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INTRODUCTION

Enigmatic losses of phytoplankton in the sea are
dependent on many factors (Walsh 1983), but the
greatest among them relate to both the palatability of
different species and cell lysis. While some marine
microalgae have evolved physically protective struc-
tures such as the spines on diatoms, e.g. Chaeto-
ceros, others employ chemical defense mechanisms
(Turner & Tester 1989). As an example of a phyto-
plankton species capable of chemical defense mech-
anisms (Vargo 2009), the toxic dinoflagellate Karenia
brevis is the dominant harmful algal bloom (HAB)
species in the Gulf of Mexico (GOM). It is an oppor-

tunistic organism capable of utilizing multiple nutri-
ent sources throughout its life history (Vargo et al.
2008).

As part of its survival strategies, Karenia brevis pro-
duces a suite of 9 polyether ladder, lipid-soluble com-
pounds (Baden & Mende 1982, Baden & Tomas 1988)
known as brevetoxins (PbTx1-9). They have been
linked to fish kills, as well as to marine mammal and
avian mortalities (Landsberg 2002, Flewelling et al.
2005). It would appear that release of these toxic com-
pounds by K. brevis at varying ratios over the course
of the red tide bloom kills fish upon passage of this
neurotoxin across their gills, followed by rapid fish
decomposition at summer temperatures of surface
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GOM waters (Stevenson & Childers 2004). In addition,
dominant PbTx-2 and PbTx-3 brevetoxins accumulate
in the water column at HAB demise (Pierce et al. 2008,
Tester et al. 2008). Once these dissolved poisons are
air-borne as part of organic matrices of sea salt aerosol
exchanges across the sea–air interface (Fleming et al.
2007), they can be the cause of asthma attacks, com-
bined in some cases with chronic ob struc tive pul-
monary disease (COPD) in the human population in
coastal regions. There is a latency period of ~5 d be-
fore onset of some HAB asthmatic attacks impacts
both residents and tourists (Kirkpatrick et al. 2011).

Inhalation of PbTx-3 by laboratory rats, for
example, leads to reduced formation of antibodies by
an impaired immune system (Benson et al. 2005). Ad-
ditional mammal analogs subjected to PbTx-3: guinea
pigs (Wells et al. 1984), asthmatic sheep (Singer et al.
1998), and manatees (Bossart et al. 1998) also exhibit
increased airway resistance, bronchospasms, and
pul monary hemorrhages. Similar immuno sup pres -
sion in humans by at least PbTx-3, if not by PbTx-2
and PbTx-1, would subject human asthmatics to other
respiratory diseases such as fatal pneumonia (Kirk-
patrick et al. 2006). Thus, prudent public health man-
agement practices require knowledge of both: (1) the
time-dependent, wind-forced onshore transports of
brevetoxins and (2) the spatio-temporal fields in
which these toxic human respiratory triggers  prevail.

Experimental studies have suggested that grazing
rates on Karenia brevis are minimal (Tester et al.
2000), despite evidence that field populations of the
copepods Paracalanus quasimodo, Temora turbinata,
and Centropages velificatus eat K. brevis when other
prey were unavailable (Turner & Tester 1997, Walsh
et al. 2003). But, if only small amounts of ingested tox-
ins of particulate K. brevis origin are transferred up
the marine food chain, how do their HABs terminate?

The same question pertains to HABs of another
related ichthyotoxic dinoflagellate Karenia mikimo-
toi = Gyrodinium aureolum = Gymnodinium naga sa -
kiense (Gentien 1998), which now plagues the Eng-
lish Channel (Vanhoutte-Brunier et al. 2008). This
HAB produces aerosolized gymnocins (Satake et al.
2002), which have also induced asthma attacks. The
prevalence of asthmatic individuals residing on the
Isle of Wight in the English Channel increased from
2.3% in 1964 to 14.9% in 1993 and 40.3% during
1999 (Graham et al. 1967, Tariq et al. 1998, Kuruku-
laaratchy et al. 2003), coincident with the emergence
of previously cryptic populations of K. mikimotoi in
adjacent waters during 1967 (Boalch 1987). A similar
seasonal sequence of nitrogen-fixer precursors (De -
vassy et al. 1978, Anoop et al. 2007), succession of

K. mikimotoi HABs (Godhe et al. 2001), toxin re -
leases, and fish kills (Madhu et al. 2011), with concur-
rent asthma episodes (Paramesh 2002, Iyer et al.
2008, D’Silva et al. 2012), now all co-occur along and
adjacent to the West Indian Shelf (WIS).

