinid survey data and time-lagged envi-
ronmental variables may improve their predictive
power. Autonomous, fixed-sensor, passive acoustic-
based surveys offer a technique to assess dolphin
occurrence over long periods, in remote locations, dur-

ing adverse weather conditions and during nighttime
periods. Recent spectral analysis of Risso’s dolphin
(Grampus griseus) and Pacific white-sided dolphin
(Lagenorhynchus obliquidens) echolocation clicks off
southern California revealed the existence of species
and possibly sub-species click types (Soldevilla et al.
2008) that can be used to examine their occurrence in
autonomous acoustic data. Sampling delphinid echo-
location clicks, which are produced most frequently
during foraging activities (Norris et al. 1994, Barrett-
Lennard et al. 1996, Van Parijs & Corkeron 2001,
Nowacek 2005), also increases the likelihood that
models represent prime foraging habitat. While these
methods excel at temporal coverage, fixed-sensors
placed at multiple sites can be sampled to increase
spatial coverage. Finally, the inclusion of temporal lags
to environmental data in habitat models may improve
predictive power and lead to hypotheses about the
mechanisms causing prey aggregation.

This study investigates the utility of incorporating
time-lagged oceanographic data into predictive habi-
tat models of dolphin acoustic occurrence. Habitat
models are built within a generalized additive model
(GAM) framework and incorporate autonomously
recorded echolocation click occurrence with remotely
sensed oceanographic variables, upwelling indices,
and solar and lunar temporal indices. GAMs offer a
flexible regression technique for modeling the impor-
tance of environmental correlates for habitat predic-
tion (Hastie & Tibshirani 1990) and are commonly uti-
lized in studies of marine habitat. Forward-backward
selection and cross-validation methods are employed
to select models with the best predictive power. We
investigate the hypotheses that (1) the inclusion of
readily available oceanographic predictor variables
results in models with better ability to predict dolphin
occurrence than the null model in which predictor
variables are absent and (2) the inclusion of time-
lagged predictor variables results in models with bet-
ter predictive abilities than those built on zero-lagged
data.

MATERIALS AND METHODS

Study area and animals. The Southern California
Bight (SCB) (Fig. 1) is a highly productive upwelling
region characterized by 3 environmental features:
(1) the California Current, an equatorward flowing
eastern boundary current (Reid et al. 1958, Wooster &
Jones 1970); (2) the Southern California Eddy, a large
counterclockwise gyre within the bight (Reid et al.
1958, Hickey 1979); and (3) complex bathymetry
including high islands and banks, and low troughs and
basins (Shepard & Emery 1941, Emery 1960) that lead
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to formation of mesoscale (50 to 200 km) and sub-
mesoscale (1 to 50 km) eddies throughout the bight
(Kolpack 1971, Brink & Muench 1986, DiGiacomo &
Holt 2001, Caldeira et al. 2005).

Risso’s dolphins are relatively large, tropical to
temperate odontocetes that feed nearly exclusively on
cephalopods (Leatherwood et al. 1980, Clarke & Pas-
coe 1985, Clarke 1996). Pacific white-sided dolphins, a
cold-temperate pelagic species endemic to the North
Pacific Ocean (Leatherwood et al. 1984, Barlow & For-
ney 2007), forage opportunistically on epipelagic and
mesopelagic schooling fishes and cephalopods (Brown
& Norris 1956, Fitch & Brownell 1968, Stroud et al.
1981, Walker et al. 1986). Both Risso’s and Pacific
white-sided dolphins exhibit high seasonal and inter-
annual variability in occurrence and distribution off
southern California (Green et al. 1992, Shane 1994,
Forney & Barlow 1998, Kruse et al. 1999, Benson et al.
2002, Barlow & Forney 2007). Risso’s dolphin habitat
around the world is characterized by steep bathymetry
and warm waters (Dohl et al. 1983, Green et al. 1992,
Baumgartner 1997, Baumgartner et al. 2001), whereas
Pacific white-sided dolphin habitat is characterized by
cool waters near the shelf-break (Benson et al. 2002,
Yen et al. 2004, Becker 2007). Off southern California,
Risso’s dolphins produce one species-specific click
type with distinct spectral patterns, while Pacific

white-sided dolphins produce 2 spectrally
distinct click types, denoted types PWS A
and PWS B (Soldevilla et al. 2008, 2010a,b).
Spatial and temporal trends in PWS A and
PWS B click occurrence support the
hypothesis that these click types respec-
tively represent the morphologically and
genetically distinct northern and southern
populations that overlap in the SCB
(Walker et al. 1986, Lux et al. 1997, Soldev-
illa et al. 2010b).

