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INTRODUCTION

Understanding the influences of environmental
and biological factors on fish abundance, distribu-
tion, population dynamics, and catch has been an
integral objective of fisheries science since the incep-
tion of the field (Smith 1994). Information on these
ecological processes and relationships helps to deter-
mine management actions designed to promote sus-
tainable use of fisheries resources, particularly in an
ecosystem-based fisheries management (EBFM) con-
text (Link 2010). The growing attention to (and even
mandated utilization of) EBFM approaches has fos-

tered renewed appreciation of multispecies and com-
munity-based research within ecosystems. This high-
lights the need for continued research and monitor-
ing to support ecosystem modeling efforts (Latour et
al. 2003, Link 2010). Research linking environmental
and anthropogenic drivers with fish dynamics is par-
ticularly important in estuarine and coastal waters,
where productivity, fishing pressure, and anthropo -
genic stresses are most intense (Longhurst et al.
1995, Jackson et al. 2001, Worm et al. 2009).

Within the United States, Chesapeake Bay is a
model system to study the many factors influencing
fish dynamics in an estuarine environment because
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of its large area, high productivity, well-studied
nature, and long fishing history. The Chesapeake
Bay ecosystem supports a large number of fish spe-
cies and is a critical nursery and foraging habitat for
many migratory fishes (Murdy et al. 1997, Able &
Fahay 2010). As with most estuarine and coastal
environments, the system is influenced by a multi-
tude of stressors that include eutrophication, fishing,
and climate change. Eutrophication has promoted
phytoplankton growth, shifted production from ben-
thic to pelagic habitats, contributed to the growing
hypoxia problems, decreased water clarity, and also
de graded important submerged vegetated habitats
(Nixon 1995, de Leiva Moreno et al. 2000, Kemp et al.
2005). Industrialized exploitation of finfish and shell-
fish since the late 19th century has drastically modi-
fied the fish community and fish habitat, as exempli-
fied by the collapse of and subsequent moratorium
on several fisheries (e.g. American shad, river her-
ring, and At lantic sturgeon), reductions of eastern
oyster populations to ~1% of virgin abundance
(Rothschild et al. 1994, Wilberg et al. 2011), and the
collapse and re covery of striped bass populations
(Richards & Rago 1999). Climate change is predicted
to affect water temperature, CO2 concentrations,
water acidity, sea level, precipitation, and storm
intensity in Chesapeake Bay, with consequences for
the physiological suitability of the bay for species, the
extent of juvenile fish habitats, the quality and timing
of plankton production, and the severity of bottom
hypoxia (Najjar et al. 2010). The various stressors of
the bay combine with natural environmental condi-
tions to structure the occupying fish community in
terms of abundance, distribution, and diversity of
member species. Evaluation of these ecological rela-
tionships and the dynamics of the fish community is
an important component to facilitating EBFM (Link
2010), aiding in the ongoing development of ecosys-
tem models (e.g. Christensen et al. 2009), and pre-
dicting community responses to changes in the
severity of system stressors.

Despite the large research efforts within Chesa-
peake Bay, the majority of studies examining fish
community structure have concentrated on smaller
spatial and temporal scales (e.g. Orth & Heck 1980),
riverine systems (Carmichael et al. 1992, Wagner
1999, Wagner & Austin 1999), or juvenile fishes (Jung
& Houde 2003, Woodland et al. 2012). Only 1 study
focused on bay-wide patterns in species as semblages
and community structure (Jung & Houde 2003); how-
ever, it was restricted to ecological patterns of small
(3 to 26 cm), non-benthic fishes as sampled with a
mid-water trawl. To date, no published study has

quantitatively examined and de scribed the factors
influencing the community structure of the bay’s
benthic and demersal fish fauna at a large spatial
scale, mostly due to the lack of available data. This
monitoring and research gap contributed to the initi-
ation in 2002 of the Chesapeake Bay Multi species
Monitoring and Assessment Program (ChesMMAP),
a large-mesh bottom trawl survey de signed to cap-
ture late juvenile and adult demersal fishes in the
bay. The survey provides critical biological and eco-
logical data in support of ecosystem modeling and
fisheries management (Latour et al. 2003, Bonzek et
al. 2011).

The current study utilized 10 yr of extensive Ches-
MMAP trawl data to examine patterns in the commu-
nity structure of fishes in the mainstem of the bay and
evaluated the role of different environmental, bio -
logi cal, and anthropogenic factors in affecting struc-
tural changes. Several catch and biodiversity metrics
were used to characterize community structure in a
multispecies context. Community metrics were mod-
eled as functions of various explanatory covariates
hypo the sized or documented to influence fish popu-
lations or system dynamics. Dominant species in
Chesapeake Bay were grouped based on life history
characteristics to capture different modes of bay uti-
lization. The specific objectives were to (1) character-
ize spatial and temporal patterns in demersal fish
community structure and aggregate community
 metrics, and (2) relate community structure and met-
rics to physical and biological factors at both smaller
and larger spatio-temporal scales. These analyses
benefit ongoing EBFM and modeling efforts in
Chesapeake Bay by providing basic information on
community ecology, time series of catch-per-unit-
effort (CPUE) trends, simple indicators of ecosystem
status, and a 10 yr frame of reference for evaluating
ongoing community responses to natural and anthro-
pogenic stressors.

MATERIALS AND METHODS

Study area

Chesapeake Bay, located in the mid-Atlantic re -
gion of the east coast of the United States (Fig. 1), is
the largest estuary in the country and one of the
largest in the world (Kemp et al. 2005). Large fresh-
water inputs from the Susquehanna River in the
north and multiple rivers along the western shore
generate an increasing salinity gradient along the
bay’s 320 km length. The bay is relatively shallow,
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with an average depth of 6.5 m (Kemp et al. 2005),
but a deeper, (20 to 30 m) narrow channel runs along
its center north of the Rappahannock River. The
annual temperature range of bay waters (0 to 30°C) is
one of the most extreme of any coastal ecosystem
(Murdy et al. 1997).

Field data

Data for this study were collected by the Ches-
MMAP bottom trawl survey from 2002 to 2011. The
survey operates 5 cruises a year (March, May, July,
September, and November), sampling approximately
80 stations per cruise. Stations were selected based

on a stratified random design, with strata defined by
water depth (3.0 to 9.1 m, 9.1 to 15.2 m, and >15.2 m)
and latitude (5 latitudinal regions; Fig. 1). Sampling
locations for each cruise were selected randomly
(limited to trawlable areas), and sampling intensity
was proportional to the surface area of the stratum.
The survey utilizes a 13.7 m (headrope length), 4
seam balloon trawl with 7.6 cm mesh in the codend to
target late juvenile and adult fishes (Bonzek et al.
2011). At each station, temperature, salinity, dis-
solved oxygen (DO), and depth were measured using
a Hydrolab MS5 sonde prior to sampling. Real-time
net mensuration equipment (NETMIND trawl moni-
toring system, Northstar Technical) was used to mon-
itor net geometry, en sure consistent gear behavior,
and to allow for accurate estimation of area swept.
Tows were conducted in daylight hours in the direc-
tion of the tidal current at speeds of approximately
3 knots (5.6 km h–1) and were typically 20 min in
duration. However, duration of tows at stations with
hypoxic bottom waters (DO < 2 mg l−1) were gener-
ally restricted to 10 min to maximize cruise effi-
ciency, as the catches at these stations are typically
zero or very low. Some tows were also reduced to
avoid interactions with commercial fishing gears.
Immediately after collection, the catch was sorted by
species and size class (if distinct size classes were
evident), enumerated, and weighed. Subsamples of
captured species and size classes were processed for
individual length and weight.