Several biological and physical mechanisms have
been implicated in the termination of Karenia brevis
and K. mikimotoi blooms. On the West Florida Shelf
(WFS), horizontal advection off the shelf is a major
loss process (Walsh et al. 2009, Lenes et al. 2012,
Weisberg et al. in press). While such physical export
provides a solution to a local problem, the biotic con-
sequences are frequently still detrimental to the
downstream human communities and fisheries. For
example, the 2007 diazotroph precursor Tricho des -
mium erythraeum and K. brevis blooms began for-
mation on the middle/outer WFS by spring of that
year. The phytoplankton populations were then
advected by the Loop Current past the Florida Keys
into the contiguous Florida Current, eventually mak-
ing landfall ~120 d later near downstream Jack-
sonville Beach on 28 September (Walsh et al. 2009).
Such a spatial translation velocity of ~8 km d−1

between the 2 sets of phytoplankton observations
during 2007 was consistent with measured speeds of
these western boundary currents, affecting their
physical transports during seral succession of en trai -
ned WFS diazotrophs and dinoflagellates.

Like previous years of WFS HAB exports, increases
in both respiratory distresses and fish kills were sub-
sequently reported north of Miami during 2007
(Walsh et al. 2009). Export to the east coast of Florida
coincided with an order of magnitude decrease of the
Karenia brevis biomass left behind on the WFS.
Thus, while horizontal dispersion may lead to a sig-
nificant loss of red tide biomass to a local area, it does
not necessarily remove or transform the associated
toxicity from larger, adjoining regions. Horizontal
advection simply shifts the location of impact, so that
apparent local dilution is not the solution to telecon-
nected marine pollution.

The same downstream transmission of western Eu-
ropean aerosolized dinoflagellate poisons resulted in
greater causal Karenia mikimotoi HAB asthma trig-
gers. Increments of childhood asthma responses to in-
creased HABs also occurred, with 5-fold larger
asthma prevalence between 1981 and 2002 in south-
ern Norway (Nystad et al. 1997, Carlsen et al. 2006),
as well as 16-fold greater frequency between 1972
and 2003 off eastern Ireland (Manning et al. 2007).
Such temporal changes were affec ted by seasonal re-
versals of current transports from HAB epicenters of
coastal waters off England and France to those down-
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stream off Ireland and Norway (Holt & Proctor 2008,
Vanhoutte-Brunier et al. 2008, Farrell et al. 2012).

A second physical and more direct mechanism of
bloom termination may be high levels of turbulence.
Karenia brevis, K. mikimotoi, and other dinoflagel-
late cells exhibit low tolerance to high shear forces
(Berdalet 1992, Liu et al. 2002, Gentien et al. 2007).
Periods of elevated wind-driven mixing and wave
formation can cause cells to rupture in surface
waters, thus releasing their internal toxins to the
water column. Similarly, blooms that are advected
onshore to the beach can become entrained in the
surf zone. The associated turbulence not only causes
high rates of cell lysis, releasing PbTx to the water
column, but the wave energy can provide a mecha-
nism for aerosolization of these toxins (Blanchard
1975, Terrill et al. 2001). This allows the toxins an exit
to the overlying marine boundary layer. Finally, auto-
toxicity may be a factor in HAB demises within the
English Channel (Gentien et al. 2007), and presum-
ably elsewhere.

Now, in consideration of non-grazing biological
modes of cell loss, recent studies have shown that
programmed cell death (PCD) plays an important
role in the life cycle of both eukaryotic and prokary-
otic organisms (Bidle & Falkowski 2004). Such pro-
cesses can be induced by environmental stressors
related to cell age, nutrient deprivation, high light, or
oxidative stress (Bidle & Falkowski 2004). PCD in
phytoplankton has been linked with increased cas-
pase-like activity, i.e. cysteine-aspartic proteases
involved in PCD and necrosis. In cultures, a decrease
in Karenia brevis cellular concentration was corre-
lated to caspase 3-like protein activity (Bouchard &
Purdie 2010). Additionally, the cellular changes asso-
ciated with cell death expose the phytoplankton pop-
ulation to increased lysis rates as a consequence of
attacks from both viruses (Paul et al. 2002) and algi-
cidal bacteria (Roth et al. 2008a,b).

Different types of lytic ammonifying bacterioplank-
ton have been measured in Karenia brevis blooms
(Jones et al. 2011). Both Cytophaga (Doucette et al.
1999) and Flavobacteriaceae (Roth et al. 2008a),
which induce cell death in K. brevis, have been iso-
lated from the GOM. Earlier observations of ~3.0 ×
109 cells l−1 of bacteriopankton were found on the
WFS along the 20-m isobath (Pomeroy et al. 1995)
during the negligible red tide of June 1993 (Walsh &
Steidinger 2001). Furthermore, an initial experimen-
tal stock of 1 × l07cells l−1 of K. brevis was reduced to
a population level of only <1 × l01cells l−1 within 5 d,
after exposure to similar laboratory bacterial concen-
trations of >l09 cells l−1 (Roth et al. 2007).