Acoustic data. Acoustic data collection
and click detection methods have been
described previously (Soldevilla et al.
2008, 2010a,b). Briefly, echolocation clicks
of 3 types (Risso’s, PWS A and PWS B) were
detected in time series of 1 to 4 mo dura-
tion from 30 autonomous High-frequency
Acoustic Recording Package (HARP) de-
ployments at 6 SCB locations between
August 2005 and December 2007 (Fig. 1).
To quantify important dolphin habitat
while reducing the autocorrelation inher-
ent in time-series data, the duration that
dolphins spend echolocating at each site
per week is used as a dependant variable
in habitat models. For each click type,
hourly click bout occurrence was summed

to obtain the total hours per week with acoustic detec-
tions. Echolocation clicks of medium-sized odontocetes
may be detectable up to 9 km for on-axis orientations
(Ward et al. 2009), though 4 to 5 km may be a more
reasonable detection estimate given variability in ani-
mal orientations (Marques et al. 2009). Therefore, the
temporal and spatial resolutions of the dependant vari-
able are 1 wk and approximately a 5 km radius,
respectively.

Temporal coverage at the 6 sites is variable due to
instrument servicing ship time constraints, occasional
instrument failures, and recording sampling schedules
(Fig. 2). Two-thirds of the available acoustic data were
sampled continuously, while the remaining data were
recorded on a sampling schedule of 5 min ‘on’ and
either 5, 10, or 15 min ‘off’ for a given deployment.
Scheduled recording may decrease the probability of
detecting calling bouts. Therefore, the detection prob-
abilities were estimated for the 3 sampling schedules
by subsampling continuous data as follows. For each
hour of 23609 h of continuous data, 60 permutations,
starting at each minute of the hour, were conducted
with 5 min sampled followed by X min omitted (where
X = 5, 10 or 15 min). For each subsampled hour, click
type presence or absence was determined for each of
the 60 permutations and the hourly probability of
detection was calculated as the mean of the 60 permu-
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tations. Hourly probabilities were averaged across all
hours and sites to obtain a single detection probability
for each click type at each sample level. Site-specific
detection probabilities were not utilized due to low
sample sizes at some sites; detection probabilities did
not differ significantly between sites.

Environmental data. Lunar cycles (US Naval Ob-
servatory, http://aa.usno.navy.mil), upwelling indices
(Pacific Fisheries Environmental Laboratory, www.pfeg.
noaa.gov/products/PFEL/modeled/indices/upwelling/
upwelling.html), and remotely sensed satellite data
(M. Kahru, Scripps Institution of Oceanography, http://
spg.ucsd.edu/Satellite_Data/California_Current/) were
readily accessible from internet databases for use as
predictor variables. A weekly solar index, included to
account for seasonal effects, numbered weeks sequen-
tially from 1 to 52 starting with the first day of the year.
Nighttime lunar duration, a continuous proxy for lunar
phase, was calculated as the duration that the moon
was above the horizon while the sun was below the
horizon each week. The daily coastal upwelling index,
an index of the strength of the wind forcing on the
ocean, was available as a single value for the entire
SCB, representing the average upwelling over a 3° × 3°
(333 × 333 km) region centered at 33° N and 119° W.
Daily upwelling indices were averaged over 7 d peri-
ods. Seven day composites of sea surface temperature
(SST) and chlorophyll concentration (chl) at 1 km2 res-
olution provide fine spatial and temporal resolution of
oceanographic variation while minimizing missing
data caused by cloud coverage (e.g. Becker 2007).
Using WIM & WAM software (www.wimsoft.com),
spatially averaged mean SST and chl time series were
obtained for an area defined by a 20 km radius
centered around each of the 6 HARP sites. Output sta-
tistics from wam_statist for each area included total
number of 1 km2 pixels, number of pixels with valid
data, mean value of pixels, and standard deviation of
pixel values. Weekly samples with less than 5% valid
data due to cloud cover were omitted to prevent use of

non-representative data. Coefficients of variation
(CVs) in the spatial domain were calculated from the
WAM output statistics for both SST and chl as proxies
for temperature and productivity fronts (e.g. Becker
2007). Mean SST and chl are highly correlated as a
result of increased productivity associated with cold,
nutrient-rich upwelled waters. Predictor variables in a
GAM model should be independent and orthogonal
(Hastie & Tibshirani 1990). To prevent the model from
fitting correlated predictor variables, log10chl was
regressed against SST and residual log10chl values
were included in the model terms instead.