For this study, analyses were restricted to demersal
fishes and excluded pelagic fishes, which are not
sampled effectively by the bottom trawl. Demersal
species with <10 individuals or <1 kg captured were
omitted from analyses, as these represent rare spe-
cies or species that are not adequately sampled by
the survey gear. CPUE (kg km−2) was calculated for
each tow from area swept measurements (mean net
width multiplied by towed distance measured by
onboard GPS) for the following species groups: all
fishes (FISH), anadromous fishes (ANAD), coastal
shelf spawners (COAS), and elasmobranchs (ELAS).
Catchability was assumed to be constant over time,
space, and species. Species classified as ANAD or
COAS were restricted to those that accounted for
>5% of total biomass, and ELAS species were re -
stricted to >0.5% of total biomass. The ANAD,
COAS, and ELAS groupings were chosen because
they (1) segregate species by life history characteris-
tics, (2) exhibit differential recruitment patterns
(Wood & Austin 2009), (3) represent distinct patterns
of habitat usage (Murdy et al. 1997), and (4) account
for >90% of the total biomass sampled.
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Multivariate analysis

A multivariate statistical technique was used to
explore patterns within the demersal fish community
inhabiting Chesapeake Bay. Relationships among
species CPUE and environmental variables were
assessed using constrained (or canonical) correspon-
dence analysis (CCA) (Ter Braak 1986). CCA, com-
monly used in ecological studies of communities, is
an ordination technique that extracts the major gra-
dients in a multivariate dataset that can be explained
by different explanatory variables (McGarigal et al.
2000). CCA combines a weighted multiple linear
regression with ordination and assumes that species
have a unimodal response across the gradient of each
explanatory variable (Borcard et al. 2011). The ex -
planatory variables in the current study included
physical characteristics of bottom water (tempera-
ture, salinity, DO), spatial attributes (depth, latitude),
and temporal periods (month, year). Significance of
explanatory factors (at the 5% significance level) was
evaluated using a permutation test (Legendre &
Legendre 1998). Prior to analysis, individual species
that accounted for <0.5% of total trawled biomass
were grouped together as minor species, as CCA can
be sensitive to rare species (Borcard et al. 2011).

Univariate analyses

Community characteristics were summarized into 3
general univariate community metrics for analysis:
species richness, Simpson’s index of diversity, and
aggregate CPUE (for FISH, ANAD, COAS, and ELAS
groups). These metrics were chosen because they (1)
describe different aspects of assemblages such as
biological diversity and biomass; (2) are commonly
measured and reported, facilitating comparisons
with other studies; and (3) have been proposed (or
are considered) as useful ecosystem indicators for
EBFM and ecosystem modeling (Rice 2000, Me -
thratta & Link 2006, Link 2010). Although aggregate
CPUE metrics can be biased and hyper-responsive
indices of community abundance if species catchabil-
ities are not constant (Maunder et al. 2006, Kleiber &
Maunder 2008), we chose to include them because
they (1) rely on fishery-independent data that are
less prone to temporal or spatial change in species
catchabilities than fishery-dependent data, (2) have a
precedent of use in EBFM literature (Rice 2000,
Methratta & Link 2006, Link 2010), (3) preserve the
directionality of community changes (Kleiber & Ma -
under 2008), and (4) accurately represent the trends

of the dominant individual species (A. Buchheister
un publ. data). Biological diversity was de scribed
with 2 common diversity metrics, species richness
(S; the number of species in a tow) and Simpson’s
diversity index (D), calculated at each station. D was
calculated as:

(1)

where p is the fraction of the total biomass belonging
to the i th species at a station, given that at least 1
species was captured (Magurran 2004). Diversity val-
ues, D, are constrained between 0 and 1 and increase
with greater S or with a more even biomass distribu-
tion across captured species. As is commonly done,
stations with no species captured (S = 0) were omitted
from D calculations because they would result in
high diversity estimates (D = 1) at those stations.

Generalized additive models (GAMs) were used to
model the response of the 3 univariate community
metrics as functions of explanatory variables. GAMs
provide a general and powerful modeling framework
that allows responses to be modeled with both a para-
metric component (equivalent to generalized linear
modeling) and a non-parametric component (Wood
2006, Zuur et al. 2009). The non-parametric compo-
nent relies on smoothing functions for covariates, per-
mitting the covariates to have non-linear effects on
the response that are dictated by the data and not by
a priori assumptions of relationships among the re-
sponse and covariates. Explanatory variables were
identical to those used for the multivariate analyses.
Year and month of sampling (YR and MO, respec-
tively) were modeled parametrically as categorical
factors. The continuous covariates included latitude
(LAT, decimal degrees), depth (DE, m), bottom DO
(DO, mg l−1), bottom salinity (SA), and bottom water
temperature (T, °C). These continuous covariates
were smoothed non-parametrically and were chosen
because they are commonly measured and known to
influence fish distribution and abundance (Murdy et
al. 1997). The full GAM was defined as:

(2)

where yi is a given response variable for station i, α1

and α2 are the estimated mean effects for each level
of YR and MO, and the g1 to g5 are nonparametric
smoothing functions for each covariate. A space-time
interaction was included in the model (i.e. separate
latitude smoothers for each month) because this was
the only first-order interaction of concern based on
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thorough graphical analyses. Thin-plate regression
splines were used as the basis to smooth all covari-
ates. The intercept, a, scales the model prediction to
the appropriate level of the response because each
smooth estimate (g) is constrained to average to zero
over the entire dataset (Ciannelli et al. 2008). The
residual error, ei, is assumed to be independent and
identically distributed, with a mean of zero and con-
stant variance. Both CPUE and D were modeled
using a normal distribution; however, CPUE was log
transformed [loge(CPUE + 0.1)] prior to analysis to
account for the positively skewed distribution of
these data. Species richness data were modeled with
a negative binomial distribution, appropriate for
overdispersed count data (Zuur et al. 2009). Graphi-
cal and statistical analyses indicated that differences
in sampling effort (area swept) did not have dis-
cernible effects on S or D across stations and that all
tows were sufficiently long to capture a representa-
tive sample of biological diversity; therefore no sam-
pling effort adjustments were needed in GAMs for S
or D (e.g. an offset sensu Zuur et al. [2009] was not
included in the GAMs).

Model selection was employed to determine the
best combination of explanatory variables for predict-
ing changes in the response metrics. Akaike’s infor-
mation criterion (AIC) was used to determine whether
reduced models were more strongly supported by the
data than the full model in Eq. (2) (Burnham & Ander-
son 2002, Zuur et al. 2009). For all models, stations
with incomplete water quality information (n = 230;
6.3% of stations) were omitted from the analysis.
Collinearity among covariates was exa mined with
Pearson correlation coefficients and variance inflation
factors (VIF) (Zuur et al. 2009). Al though correlated,
salinity and latitude were both re tained because VIF
values were not above the cutoff of 5 (Zuur et al.
2009) and because they provide information on dif-
ferent environmental characteristics.

Examining interannual patterns in data

Several annual-scale covariates were hypothesized
to contribute to interannual variability in species
composition and community metrics of the Chesa-
peake Bay demersal fish fauna (Table 1). Model
selection approaches were used to compare among
different annual covariates to infer which variables
best explained the interannual trends in the commu-
nity metrics and to evaluate the strength of evidence
for different mechanisms influencing fish community
structure.