Habitat model analysis. The relationships between
dolphin acoustic activity and environmental variables
were investigated within a GAM framework (Hastie &
Tibshirani 1990). The GAM, a nonparametric exten-
sion of the generalized linear model, may be repre-
sented as

(1)

in which g (μ), the link function, relates functions of 

the additive predictor variables, , to the 

mean of the response variable, μ. The link function
allows specification of alternative distributions for non-
normally distributed response data. Errors of discrete
count data are often well approximated with a Poisson
error distribution, but the typical clumping of behav-
ioral data leads to over-dispersion of errors (McCul-
lagh & Nelder 1999). In this study, the response vari-
able, number of hours per week with click type
present, was modeled as an over-dispersed Poisson
distribution. The right side of the equation is the addi-
tive predictor, which can incorporate nonparametric
forms ƒj (Xj) (such as smoothing splines) in GAMs,
allowing greater flexibility in fitting relationships of
the predictor variables. The predictor variables in-
cluded in this model are: mean SST, residual chl, SST
CV, chl CV, upwelling index, lunar duration, and the
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interaction of week and region (week × region). This
last term was included with a factorial interaction for
region (i.e. north vs. south) due to known differences
in seasonal occupation within the SCB (Soldevilla et
al. 2010a,b). To account for decreased probability of
detection due to incomplete weekly coverage and
sampling schedule, an offset term (α) was included for
each sample to account for (1) number of hours per
week with recordings and (2) the appropriate recipro-
cal of detection probability.

S-Plus 6.0 (Insightful) was used to build and compare
GAM models for each of the 3 click types. Multiple
models were built to compare hypotheses of the effect
of temporal lag in environmental data on the occur-
rence of dolphin clicks. Depending on the mechanisms
of prey aggregation, lag times between environmental
data and the occurrence of dolphins may range from
0 to 16 wk. While it is likely that lag times differ
between environmental variables, inclusion of all pos-
sible lag times for each variable would make the model
selection process unnecessarily complex. Therefore,
we explored a wide breadth of individual models that
were created from environmental data at only 0, 1, 2, 4,
8, and 16 wk time lags. To approximate an over-dis-
persed Poisson distribution for the response variable,
the S-Plus quasi-likelihood distribution was modeled
with a logarithmic link function and variance propor-
tional to the mean. Models were constructed with
options for linear terms and smoothing splines with
less than 3 degrees of freedom. This allowed the flexi-
bility of incorporating non-linear effects while restrict-
ing unrealistic complexity that might be difficult to
interpret ecologically (Forney 2000, Ferguson et al.
2006). S-Plus does not accommodate factorial spline
interaction terms, therefore week was modeled as a
polynomial fit.

To ensure the models contained only significant
terms, model development incorporated the forward/
backward stepwise selection of variables using the S-
Plus function step.gam. Akaike’s Information Criterion
(AIC) was used to determine the best model at each
step of the forward/backward selection process. To
improve estimation of the dispersion parameter and
allow selection of higher order spline fits when appro-
priate, stepwise selection of variables occurred twice
for each model, following Ferguson et al. (2006). The
first call to the stepwise selection process started with
the null model and included only higher order terms,
while the second call to the selection process began
with the best model from the first call and included
functions with 1 degree of freedom.

Use of AIC can over-fit a model to the data, leading
to lower predictive ability. Therefore, a cross-valida-
tion approach was used to assess the predictive power
of a number of models. Studies that incorporate spa-

tially rich surveys over several years typically assess
predictive power through a cross validation approach
in which survey data from a single year is omitted and
the model is tested on this novel dataset (e.g. Forney
2000, Hastie et al. 2005, Ferguson et al. 2006, Becker
2007). In contrast, this study is temporally rich at sev-
eral sites, so a cross-validation approach was used in
which contiguous blocks of time from individual sites
comprised the out-set for model testing. Removal of a
large block of related data (e.g. from 1 year or 1 site)
would result in stronger tests than removal of ran-
domly selected samples. However, Soldevilla et al.
(2010a,b) found site-specific and seasonal differences
in dolphin occurrences. Given the uneven sampling
effort across sites, exclusion of seasons or years of data
at a single site from the model-building process may
result in low predictive power of these tests. A compro-
mise was developed in which 20% of the data were
removed as a series of 4 randomly selected smaller
blocks of time from individual sites, ensuring that no
more than 13 consecutive wk at a single site were
removed at a time. In this manner, a cross-validation
approach that used 80% of the data to develop models
and removed 20% of the data for use in evaluation was
implemented. Therefore, for each click type, the step-
wise building procedure was performed on 5 datasets,
i.e. combinations of data with a different 20% of the
data left out, which resulted in 5 best models. The best
of these 5 models was selected by comparing cross-
validation performance using predict.gam and selecting
the model with the lowest average squared prediction
errors (ASPEs) on its novel evaluation data.