Annual-scale covariates were classified into cate-
gories representing the predominant mode of in -
fluence on fishes: climate, fishing, population size,
and recruitment (Table 1). Climate variables inclu -
ded the principal components-based index of the
North Atlantic Oscillation for winter months (Hurrell
2012); mean daily discharge from the Susquehanna
River (the bay’s largest tributary) from February to
May (Schubel & Pritchard 1986, Kemp et al. 2005,
USGS 2012); summertime volume of hypoxic water
(DO < 2 mg l−1) in the bay (D. Scavia & M. A. Evans
pers. comm.); minimum of monthly mean tempera-
tures for winter months (December to March) at
Gloucester Point, VA, following Hare & Able (2007)
(SERCC 2012, VIMS 2012); and mean daily chloro-
phyll a (µg l−1) estimates (March to August) of bay-
wide surface waters interpolated from Chesapeake
Bay Program data (M. Brush unpubl. data). The fish-
ing category of covariates included annual Chesa-
peake Bay (MD and VA) and coast-wide (NC to MA)
landings calculated as the sum of recreational and
commercial catches as reported by the National Mar-
ine Fisheries Service (NOAA 2012). The sum of
female spawning stock biomasses (SSBs) was used as
an indicator of coast-wide population size for the
ANAD and COAS groups. SSB estimates were re-
stricted to species with available data from stock as-
sessments: Atlantic croaker, summer flounder, and
striped bass (ASMFC 2010, ASMFC 2011, Terceiro
2011). Recruitment covariates included composite
young-of-the-year (YOY) recruitment indices for the
ANAD and COAS separately and for the 2 groups
combined (ANAD + COAS). Composite indices were
calculated as the average of z-standardized recruit-
ment indices for appropriate species weighted by
each species’ relative biomass from all ChesMMAP
cruises. Recruitment indices were obtained from the
Maryland Department of Natural Resources (ANAD
species; Durell & Weedon 2011) and the Virginia Insti-
tute of Marine Science (VIMS) Juvenile Fish and Blue
Crab Trawl Survey (COAS species; Tuckey & Fabrizio
2011). All annual covariates were standardized to
have a mean of zero and standard deviation of 1 for
consistency in model comparisons.

The community metrics (S, D, CPUE) were aggre-
gates of many species and year classes of fishes.
Effects of annual covariates on adult and community
metrics may have been delayed by several years if
the mechanism of control was through recruitment
processes. To account for multiple year classes and
delayed effects, annual covariates were calculated as
a single year value or a mean of 2 yr (i.e. a span of 1
or 2 yr). Covariates were also lagged 0, 1, or 2 yr. All
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combinations of these spans and lags
were calculated. Some covariates
(hypoxic volume, landings, and SSB)
were restricted to a 0 yr lag and 1 yr
span (Table 1), as these covariates
were hypothesized to have weak or
negligible delayed effects on the
measured response variables. GAMs
of ANAD and COAS CPUE did not
include the landings, SSB, or YOY
indices for the opposing group.

The evaluation of the annual co -
variates involved replacing the year
factor of the best GAM with each of
the annual covariates individually.
Each annual covariate was modeled
with a smoothing function but was
constrained to have no more than 2
degrees of freedom to avoid over-
parameterization of the 10 yr time
series. Competing models for each
response variable were fitted and
ranked using AIC and Aka ike
weights (Burnham & Anderson
2002). Pearson product-moment cor-
relations were calculated be tween
the estimated effect of each annual
covariate and the original estimated
year effect to indicate the strength
and directionality of the relation-
ships. All statistical analyses for this
study were performed using the
‘vegan’ and ‘mgcv’ libraries in the
software package R (version 2.13.2;
R Development Core Team 2012).

RESULTS

Basic catch information

ChesMMAP sampled 3640 sta-
tions during 48 cruises from 2002 to
2011. Two cruises were not con-
ducted (September 2007, May 2009),
and upper bay stations were not
sampled during the May 2003 and
July 2010 cruises. A total of 98 spe-
cies were collected during this 10 yr
period; however, the analyses were
limited to 50 demersal species based
on the previously specified criteria
(Tables 2 & 3). The number of spe-
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Species                                                                     Group      No. of     Biomass    Biomass      Count         Count         Size 
                                                                                                 stations        (kg)            (%)      (no. of fish)        (%)           (mm)

Micropogonias undulatus (Atlantic croaker)        COAS       1347       22068.7         38.1        104624            38.5        239 ± 52
Morone americana (white perch)                          ANAD        522         8347.8         14.4          61230            22.5        188 ± 30
Leiostomus xanthurus (spot)                                  COAS       1574         5228.4           9             56715            20.8        162 ± 33
Morone saxatilis (striped bass)                              ANAD        994         5166.5           8.9            7275              2.7        347 ± 117
Paralichthys dentatus (summer flounder)             COAS       1517         3035.3           5.2            6097              2.2        329 ± 103
Raja eglanteria (clearnose skate)                           ELAS         356         2447.3           4.2            1678              0.6        404 ± 62
Cynoscion regalis (weakfish)                                                 1119         2105.1           3.6          17023              6.3        213 ± 61
Dasyatis say (bluntnose stingray)                           ELAS         175         1607.8           2.8              424              0.2        395 ± 128
Rhinoptera bonasus (cownose ray)                         ELAS         113           990.6           1.7              196              0.1        585 ± 216
Gymnura altavela (spiny butterfly ray)                  ELAS         110           918.3           1.6              318              0.1        566 ± 220
Myliobatis freminvillii (bullnose ray)                     ELAS           96           825.6           1.4              234              0.1        511 ± 215
Pogonias cromis (black drum)                                                   92           766.7           1.3              178              0.1        448 ± 326
Dasyatis americana (southern stingray)                 ELAS           85           655.3           1.1              151              0.1        423 ± 164
Mustelus canis (smooth dogfish)                            ELAS         137           439.1           0.8              368              0.1        593 ± 162
Archosargus probatocephalus (sheepshead)                           65           427.6           0.7              115            <0.05      478 ± 155
Gymnura micrura (smooth butterfly ray)               ELAS         114           412.3           0.7              220              0.1        514 ± 156
Squalus acanthias (spiny dogfish)                          ELAS           33           376.5           0.7              147              0.1        727 ± 97
Menticirrhus spp. (kingfish)                                                    407           336.0           0.6            1905.5           0.7        233 ± 63
Sphoeroides maculatus (northern puffer)                               408           223.1           0.4            1941              0.7        151 ± 34
Dorosoma cepedianum (gizzard shad)                                   127           195.1           0.3              420              0.2        285 ± 88
Ictalurus punctatus (channel catfish)                                        40           178.6           0.3              159              0.1        382 ± 78
Stenotomus chrysops (scup)                                                     355           137.3           0.2            3158              1.2        120 ± 22
Dasyatis sabina (Atlantic stingray)                                            52           130.4           0.2                73            <0.05      314 ± 102
Chaetodipterus faber (Atlantic spadefish)                              182           129.9           0.2              409              0.2        126 ± 103
Carcharhinus plumbeus (sandbar shark)                                 43           104.6           0.2                54            <0.05      555 ± 109
Sciaenops ocellatus (red drum)                                                   6           101.9           0.2                11            <0.05      892 ± 185
Tautoga onitis (tautog)                                                               21             73.2           0.1                48            <0.05      419 ± 68
Chilomycterus schoepfii (striped burrfish)                             127             54.9           0.1              166              0.1        191 ± 48
Opsanus tau (oyster toadfish)                                                  103             50.0           0.1              151              0.1        226 ± 90
Prionotus carolinus (northern searobin)                                 405             49.6           0.1            2252              0.8        121 ± 23
Scophthalmus aquosus (windowpane)                                   251             48.5           0.1              427              0.2        191 ± 53
Dasyatis centroura (roughtail stingray)                                      7             48.1           0.1                16            <0.05      440 ± 44
Trinectes maculatus (hogchoker)                                            344             46.5           0.1              974              0.4        124 ± 24
Urophycis regia (spotted hake)                                               255             39.4           0.1            1216              0.4        137 ± 44
Ameiurus catus (white catfish)                                                  21             38.2           0.1                42            <0.05      346 ± 129
Centropristis striata (black seabass)                                       163             21.3        <0.05            285              0.1        155 ± 50
Leucoraja erinacea (little skate)                                                16             19.4        <0.05              25            <0.05      288 ± 33
Bairdiella chrysoura (silver perch)                                          156             17.1        <0.05            396              0.1        140 ± 26
Prionotus evolans (striped searobin)                                       162             11.7        <0.05            257              0.1        135 ± 43
Larimus fasciatus (banded drum)                                              36             10.1        <0.05            142              0.1        157 ± 60
Ameiurus nebulosus (brown bullhead)                                       4               5.6        <0.05              28            <0.05      244 ± 18
Orthopristis chrysoptera (pigfish)                                              43               5.6        <0.05              84            <0.05      147 ± 27
Astroscopus guttatus (northern stargazer)                               17               5.1        <0.05              17            <0.05      220 ± 72
Synodus foetens (inshore lizardfish)                                         28               3.5        <0.05              34            <0.05      223 ± 42
Lagodon rhomboides (pinfish)                                                     9               3.0        <0.05              39            <0.05      139 ± 14
Selene vomer (lookdown)                                                          30               3.0        <0.05              72            <0.05      110 ± 23
Selene setapinnis (Atlantic moonfish)                                       73               2.4        <0.05            200              0.1          81 ± 21
Cynoscion nebulosus (spotted seatrout)                                   15               2.2        <0.05              17            <0.05      224 ± 60
Etropus microstomus (smallmouth flounder)                              9               2.0        <0.05              13            <0.05      115 ± 93
Trichiurus lepturus (Atlantic cutlassfish)                                  20               1.2        <0.05              59            <0.05      290 ± 93

Table 2. Catch information for demersal fish species captured in Chesapeake Bay by the ChesMMAP survey. Values are totals
of all cruises from 2002 to 2011. The top 5 species are classified as either a coastal shelf spawner (COAS) or an anadromous
species (ANAD). Elasmobranchs (ELAS) contributing at least 0.5% of the total biomass were also classified as a distinct group.
Mean body size (±SD) was calculated from fork length for teleosts, pre-caudal length for sharks, and disc width for batoids
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cies captured at each station ranged from 0 to 19 spe-
cies, with an overall mean of 3.4 species. Simpson’s
diver sity averaged 0.30 across all sta tions and 0.42 if
diversity values of zero were excluded. A total of
57.9 t and 272 084 individuals were collected from
Chesapeake Bay. The top 5 species ranked by weight

(Atlantic croaker, white perch,
spot, striped bass, and summer
flounder) accounted for 75% of all
trawled biomass, with At lantic
croaker alone contributing 38%
by both biomass and abundance
(Table 2).

Species composition of trawl
catches varied considerably across
year, month, region, and depth
strata, reflecting the dynamic spa-
tiotemporal characteristics of the
Chesapeake Bay fish community
(Fig. 2). Monthly differences in
species composition were domi-
nated by changes in Atlantic
croaker, striped bass, white perch,
and spot. Atlantic croaker ac -
counted for over 50% of sampled
fish biomass in May and July, but
relative contributions decreased in
the fall (September and Novem-
ber), as this species is known to
migrate to the continental shelf for
spawning. Biomass proportions of
striped bass and white perch were
highest in November and March,
corresponding with their winter-
spring spawning. Al though pro-
portional spot catches were high
from July to November, their con-
tribution to total biomass peaked
in September. Trawled biomass
peaked in July, with that month
accounting for 31% of the total.
Species dominance in the 5 survey
regions shifted spatially from
white perch in the upper bay to
striped bass in the mid-bay area
and Atlantic croaker in the lower
bay. Region 5 in the lower bay ac-
counted for 43% of total trawled
biomass and had a more equitable
contribution from various species.
Patterns by depth stratum indi-
cated higher catches of white
perch in the shallow reaches of the

bay, whereas croaker dominated in intermediate and
deeper bay areas. Relative to the other factors, annual
variability in catch composition was less pronounced
but showed decreased contribution by Atlantic
croaker in the later years. Concomitant increases in
proportional biomass contributions by ELAS and

Species                                                                       Habitat     Count     Biomass 
                                                                                                (no. of fish)     (kg)

Peprilus triacanthus (butterfish)                                   P           5502        378.6
Peprilus paru (harvestfish)                                            P           5502        285.3
Brevoortia tyrannus (Atlantic menhaden)                    P           1422        257.9
Pomatomus saltatrix (bluefish)                                      P             562        138.7
Cyprinus carpio (common carp)                                   D                 9          82.0
Alosa pseudoharengus (alewife)                                   P             624          79.8
Acipenser oxyrinchus (Atlantic sturgeon)                   D                 4          17.2
Alosa aestivalis (blueback herring)                              P             138          14.1
Carcharias taurus (sand tiger shark)                            P                 3          13.0
Anchoa mitchilli (bay anchovy)                                    P         13299          10.2
Alosa sapidissima (American shad)                              P               69          10.0
Alosa mediocris (hickory shad)                                     P               40            9.4
Rachycentron canadum (cobia)                                    P                 1            6.5
Carcharhinus brevipinna (spinner shark)                    P                 1            6.4
Leucoraja ocellata (winter skate)                                 D                 1            5.2
Trachinotus carolinus (Florida pompano)                    P               30            4.8
Squatina dumeril (Atlantic angel shark)                      D                 2            4.1
Scomberomorus maculatus (Spanish mackerel)          P                 7            3.3
Sphyrna tiburo (bonnethead)                                       D                 1            3.2
Rhizoprionodon terraenovae                                        D                 1            2.7
(Atlantic sharpnose shark)

Caranx hippos (crevalle jack)                                       P               22            1.6
Clupea harengus (Atlantic herring)                             P                 9            1.5
Caranx crysos (blue runner)                                          P               24            1.2
Notropis hudsonius (spottail shiner)                             P                 1            0.8
Symphurus plagiusa (blackcheek tonguefish)            D               43            0.7
Opisthonema oglinum (Atlantic thread herring)         P               37            0.7
Hippocampus erectus (lined seahorse)                        D               33            0.6
Urophycis chuss (red hake)                                          D               12            0.4
Merluccius bilinearis (silver hake)                               D                 3            0.4
Pseudopleuronectes americanus (winter flounder)    D                 1            0.4
Anchoa hepsetus (striped anchovy)                              P             120            0.3
Perca flavescens (yellow perch)                                   D                 4            0.3
Etropus spp.                                                                   D                 9            0.1
Mugil spp.                                                                       P                 1            0.1
Lepomis gibbosus (pumpkinseed)                                D                 1         <0.5
Hippoglossina oblonga (fourspot flounder)                 D                 1         <0.5
Eucinostomus argenteus (spotfin mojarra)                  D                 3         <0.5
Syngnathus fuscus (northern pipefish)                        D               30         <0.5
Hypsoblennius hentz (feather blenny)                         D               23         <0.5
Fistularia tabacaria (bluespotted cornetfish)               D                 1         <0.5
Gobiosoma bosc (naked goby)                                     D               17         <0.5
Sardinella aurita (Spanish sardine)                              D                 1         <0.5
Serranidae (unidentified sea basses)                           D                 1         <0.5
Gobiesox strumosus (skilletfish)                                   D                 7         <0.5
Stellifer lanceolatus (star drum)                                   D                 1         <0.5
Sphyraena borealis (northern sennet)                          D                 1         <0.5
Acipenser brevirostrum (shortnose sturgeon)             D                 1            –
Ammodytes spp.                                                            D                 1            –

Table 3. Fishes excluded from analyses due to low catches or poor sampling by the 
ChesMMAP bottom trawl. P: pelagic; D: demersal. (–) Biomass not collected
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other fishes were also observed in later years.
Overall, trawled biomasses were higher before 2007
(with peaks in 2004 and 2006), whereas 2008 to 2011
had relatively low biomasses. However, these trends
were slightly confounded due to the missing and in-
complete cruises in 2009 and 2010, respectively.