Time series of delphinid occurrence and envi-
ronmental data included in the habitat models are
available online; see supplement at www.int-res.com/
articles/suppl/m423p247_supp.pdf.

RESULTS

HARP recordings contained 251 week-long samples
from deployments at 6 sites in the SCB. Of these
251 samples, Risso’s dolphin, PWS A and PWS B clicks
were detected in 101, 71, and 30 wk, respectively. Over
80% of the weeks contained complete recordings with
168 h, and all weeks contained at least 6 full days
(144 h) of recorded time. The maximum hours per
week containing Risso’s dolphin and PWS A and PWS
B clicks were 84, 54, and 98 h, respectively, while
mean hours per week with click detections were 12.4,
4.4 and 2.1 h, respectively. Detection probabilities
ranged between 0.830 and 0.972 for the 3 click types
and 3 sampling schedules (Table 1).

Of the best Risso’s dolphin models for the 5 cross-val-
idation datasets, 2 and 4 wk lagged models were
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selected for 2 and 3 datasets, respectively (Table 2).
The consistency of predictor variable selection across
models can indicate their importance as habitat predic-

tors. The most important predictors were mean SST
(100% of models) and SST CV (80%). Chl variables
(40%) and the week × region interaction (40%) were
moderately important, while moon duration (20%) and
upwelling (0%) were rarely included. The model with
the best predictive power on the novel evaluation data
included the 4 wk lagged oceanographic data with 3 df
spline fits to residual chl and mean SST and 1 df linear
fits to the CVs of both chl and SST (Table 2, Fig. 3).
Positive relationships exist between the number of
hours with clicks present per week and mean SST, log
chl residual and chl CV, while a negative relationship
is present for SST CV. The spline fit for log chl residual
exhibits a slight dip around –2, while the spline fit for
mean SST reaches a maximum around 20°C before
leveling out. The final model explained 47% of the
deviance (a likelihood-based goodness-of-fit measure).
A comparison of the observed and predicted hours
with detections illustrates the goodness of fit and pre-
dictive power (Fig. 4A). The correlation between ob-
served and predicted hours is positive (Fig. 4D) in-
dicating the model goodness of fit, though a lot of
variability remains to be explained.
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Table 2. Terms included in best models. The best models are presented for each of the 5 cross-validation datasets of each click
type. Null and final Akaike’s Information Criterion (AIC) values are presented from the training data and average squared pre-
diction error (ASPE) values are presented from the test data. The dataset with the best predictive model for each click type is rep-
resented by bold typeset. Lag times indicate which week model was chosen as the best for each cross-validation model. Environ-
mental variables that were included in the model are indicated and represent the best fit that was chosen followed by the selected
degrees of freedom (L = linear, p = polynomial, s = spline). The inclusion of the interaction term of region (north or south) by week
is indicated by N. No interaction term was included for Pacific white-sided type (PWS) B as they were only detected at the south-
ern sites. Terms that were not included in the best models are indicated by a dash. The percent of models that included each
environmental variable is presented to indicate the importance of that variable across different cross-validation datasets. Vari-
ables included in more models are likely to be important indicators of dolphin occurrence. SST = sea surface temperature; 

chl = chlorophyll; resid = residual; CV = coefficient of variation

Null Final ASPE Lag Upwelling Moon Chl Chl SST SST Region
AIC AIC duration resid CV mean CV × week

Risso’s dolphin
Dataset 1 3640.2 2563.7 190.1 4 – – – – s3 L –
Dataset 2 4131.1 2470.9 169.4 4 – – s3 L s3 L –
Dataset 3 3623.2 2464.9 393.0 4 – s2 – – s3 – Np3
Dataset 4 3848.5 2776.5 414.5 2 – – s3 s2 L s2 NL
Dataset 5 4132.8 2706.1 208.9 2 – – L – s2 s2 –
Models including term (%) 0 20 60 40 100 80 40

PWS A
Dataset 1 2302.3 1682.1 187.0 2 s3 – – – – s3 Np2
Dataset 2 2265.6 1743.9 130.4 4 – – L L L s3 Np3
Dataset 3 2571.0 2004.6 51.6 16 s3 – – – – – Np2
Dataset 4 2510.7 2109.0 18.8 4 – – – – L s3 Np2
Dataset 5 2230.4 1285.1 174.3 16 – s3 L – L – Np2
Models including term (%) 40 20 40 20 60 60 100

PWS B
Dataset 1 942.9 367.1 500.3 8 s3 – – – – s3 p2
Dataset 2 2479.0 563.1 5.4 0 s3 – – – s3 s3 p2
Dataset 3 2427.9 695.8 5.6 1 s3 s2 – – s3 s3 p2
Dataset 4 2493.9 529.5 111.0 16 – L L – L s3 L
Dataset 5 2294.6 507.2 30.6 16 – L s3 – L s3 p2
Models including term (%) 60 60 40 0 80 100 100

Table 1. Grampus griseus and Lagenorhynchus obliquidens.
Mean detection probabilities (± SD) and correction factors for
3 click types and 3 sub-sampling scenarios based on sub-
sampling of continuous High-frequency Acoustic Recording
Package (HARP) data. Correction factors (i.e. the inverse of
detection probability) are included as an offset in habitat
models. The sub-sampling duration indicates the non-record-
ing duration between 5 min recordings for 5, 10, and 15 min

‘off’ sampling schedules. PWS = Pacific white-sided

Duration Risso’s PWS A PWS B
off (min)

Detection probability
5 0.968 (0.002) 0.945 (0.003) 0.972 (0.005)
10 0.927 (0.003) 0.888 (0.005) 0.930 (0.007)
15 0.882 (0.003) 0.830 (0.006) 0.883 (0.008)

Correction factor
5 1.033 1.058 1.028
10 1.079 1.126 1.075
15 1.134 1.205 1.133
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Of the 5 best PWS A click models, the 2, 4 and 16 wk
lagged models were selected for 1, 2, and 2 datasets,
respectively (Table 2). The week × region interaction
(100%) and both SST variables (60%) were selected
more often than chl residual (40%), upwelling (40%),
moon duration (20%) and chl CV (20%). The model
with the best predictive power on the novel evaluation
data incorporated the 4 wk lagged data with a 1 df
linear term for mean SST, a 3 df spline fit for SST CV
and a 2 df polynomial fit to the week × region inter-
action (Table 2, Fig. 5). The relationships between
number of hours with PWS A clicks and SST variables
were generally negative, and the SST CV relationship
exhibited wide confidence intervals due to low sample
size at higher values. Hours per week with detections
peaked during the summer in northern regions and
during the fall through winter in the southern regions.

The final model had a relatively poor fit to the data the
model was built upon, explaining 24% of the model
deviance (Fig. 4B). A slight positive correlation be-
tween observed and predicted hours was evident and
suggests that most of the variability remains to be
explained (Fig. 4E).

PWS B models had the least consistency in temporal
lag selection: 0 (current conditions), 1, 8, and 16 wk lag
models were selected for 1, 1, 1 and 2 datasets re-
spectively (Table 2). There was greater consistency in
variable selection across models. The most important
variables were SST CV (100%) and week × region
interaction (100%), and mean SST (80%) while up-
welling (60%), moon duration (60%), chl residual
(40%), and chl CV (0%) were selected less often. The
model with the best predictive power on novel data
incorporated the 0 wk lagged oceanographic data with
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3 df spline fits for upwelling, mean SST, and SST CV
and a 2 df polynomial fit to the week × region interac-
tion (Table 2, Fig. 6). Number of hours with PWS B
clicks peaked at a mean SST of 18°C and fell off
rapidly at lower temperatures. A positive relationship
between click hours and upwelling is suggested, with
a leveling off at high values (>150 m3 s–1). The relation-
ship between hours with PWS B detections and SST
CV was generally negative and exhibited wide confi-
dence intervals due to low sample size at higher val-
ues, suggesting it should be interpreted with caution.
PWS B clicks were only heard at southern sites where
there are low detections during summer and a seasonal
peak in late fall to early winter. The final model
explained 82% of the deviance (Fig. 4C). The positive
correlation between observed and predicted hours
approaches 1:1 (Fig. 4F), illustrating the high predic-
tive power of this model.