Constrained correspondence analysis of
 community composition

Species composition within the Chesapeake Bay
community was largely driven by latitudinal and

salinity gradients, which were strongly correlated
with the first CCA axis (CCA1; Fig. 3). The CCA ex -
plained 18% of the total inertia in the multivariate
dataset due to the high variability and noise common
in survey catch data. ANAD species (white perch and
striped bass) had strong negative loadings on CCA1,
highlighting their higher catch rates in the lower
salinity waters of the upper bay, especially during
November and March. Cownose ray, spot, and
the minor species held an intermediate position, re -
flecting a broader and more equitable distribution
throughout the bay. The second CCA axis (CCA2)
differentiated among the many marine-dominated
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species that tend to be centered in the higher salinity
waters of the lower bay. One of the strongest factors
driving the patterns in community composition along
this axis was a clear separation among years before
and after 2008 (2002 to 2007 and 2008 to 2011 with
more negative and positive loadings, respectively).
There was also separation among spring and early
fall (September) catches. Atlantic croaker loaded
negatively on CCA2 corresponding with higher
CPUE in the early period (2002 to 2007) of the time
series, while the relative contribution of many other
species to total catch increased in the later period of
the time series. September also was a strong driver of
species composition, with many of the elasmo-
branchs loading with warmer water in September.
Al though a significant factor in the model, DO did
not correspond strongly with gradients in species
composition.

Generalized additive models of community metrics

With only 2 exceptions, the full generalized addi-
tive model provided the best fit to the univariate
community metrics (Table 4). Inclusion of a space-
time interaction helped account for the dynamic sea-
sonal movements of different species within Chesa-
peake Bay. Models explained between 33.9 and
51.2% of the null deviance.

Species richness exhibited the largest changes in
magnitude as a function of latitude, with mid-lati-
tudes having substantially lower values, particularly
in July and September (Fig. 4). DO also strongly
depressed S at values below ~4 mg l−1 (Fig. 5). Spe-
cies richness was greatest at intermediate depths
(~16 to 22 m) and greater depths (>30 m), but preci-
sion at the greater depths was poor. Mean station-
level S increased at lower salinities and increased
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Metric      Group   Model                                                                               % Dev.

Richness    FISH    Si = a + α1(YR) + α2(MO) + g1(LAT) MO + g2(SA) + g3(T) + g4(DO) + g5(DE) + ei                             50.9

Diversity   FISH    Di = a + α1(YR) + α2(MO) + g1(LAT) MO + g2(T) + g3(DO) + g4(DE) + ei                                            33.9

CPUE        FISH    loge(CPUEi + 0.1) = a + α1(YR) + α2(MO) + g1(LAT) MO + g2(SA) + g3(T) + g4(DO) + g5(DE) + ei    35.0
               ANAD   loge(CPUEi + 0.1) = a + α1(YR) + α2(MO) + g1(LAT) MO + g2(SA) + g3(T) + g4(DO) + g5(DE) + ei    51.2
                COAS   loge(CPUEi + 0.1) = a + α1(YR) + α2(MO) + g1(LAT) MO + g2(SA) + g3(T) + g4(DO) + g5(DE) + ei    48.3
                ELAS    loge(CPUEi + 0.1) = a + α1(YR) + g1(LAT) MO + g2(SA) + g3(T) + g4(DO) + ei                                    47.6

Table 4. Best-fit generalized additive models (GAMs) of species richness (S), Simpson’s diversity (D), and catch-per-unit-effort
(CPUE, kg km−2) from bottom trawl survey data in Chesapeake Bay for different species groups (FISH: all fishes; ANAD:
anadromous fishes; COAS: coastal shelf spawners; ELAS: elasmobranchs). Models include an intercept (a), coefficients for the
parametric components (α), smoothing functions for the nonparametric components (g), residual error (e) for each station (i), and
various explanatory variables: year (YR), month (MO), latitude (LAT), salinity (SA), water temperature (T), dissolved oxygen 

(DO), and water depth (DE). Percent of total deviance (% Dev.) explained by each model is also presented
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linearly with warmer temperatures (Fig. 4). Species
richness progressively increased by month, with the
largest positive effect in November (Fig. 6). Annu-
ally, S peaked in 2007, but the magnitudes of the year
effects were generally low (Fig. 6).

The model for Simpson’s diversity index only ex -
plained 33.9% of the deviance, but had similar res -
ponses to the modeled covariates as did S (Table 4).
For example, D increased with temperature and
depth, decreased as DO declined below ~4 mg l–1

(Fig. 4), and exhibited minima at mid-latitudes
(Fig. 5). Salinity was dropped from the GAM as a
non-significant covariate (Table 4). Temporally,
November yielded the highest relative effect on D,
but D was relatively consistent across years (Fig. 6).

Results of GAMs fitted to CPUE data clearly de -
monstrated different influences of environmental
and spatial factors on catch rates of different species
groups (Figs. 4 to 6). Trends for the FISH group were
generally a combination of the predicted patterns for
the other groups, but the FISH trends tended to mir-
ror COAS patterns more closely (e.g. Fig. 4) due to
the biomass dominance of COAS fishes in the total

catch (Table 2). Catches of COAS and ANAD fishes
generally showed contrasting trends with tempera-
ture and latitude; ANAD fishes preferred colder
waters below 15°C and higher latitudes, opposing
the trends for COAS species (Figs. 4 & 5). These
inverse trends acted to dampen the responses of the
FISH patterns with these factors. The Potomac River
mouth (at 38° N) represented a transitional point for
COAS below which catches increased dramatically
in most months, with a clear peak at approximately
37.5° N in the spring and summer months (Fig. 4).
Catches of ELAS increased monotonically with de -
creasing latitude. Salinity had strong positive effects
on CPUE of ANAD and ELAS fishes in low and high
salinities, respectively, whereas the effect on COAS
fishes was only slightly positive at lower salinities
(Fig. 5). COAS fishes preferred intermediate depths
whereas ANAD fishes preferred shallower waters.
The effect of DO was detected only at levels <3.5 mg
l−1, but this was most strongly evident with the COAS
group. Month effects on CPUE were generally
smaller than other factors and lacked precision
(Fig. 6), suggesting that the majority of changes by
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Fig. 4. Partial, smoothed effects of latitude on diversity metrics (upper panels) and log-transformed catch-per-unit-effort
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dence intervals (±2 SE; gray shading) are only plotted for FISH, but the magnitudes were similar for other species groups. 