DISCUSSION

The present study is one of the first to use passive
acoustic monitoring data to model delphinid habitat
(e.g. Hastie et al. 2005, Skov & Thomsen 2008). Strong
relationships are found between delphinid acoustic
activity and dynamic environmental features on a long-
term and fine-scale temporal resolution that is not feasi-
ble with visual monitoring. In particular, mean SST and
low SST spatial variability (SST CV) were important
predictors of acoustic activity for all 3 delphinid groups,
seasonal variability proved to be an important predictor
for both Pacific white-sided dolphin groups, and chloro-
phyll abundance and variability were important for
Risso’s dolphins. Defining the response variable as a
function of echolocation clicks, which are produced
most often during foraging (Norris et al. 1994), in-
creases the likelihood that models incorporating these
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environmental features represent foraging habitat. By
understanding the relationship to dynamic features,
models can provide better predictive power and allow
investigation into the mechanisms causing changes in
delphinid distribution and abundance.

The incorporation of time-lagged environmental data
in acoustic-based habitat models can provide insight
into the oceanographic aggregating mechanisms of
different dolphin prey types. Dolphin response to cur-
rent conditions at a fixed location would indicate an
advanced ecosystem containing aggregations of higher
trophic levels that attract dolphin prey, as found in
downwelling convergence zones or eddies that are
moving past the location. Conversely, a time lag be-
tween environmental conditions and dolphin occurrence
would indicate time for successional processes, as

higher trophic levels develop and support delphinid
prey, as found in coastal upwelling and eddy forma-
tion. The best model of PWS B clicks included environ-
mental data at the current time, suggesting foraging on
prey that aggregate at fronts or convergence zones,
while the best models of Risso’s dolphin and PWS A
clicks included environmental data at a 4 wk time lag,
suggesting foraging on prey that respond to succes-
sional processes following events such as upwelling.
The combination of a 4 wk lag in low spatial variability
in temperature (SST CV) and high chl seems counter-
intuitive, but may represent the need for calm relax-
ation periods following upwelling for water stratifica-
tion and phytoplankton bloom development (Hunts-
man & Barber 1977, Jones & Halpern 1981) that lead to
abundant food for the higher trophic level prey (Lasker
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1975, 1978) of Risso’s and Pacific white-sided dolphins.
This hypothesis requires that these productive waters
remain in a fixed location over time (e.g. Vinogradov
1981), and it is unknown if this is a reasonable assump-
tion in this region. An alternative hypothesis for the
4 wk time lag is that prey aggregations may be moving
with periodic features found in the SCB. For example,
high amplitude current fluctuations, which may be
attributable to eddy advection or coastally trapped
waves, exhibit 20 to 30 d periodicity at SCB basins
(Hendricks 1977, Hickey 1992).

The modeled relationships between dolphin acoustic
activity and environmental variables are reasonable
when compared with what is known about the ecology
of each group. The models suggest Risso’s dolphins
prefer warmer waters, peaking at 20°C and above,
while PWS B peak in moderate waters around 18°C
and PWS A prefer cooler waters. Similarly, Risso’s dol-

phins have been observed inhabiting warm-temperate
waters (Kruse 1989, Tynan 1997, Benson et al. 2002)
and expanding their range north during extended
warm periods (Leatherwood et al. 1980), while studies
of northern Pacific white-sided dolphins indicate pref-
erence for cooler waters (Benson et al. 2002, Becker
2007). The temperature difference between the 2
Pacific white-sided dolphin types reflects the southerly
and northerly distribution of their echolocation activity
and possibly population ranges (Soldevilla et al. 2010b).
Additionally, the seasonal variability described by Sol-
devilla et al. (2010b) was incorporated into the models.
A positive relationship to the upwelling index was an
important predictor for PWS B click detections, which
seems counter-intuitive given the negative relation-
ship to SST CV. This discrepancy may be a result of the
use of local data for SST CV compared to regional val-
ues general to the entire SCB for the upwelling index,
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or it may be a result of the high uncertainty in the
relationship to SST CV at higher values. The regional
upwelling index may reflect basin-wide oceano-
graphic changes that support movements up from Baja
California, Mexico. Local upwelling indices, which can
provide important information about prey aggregating
mechanisms, may be important for all dolphins and
should be considered in future models.

The explained deviance for the best models of the
3 dolphin groups spanned a wide range, with values of
24, 47, and 82% for PWS A, Risso’s, and PWS B,
respectively. These explained deviances are generally
an improvement over those found in visual survey
habitat studies of a variety of species, which range
between 1 and 43% (Ferguson 2005, Becker 2007).
The moderate to high explained deviances found in
this study may indicate that the models include some of
the most important variables needed to explain dol-
phin echolocation activity, while lower fits indicate that
other data, such as measures of prey abundance, or dif-
ferent time lags may be important. Additionally, the
better fit of these spatio-temporal models compared to
spatial visual survey models may indicate that tempo-
ral variation, such as seasonality, is inherently more
predictable than spatial variability. It is interesting to
note that quality of fit appears to be site-specific for
Risso’s and PWS A models (Fig. 4). An examination of
additional explanatory variables including bathymet-
ric differences or additional oceanographic differences
between the sites that affect prey distribution or the
occurrence of predators or competitors as well as
increased site coverage in the region may improve
explanatory power of models in this region.

While explained deviances of these models are mod-
erate to high, the variability among the 3 groups may
reflect differences in the portion of the dolphins’ range
that is covered by this study, in the life history of the
animals, or in the quantity or quality of data compared
to the complexity of habitat to be modeled. The study
area includes the northern extent of the PWS B group
range, and the high fit may reflect the incorporation of
both prime habitat and non-habitat into the model,
while PWS A is heard throughout and beyond the
study area so that the entire area represents viable
habitat only which may be more difficult to precisely
model. Similarly, dolphins may not occur in the study
area when environmental conditions are good because
they are inhabiting areas outside the study area where
conditions are better, resulting in lower observed
occurrences than predicted. For these reasons, future
studies should extend the spatial range of the study
area to include more of, and extend beyond, the
dolphins’ known ranges. Differences in model ex-
planatory power may reflect differences in prey prefer-
ences, as suggested by Soldevilla et al. (2010b) for

Pacific white-sided dolphin types based on differences
in diel activity and spatial occurrence. Pacific white-
sided dolphins are opportunistic foragers on variable
prey types. It is possible that PWS B represents a pop-
ulation adapted toward a specialist approach to forag-
ing while PWS A represents a generalist approach
and therefore multiple habitat preferences to model.
Complex habitat models require larger sample sizes
(Becker 2007), so more data may be needed to improve
PWS A models. Finally, it is possible that the especially
high explained deviance for PWS B is a byproduct of
the generally low number of observed detections for
this dolphin group such that the model could always
predict low values. In the case of the best PWS B
model, the training data included high and low
observed detections, while the test set had only low
observed detections. However, the remaining models
which included test sets with more variability in ob-
served detections include similar variables supporting
the validity of the best model.

An important caveat to predictive modeling is that
the statistical significance of terms included in models
does not necessarily imply the ecological significance
of those variables to the dolphins (Hamazaki 2002).
The predictive models presented in this study provide
insight into ecological relationships that can be used to
develop and test appropriate hypotheses about the
mechanisms behind dolphin occurrence. Gaps in our
mechanistic understanding include knowledge of both
dolphin prey type and prey response to the environ-
ment. Risso’s dolphins are known to feed primarily on
cephalopods (Clarke 1996), and many species of squid
are found off California (Okutani & McGowan 1969,
Roper & Young 1975), though stomach content analy-
ses are available for only 1 Risso’s dolphin stranded off
California almost 50 yr ago (Orr 1966). On the other
hand, Pacific white-sided dolphins are opportunistic
foragers and feed on the most abundant, appropriately
sized prey (Brown & Norris 1956, Fitch & Brownell
1968, Stroud et al. 1981, Walker et al. 1986), so their
prey types likely change over time. Concurrent sam-
pling of dolphins and their prey and comparison of
habitat models of potential prey species (e.g. Schisme-
nou et al. 2008) with dolphin habitat models could help
determine which prey species are most important in
dolphins’ diets during the study period.