Sampling intensity for each covariate is indicated by the rug plot on the x-axis
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month were captured by water temperature or by
the latitude-month interaction. The annual trends
showed peaks in ANAD, COAS, and FISH catches in
2005 and 2006 followed by declines during the latter
half of the time series. Back-transformed, bias-cor-
rected CPUE values (calculated at the medians of all
the explanatory variables) indicated that COAS and
ANAD catch rates (in kg km−2) declined dramatically
from their respective peaks (90% decline in COAS
CPUE from 2005 to 2011; 80% decline in ANAD
CPUE from 2005 to 2009). These estimates of percent
decline exceeded estimates for individual COAS spe-
cies (declines of 85 to 88%) and ANAD species (de -
clines of 43 to 77% for white perch and striped bass,
respectively) (A. Buchheister unpubl. data), likely
due to the characteristics of aggregate CPUE metrics
(Kleiber & Maunder 2008); however, all of these val-
ues represent substantial de creases in catch rates in
recent years, especially for COAS species. ELAS
CPUE remained more consistent over the time series
although values were slightly higher after 2005.

Annual covariates

The categorical year factor typically described an -
nual trends in community metrics far better than the
various covariates hypothesized to influence commu-
nity dynamics (Table 5). Of the examined covariates,
fishery landings and recruitment indices tended to
have greater predictive power across metrics and
species groups. Landings tended to be positively cor-
related with interannual trends in FISH, ANAD, and
COAS CPUE, suggesting that fisheries may have
been responding to changes in fish abundance as re -
presented by ChesMMAP data. YOY indices ranked
within the top 3 models for several metric-group
combinations, but effects could be positive or nega-
tive. For example, ANAD CPUE was positively corre-
lated with the ANAD YOY index (with a relatively
longer lag and span), whereas COAS CPUE was neg-
atively correlated with a composite YOY index (i.e.
high levels of recruitment corresponded with lower
predicted COAS catch).
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Fig. 5. Effects of salinity, temperature, dissolved oxygen (DO), and depth on diversity metrics (upper panels) and log-trans-
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DISCUSSION

Environmental filtering of Chesapeake Bay
 demersal fish community

Salinity was the major environmental gradient
structuring community composition, biodiversity, and
catch rates within Chesapeake Bay. This gradient
was captured by 2 related covariates: (1) direct meas-
ures of salinity and (2) latitude. Latitude indicated the
general salinity regime (e.g. oligohaline to poly ha -
line) and acted as a spatial locator, whereas salinity
was a higher-resolution (and more variable) measure
of water quality. Particularly in estuarine en viron -
ments, salinity is frequently found to be a dominant
structuring factor (Day et al. 1989), separating fresh-
water and marine species. Typically, species richness
and total biomass tend to have parabolic, nonlinear
relationships with salinity, dis  playing a minimum in
mesohaline waters because of the physiological de -
mands of living in these brackish waters (Odum 1988,
Wagner 1999). Consequently, meso haline waters act
as an obstacle to marine and fresh water species that
limits the distribution of those species groups within
the bay, translating to the documented parabolic
trends in S, D and total fish CPUE (with a transitional
point at ~20 psu and 38 to 38.5° N). These patterns
suggest that bay-wide community assembly is largely
driven through environmental filtering processes (i.e.
general habitat suitability) whereby species inhabit-

ing the different regions of the bay are restricted by
unique tolerances to and preferences for certain habi-
tat and environmental characteristics (e.g. Mouillot et
al. 2007). Mid-bay reductions in fish biomass indices
were also observed consistently over years for the
pelagic fish community (Jung & Houde 2003). Thus,
both demersal and pelagic environments of the meso-
haline Chesapeake Bay mainstem act as suboptimal
habitats for bay fishes and support a relative paucity
of fish biomass.

The mid-bay minima in biomass and diversity met-
rics may also be related to reduced habitat quality
stemming from hypoxia. Fitted GAMs accounted for
the direct effects of low DO concentrations (see ‘Dis-
cussion — Community responses to hypoxia’), but
other indirect effects are possible. Research suggests
that benthic macro- and meiofauna (important food
for benthivorous species like Atlantic croaker, spot,
and white perch) are de graded in the mid-bay rela-
tive to other bay regions due to hypoxia and eutroph-
ication stress (Hagy 2002, Kemp et al. 2005). Pro-
longed exposure of the mesohaline benthos to
hypoxic conditions could have lasting consequences
on the quality of foraging habitat for benthivores that
restrict the suitability of the region even after bottom
waters become oxygenated.

The spatial gradient in community composition was
largely driven by the ANAD species (white perch and
striped bass) but also reflected broader spatiotemporal
trends in biodiversity. Ecologists frequently partition
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biodiversity into various components (α, β, and γ di-
versity) to better understand the processes that struc-
ture communities, particularly along environmental
gradients (Magurran 2004). The demersal fish com-
munity of Chesapeake Bay exhibits an overarching
trend of increasing regional species richness (i.e. γ di-
versity) from the upper bay to the lower bay (19 vs. 45
species encountered, respectively; A. Buchheister un-
publ. data); however, our station-level estimates of S
(i.e. α diversity) were highest in the upper bay based
on the GAMs. Thus, upper bay stations tend to have a
consistently higher number of species caught at each
station despite a smaller regional species pool than
other bay regions. This pattern indicates that species
turnover (i.e. β diversity — a measure of the change in
species biodiversity over time or space) is low; in other
words, species composition is more consistent and the

fish community more homogenous
across upper bay stations, likely
due to the relative ubiquity of white
perch throughout the year in the
upper bay. The mid-bay stations
had a lower predicted S, a higher
regional pool, and thus a much
higher species turnover across sta-
tions. Generally, the middle and
lower bays have a more diverse and
dynamic fauna due to the migration
of many species, making these re-
gions more heterogeneous over
space and time. Higher turnover in
the mesohaline portion of the bay
mainstem opposes the patterns doc-
umented in the Chesapeake Bay
tributaries for smaller littoral fishes,
where turnover was highest at the
tidal freshwater interface (Wagner
1999). Thus, community patterns in
species turnover may differ by estu-
arine region (tributaries vs. main-
stem) or by the size range of the fish
assemblage.

Seasonal regulation of
 community patterns

As in most temperate estuaries,
the fish assemblage within Chesa-
peake Bay is known to be season-
ally dynamic as different species
migrate into and out of the bay
given their life history strategies

(Murdy et al. 1997, Able & Fahay 2010).  Dividing the
biomass- dominant species into ANAD, COAS, and
ELAS groups effectively separated ~90% of the as-
semblage’s biomass into different modes of life history
and estuarine usage. Spawning by striped bass and
white perch in freshwater and tidal tributaries during
spring concentrates anadromous individuals in the
upper bay, especially when water temperatures are
low. For white perch, this is due to fish residing in
deeper channels and bay areas during winter prior to
their upstream spawning migration in the spring.
Striped bass are also caught in higher numbers during
cold months (March), when the resident contingent
(mostly male fish) is overwintering in Chesapeake
Bay and as coastal migrants are moving to the rivers
for spawning (Fay et al. 1983). Catches of ANAD
fishes also increased in November, as white perch and

Metric and    Rank   Covariate                      Lag   Span    w          R
Group

Richness
FISH                  1       Year                                                 0        1     0.994     1.00
                          2       Landings, coast-wide (COAS)      0        1     0.003     0.32
                          3       YOY Index (A+C)                          1        2     0.001   –0.75

Diversity
FISH                  1       River discharge                              2        2     0.504     0.73
                          2       YOY Index (ANAD)                       1        1     0.092   –0.26
                          3       Landings, coast-wide (ANAD)      0        1     0.079     0.62

CPUE
FISH                  1       Year                                                 0        1     0.991     1.00
                          2       Landings, coast-wide (A+C)         0        1     0.009     0.81
                          3       Landings, coast-wide (COAS)      0        1     0.000     0.73

ANAD               1       Year                                                 0        1     0.811     1.00
                          2       Landings, coast-wide (A+C)         0        1     0.172     0.94
                          3       YOY Index (ANAD)                       2        2     0.016     0.90