Remotely sensed SST and chl data can indicate the
presence of fronts and areas of high productivity; how-
ever, the ecological structure of the regions, including
the specific composition of phytoplankton, zooplank-
ton and fish assemblages, can only be determined
through in situ oceanographic sampling, including
water samples, net tows and multi-frequency acoustic
backscatter. In situ sampling of some properties could
be incorporated into moorings at the HARP location,
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including temperature, salinity, current meters, fluo-
rescence and multi-frequency active acoustics. How-
ever, automated technologies to determine prey species
identity from active acoustics are still under develop-
ment, so concurrent ship-based marine mammal sur-
veys and oceanographic sampling may be a better
venue for exploring mechanisms affecting prey and
dolphin abundance. Concurrent dolphin acoustic and
environmental sampling of this sort would allow finer
resolution of prey field and water properties resulting
in a better indication of water mass and frontal struc-
ture, and allowing mechanistic questions to be asked
when using autonomous acoustic data. Models based
on remotely sensed data remain important for resource
managers who do not have access to in situ oceano-
graphic data in real-time.

This study indicates the importance of temporal vari-
ability in predicting dolphin occurrence. While this
study was limited to incorporating a consistent lag time
for all oceanographic variables in each model, it seems
likely that multiple lag times are important, both
because succession processes might result in abiotic
and biotic variables having different lags, and also
because these dolphin species feed on a variety of
prey, each of which may be responding to features at
different time lags. While this could be examined using
GAM models, inclusion of so many hypothesis tests
can result in Type 1 errors. Numerous methods for
analyzing time series are available and these could
be used to identify a greater variety of temporal
correlations and phase shifts (i.e. lag times) than the
regression models in this study could. Temporal cross-
correlation techniques can incorporate multiple vari-
ables and relate both frequency of occurrence and
phase shifts more easily than the time-lagged GAM
models described here. Unfortunately these tech-
niques were not feasible due to the gaps present in
our time series. Future studies should minimize large
time-series gaps; data with small gaps may be ana-
lyzed using techniques such as ARIMA or Kalman
filtering.

Modeling the occurrence of echolocating dolphins
depends on the ability to detect their click production.
Factors which may affect the likelihood of detecting
calling animals include sound propagation conditions
and acoustic masking. Sound propagation conditions
may vary across sites and seasons leading to spatial
and temporal variability in detection probability; how-
ever, conditions are typically downward refracting in
the SCB across seasons and sites. Examination of click
detection of all species does not indicate a strong bias
for any site or season. Additionally, at the frequencies
used for echolocation, attenuation severely limits
detection range, and therefore the potential for signifi-
cant variation owing to seasonal variations in propaga-

tion conditions is reduced. Vessels, sonars, other ani-
mals, rain, wind and waves may produce sounds that
mask the echolocation clicks of our chosen species so it
is important to consider spatial and temporal variabil-
ity in these sources. Preliminary analyses indicate that
vessel noise is consistent throughout the year at all
sites except Santa Catalina Island where there is an
increase in occurrence during the summer (May to
September), while wind and rain noise within the fre-
quency band of clicks occurs minimally throughout the
year. Future studies should explicitly incorporate met-
rics of ambient noise into habitat models.

The models presented here are based on presence/
absence modeling from fixed passive acoustic sensors
at multiple sites, providing unique insight into the
amount of time animals spend in a given habitat. This
is an important indicator of habitat quality and spatio-
temporal usage patterns that is necessary for man-
agers and planners to determine when and where
cetaceans are likely to be found and how anthro-
pogenic events may impact them. However, to deter-
mine the long-term impacts of events on a population,
predicting the numbers of individuals is also critical,
yet cetacean abundance estimation from passive
acoustic monitoring remains a work in progress (e.g.
Barlow & Taylor 2005, Marques et al. 2009, White-
head 2009) and behavioral variability in sound pro-
duction remains a challenge. At this point, incorporat-
ing the strengths of both visual and acoustic survey
methods offers the best chance for realizing all fea-
tures of habitat importance.

CONCLUSION

Temporal predictive models of cetacean habitat
provide researchers and managers with the ability to
examine how dynamic ocean processes affect the
occurrence of cetaceans in a specific area of interest.
The combination of remotely sensed oceanographic
data and long-term acoustic sampling of acoustically
classifiable cetaceans such as Risso’s and Pacific
white-sided dolphins offer the potential to examine
these temporally changing patterns and understand
the time scales of importance. The models presented
here for Risso’s and Pacific white-sided dolphins indi-
cate that processes occurring as much as 16 wk prior
may explain or predict dolphin occurrence, although
the models with best predictive power were based
on 0 wk and 4 wk lagged oceanographic data. The
ability to predict dolphin occurrence with time-
lagged data is especially pertinent for managers who
wish to minimize the impact of anthropogenic events
by enabling them to plan events several weeks in
advance.
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