COAS                1       Year                                                 0        1     0.983     1.00
                          2       YOY Index (A+C)                          0        2     0.013   –0.92
                          3       Landings, coast-wide (COAS)      0        1     0.003     0.75

ELAS                 1       Year                                                 0        1     0.511     1.00
                          2       Landings, Bay (COAS)                  0        1     0.462   –0.38
                          3       YOY Index (ANAD)                       1        2     0.010   –0.66

Table 5. Summaries of the highest-ranking competing generalized additive
models of species richness, species diversity, and catch-per-unit-effort (CPUE)
modeled with different annual covariates. Models were constructed by replac-
ing the Year factor from the best-fit models of Table 4 with each annual covariate
from Table 1. Response metrics were modeled separately for each species group
(FISH: all species combined; ANAD: anadromous species; COAS: coastal shelf
spawners; ELAS: elasmobranchs). Covariates were calculated for different lags
(yr), spans (yr), and species groups (A+C represents ANAD and COAS groups
combined). Akaike weights (w) provide the weight of evidence or probability
that a model is the best model of the models compared within each metric-group
pair. Pearson product-moment correlations (R) between the covariate and the es-
timated year effect in the null model (as plotted in Fig. 6) indicate the strength
and direction of the relationship of the covariate and the response variable. 

YOY: young-of-the-year
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striped bass residents generally aggregate in deeper
waters in preparation for winter.

Both the COAS and the majority of the ELAS spe-
cies demonstrated alternative usage of the bay’s
mainstem (relative to ANAD fishes), with greatest
residence and utilization during summer and fall
when water temperatures are the warmest. The
COAS trends are likely linked to (1) the migrations of
COAS species that forage in the estuary during
warmer months prior to offshore spawning (Murdy et
al. 1997, Able & Fahay 2010), (2) the movement of
winter/spring-settled juveniles from shallow estuar-
ine nursery areas and tributaries to the mainstem
during ontogeny (Rogers et al. 1984, Sackett et al.
2008), and (3) the recruitment of age 0 COAS juve-
niles to the trawl gear when sufficient fish sizes (~100
to 150 mm) are attained in the summertime (Bonzek
et al. 2011). ELAS life histories are more varied given
the larger number of species; however, several spe-
cies spawn in spring or summer within estuarine
waters or forage in the bay in summer and fall
(Wourms 1977, Murdy et al. 1997).

The warmest temperatures (in July) promote
greater bay utilization by many species, including
ELAS, COAS, and subtropical species that use the
bay as a foraging ground. Late summer and early
autumn temperatures also allow rarer tropical spe-
cies to join the warm-temperate and subtropical sum-
mer residents in the bay (Murdy et al. 1997), thus
increasing biological diversity. Despite cooler tem-
peratures, species richness and Simpson diversity
was relatively high in November because cold tem-
perate and even boreal species (e.g. striped bass,
spotted hake) become more prevalent in the bay
while many species are migrating out to overwinter
in coastal waters.

Community responses to hypoxia

Low DO produced one of the strongest negative
responses of any of the modeled variables. Within
Chesapeake Bay, the effects of hypoxia on distribu-
tion and abundance of zooplankton and fish larvae
have been demonstrated in several locations (Roman
et al. 1993, Keister et al. 2000, Ludsin et al. 2009).
However, research on the effects of hypoxia on adult
fishes has been restricted to tributaries and smaller
areas within the bay (Pihl et al. 1991, Carmichael et
al. 1992, Breitburg et al. 2001) or has focused on
effects on pelagic and mainly planktivorous fishes
(Jung & Houde 2003, Ludsin et al. 2009). To our
knowledge, this is the first study in Chesapeake Bay

to document the large effects on demersal fish bio -
diversity and catch rates that are predominantly
driven by chronic influence of low DO concentra-
tions. The drastic decline in S, D, and CPUE docu-
mented here was consistent with work from other
systems (e.g. Breitburg 2002, Eby & Crowder 2002,
Keller et al. 2010) and suggests that from a multi-
species, community perspective, there is a strong
threshold avoidance response that begins when DO
drops below ~4 mg l−1. This threshold suggests that
habitat quality for the demersal fish assemblage
begins to be reduced at values >2 mg l−1 (the typical
definition for hypoxia), as fish exhibit elevated respi-
ration and metabolism, reduced growth, or other
signs of physiological stress that drive mobile ani-
mals to emigrate from the affected area (Breit burg
2002, Gray et al. 2002).

Emigration from and avoidance of low DO waters
was detected in the spatial distribution of fishes in
July, when hypoxic conditions are most extreme. The
latitudinal effects predicted by the GAMs (Fig. 4)
included apparent indirect effects of low DO (i.e.
after the direct DO effects were explicitly accounted
for by the models). FISH CPUE, COAS CPUE, and
species richness showed the steepest declines with
latitude in July at ~37.75° N near the southern edge
of the bay’s deeper mainstem channel (Fig. 1), sug-
gesting an aggregated edge effect due to the south-
ern displacement of fishes. The bathymetry of this
area near the mouth of the Rappahannock River pro-
motes a strong oxycline (Hagy et al. 2004), and simi-
lar aggregations of fish catch rates have been shown
surrounding hypoxic areas in the Gulf of Mexico
(Craig 2012). A concurrent northward displacement
of fishes was evidenced by the steep increase in FISH
CPUE in July and September at the northern edge of
the mainstem channel (at ~39°N). These patterns in
CPUE combined the effects of multiple species which
may respond differently to low DO. For example, the
northward displacement of COAS fishes was caused
almost exclusively by spot in July and September.
Interestingly, the displacement of ANAD fishes did
not appear as drastic in July (more so in September).
However, these ANAD trends may be a result of a
longitudinal displacement resulting from greater uti-
lization of shallower stations and habitats at those lat-
itudes (e.g. Eby & Crowder 2002). Additionally, the
lack of a steeper increase in ANAD CPUE to the
north could be the result of the smoothing function
fitting data from 2 species; white perch catch rates
alone (without striped bass) were much greater north
of 39° N where the mainstem channel ends and
hypoxia is less problematic. Slightly elevated CPUE
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(FISH, ANAD, and COAS groups) at DO levels of ~4
mg l−1 also provide some support for aggregation of
fish biomass at DO levels that are sufficiently oxy-
genated.

Biomass and bio diversity trends with DO and lati-
tude primarily reflect the seasonally chronic, large-
scale effects of low DO. This study documented not -
able, drastic shifts in large-scale fish distributions
and catches, which represents a substantial reduc-
tion in available fish habitat for demersal fishes.
From a system-wide perspective, it remains unclear
whether the tradeoffs of increased production from
eutrophication combine with the negative effects of
low DO to hinder or promote overall secondary fish
production (Caddy 1993, Breitburg et al. 2009). Jung
& Houde (2003) found bay-wide pelagic fish bio mass
to increase as mean annual depth- integrated DO de -
creased, which is supported by large-scale studies
documenting higher pelagic productivity with in -
creased eutrophication (de Leiva Moreno et al. 2000,
Breitburg et al. 2009). However, it is also possible
that the Jung & Houde (2003) patterns could be influ-
enced by vertical displacement of fishes away from
hypoxic bottom waters (Hazen et al. 2009). Demersal
production does not benefit as much from eutrophi-
cation-induced increases in pelagic productivity due
to the resulting degradation of benthic habitats (de
Leiva Moreno et al. 2000, Breitburg et al. 2009). In
our study, the localized negative effects of hypoxia
were strongly evident in the demersal community,
but there was little evidence of annual patterns in
demersal productivity being strongly related to
hypoxic volume or other climatic variables related to
eutrophication (e.g. river discharge, chlorophyll a).

Large-scale factors influencing inter-annual
 community patterns

Species composition and community metrics
changed dramatically within the 10 yr dataset, with
later years characterized by low CPUE of COAS,
ANAD, and FISH species groups and decreased pro-
portional contributions by Atlantic croaker. Strong
annual shifts in community composition and struc-
ture have previously been documented for the bay’s
pelagic fish community (Jung & Houde 2003). The
pelagic community exhibited resilience to a strong
environmental perturbation (in the form of very high
annual precipitation), progressively re turning to the
pre-disturbance structure as time passed (Jung &
Houde 2003). In this study, several climate, fishing,
population size, and recruitment covariates were

evaluated to identify the dominant drivers of the doc-
umented interannual patterns for the demersal com-
munity, based on different hypo theses. Multiple eco-
system processes act simultaneously on the various
constituents of the community (species, age classes,
etc.) and can complicate relationships be tween co -
variates and community metrics. Given this complex-
ity and the greater flexibity (i.e. degrees of freedom)
of the categorical year factor, models with single
covariates tended to be outperformed by models with
the year factor. However, there is value in ranking
the relative ex planatory power of considered vari-
ables to help elucidate and evaluate different under-
lying mechanisms regulating community dynamics
(e.g. Jung & Houde 2003, Keller et al. 2012). Overall,
the annual patterns were most strongly linked to fish-
ing pressure and recruitment processes, but it is
unclear whether the trends represent natural fluctu-
ations in community dynamics or if these changes are
symptomatic of continued stresses on the bay ecosys-
tem (e.g. Boesch et al. 2001, Kemp et al. 2005).

Coastwide landings ranked as some of the best
annual predictors of CPUE and biodiversity metrics.
Coastwide landings for the COAS group (primarily
Atlantic croaker and summer flounder) have been
decreasing since ~2004 and 2005, while landings of
white perch and striped bass have remained rela-
tively consistent during the study period (ASMFC
2010, 2011, Terceiro 2011). The positive correlation
between fishery landings and survey CPUE is com-
plicated by the vagaries of using landings data (e.g.
lack of effort data, influence of management regula-
tions, discards); however, part of these concerns are
minimized as landings for Atlantic croaker (the dom-
inant species) are not restricted by a catch quota as
they are for some of the other species (ASMFC 2010).
The correlated pattern in coastwide landings and
CPUE metrics underscores the fact that relationships
among independent and dependent variables in the
GAMs are not necessarily causative, but they may be
both responding to some other latent variable(s).
Interestingly, the general de cline in COAS CPUE
(since 2005/2006) and COAS landings does not ap -
pear to be driven by changes in total population size
given that SSB for Atlantic croaker and summer
flounder have continued to grow (ASMFC 2010, Ter-
ceiro 2011). A likely explanation is that spatial and
distributional dynamics of species could alter the the-
oretically positive relationship among survey CPUE,
landings, and SSB. Such changes in fish distributions
can occur at large scales as a consequence of envi-
ronmental climate drivers (Nye et al. 2009, Pinsky &
Fogarty 2012), or they could result from local factors
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such as habitat quality and prey availability (e.g.
Caddy 1993, Craig 2012). Linkages between survey
CPUE, landings, and the coastwide stock are also
influenced by the degree of spatial connectivity and
exchange among the many estuarine and coastal sys-
tems that contribute to the total stock of each species.

Recruitment indices also ranked highly as some of
the best predictors of CPUE. Surprisingly, the sign of
the relationship was not positive for COAS fishes,
contrary to the typical expectation. Given the domi-
nance of Atlantic croaker in the ChesMMAP catch
and the weighting scheme of the YOY composite
index calculations, the Atlantic croaker YOY index
drove the patterns in the COAS and ANAD + COAS
YOY indices. The negative relationship between re -
cruitment and future adult CPUE could be indicative
of density-dependent effects on mortality (Rose et al.
2001); however, recent work has demonstrated a rel-
atively weak correspondence between YOY Atlantic
croaker indices and future CPUE of croaker age
classes using the ChesMMAP data (Woodward
2009). This poor correlation may be related to low
site fidelity by adult Atlantic croaker and highlights
the importance of spatial scale in looking at such
relationships. CPUE of ANAD fishes was positively
correlated with the group’s recruitment index with a
longer lag, which is consistent with ANAD fishes
recruiting to the trawl gear at slightly older ages
(approx. age 2 to 3; Bonzek et al. 2011). The strong
correlation between ANAD CPUE and the ANAD
recruitment index may also have been influenced by
the spatially constrained nature of the white perch
population, whose migrations are smaller in scale;
any white perch recruitment signals would be more
easily detected in adults with less environmental and
ecological noise.

Within Chesapeake Bay and other coastal systems,
several studies have linked climatic variables with
patterns in fish populations and community metrics
(e.g. Hofmann & Powell 1998, Attrill & Power 2002,
Nye et al. 2009). Despite the several climatic covari-
ates examined and the multiple iterations of time lags
and spans for each, these covariates consistently per-
formed worse than variables related to fishing and
recruitment. The only exception was river discharge,
but it was used to model Simpson diversity which
lacked variability and contrast among years. These
general patterns do not negate the importance of cli-
matic variables as important drivers of community
metrics but instead indicate that other processes such
as recruitment (which can be influenced by climate)
may be more directly related over the 10 yr time scale
investigated. Additionally, community res ponses to

climatic forcing may be harder to detect than
responses for individual species. For example, Hare
& Able (2007) linked recruitment indices, adult abun-
dance, and landings of Atlantic croaker to the North
Atlantic Oscillation and to minimum winter tempera-
tures at decadal time scales. These relationships
were not strongly evident in our analysis, perhaps
due to our shorter time series or to the added influ-
ence of the other COAS species.

Implications and significance

Concerns over long-term environmental and an-
thropogenic stressors and their impacts on the Chesa-
peake Bay ecosystem have helped foster interest in
EBFM in Chesapeake Bay (Houde 2006). Manage-
ment of Chesapeake Bay in an ecosystem-based
framework will rely on a suite of suitable indicators to
capture the many components that define ecosystem
status (Brodziak & Link 2002, Link 2002) and to over-
come the limitations of any individual metric (e.g.
Kleiber & Maunder 2008). Given its distinct annual
and spatial trends in Chesapeake Bay and emphasis
on biomass-dominant species, total fish CPUE (as an
index of demersal fish biomass) appears to be a useful
ecosystem indicator as suggested by many authors in
other systems (e.g. Rice 2000, Methratta & Link 2006).
However, we have demonstrated that aggregate bio-
mass metrics for anadromous fishes, coastal spawners,
and elasmobranchs provide greater resolution of com-
munity patterns, capturing distinct life history and
bay utilization patterns for dominant demersal species.
Both species richness and Simpson diversity were
sensitive to the environmental covariates and exhib-
ited similar functional responses to the modeled vari-
ables, suggesting that both are useful indicators of
general biological diversity of the Chesapeake Bay
fish community.

This study provides a 10 yr frame of reference for
the bay-wide demersal fish community that can be
used to evaluate future changes to species composi-
tion, distribution, or abundance at a large scale. The
documented trends and influences of each explana-
tory factor may also provide tentative relationships to
help inform predictions regarding the influence of dif-
ferent stressors on the Chesapeake Bay fish commu-
nity. Continued large-scale monitoring of Chesapeake
Bay will be critical for detecting ecosystem-level re-
sponses to continued stresses and is an essential com-
ponent to a successful management strategy for the
many resources of Chesapeake Bay and western
 Atlantic waters.
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