Here, we introduced a simple non-linear lysis
term for simulation of annual Karenia brevis HAB
terminations on the WFS, as an isomorph of similar
red tide demises of congener species within the
English Channel and on the WIS. We assumed that
apparent cellular lysis of toxic dinoflagellate field
populations is largely the result of nearshore HAB
encounters with in situ bacterial predators, e.g. par-
ticle-attaching, faster-growing Pseudomonas spp. of
the plankton community of coastal waters (Crump &
Baross 1996, Doucette et al. 1999, Jones et al. 2011).
The free-living bacterial species of offshore waters
have order of magnitude slower rates of substrate
assimilation than nearshore populations, reflecting
either their size (Hodson et al. 1981) or nutrient
availability.

We thus tested the hypothesis that these versatile
heterotrophs are major mortality sources of Karenia
spp. blooms. We further assumed that such particle
encounters (Jackson 1990) of planktonic microalgae
and bacteria can be simply described as the square of
the phytoplankton biomass, like earlier model formu-
lations of: (1) diatom aggregation of faster sinking
flocs at spring bloom termination (Alldredge & Got -
schalk 1989, Walsh & Dieterle 1994); (2) direct attack
on both K. mikimotoi and Prorocentrum dentatum, as
well as on ciliate predators Flavella spp., by other
hemolytic dinoflagellates Heterocapsa cicularis qua -
ma via cell contact (Kamiyama & Arima 1997, Uchida
et al. 1999, Miyazaki et al. 2005, Yamasaki et al.
2011); and (3) autotoxicity of K. mikimotoi (Gentien
et al. 2007, Vanhoutte-Brunier et al. 2008).

In addition, we consider nutrient-limitation of
Karenia brevis and heterotrophic bacterioplankton,
which are no longer able to maintain their popula-
tions by simply assimilating dissolved inorganic and
organic nutrients, as a precondition for susceptibility
of K. brevis to bacterial attack. We found that the
model’s simulated bacterioplankton cannot maintain
their population levels without utilization of live com-
peting phytoplankton as an additional source of
nutrition. This is in contrast to hydrocarbon sources
that contain negligible amounts of phosphorus and
nitrogen compounds. Furthermore, both the phyto-
plankton and bacterioplankton are initial competi-
tors for inorganic nutrient supplies, until the preda-
tory heterotrophs prevail against the autotrophs.
Although this new numerical lysis formulation
describes HAB demise as a result of algicidal bacteri-
oplankton, it indirectly represents a combination of
biological cell lytic pathways such as viral lysis and
PCDs since these additional processes are similarly
induced by environmental stress.
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We added this lysis term to a prior 1-dimensional
(1D) simulation analysis of the population dynamics
of Karenia brevis HABs on the WFS during 2001
(Lenes et al. 2012). Model fidelity was evaluated with
weekly observations of K. brevis on the nearshore
WFS during 2001. Accordingly, 3-dimensional (3D)
advective loss processes of the WFS (Weisberg et al.
in press) are not considered in the present study. This
new biotic loss term was formulated as a non-linear
function of K. brevis biomass and nutrient stress, in
competition with the other phytoplankton and bacte-
rioplankton of the model, all subject to additional lin-
ear grazing losses in a 1D vertical model of near
shore WFS waters (see Fig. 1).

METHODS

Model setup

In this numerical study, we used a revised non-
 linear version of the previous linear lysis term of the
Harmful Algal Bloom Simulations (HABSIM), ini-
tially described in Lenes et al. (2012). The model still
consisted of 24 state variables: temperature, salinity,
the vertical eddy coefficient (Kz) for vertical mixing,
spectral light, colored dissolved organic matter
(CDOM), dissolved organic carbon (DOC), dissolved
organic nitrogen (DON), dissolved organic phospho-
rus (DOP), dissolved inorganic carbon (DIC), nitrate
+ nitrite (NO3), ammonium (NH4), phosphate (PO4),
silicate (SiO4), iron (Fe), 4 functional groups of phyto-
plankton (diatoms, microflagellates, Trichodesmium
erythraeum, and Karenia brevis), zooplankton fecal
pellets, ammonifying and nitrifying heterotrophic
bacterioplankton, detritus, larval and adult fish, and
sediment microbiota. The model had a 1 m vertical
resolution over the water column above the 20 m iso-
bath of the WFS at 27.17° N, 82.90° W, southwest of
Sarasota, FL (Fig. 1), with 1 sediment layer of 1 cm
thickness, and a 30 s time step.

The simulation runs began on 1 January 2001, with
a 3 mo spin-up, such that results of the prior baseline
case and the new non-linear lysis component of bac-
terial–phytoplankton interactions are shown during
HAB onset, maintenance, and termination phases of
April to December 2001 (see Figs. 2 to 4). To better
quantify the simulated description of the HAB termi-
nation phase during 2001, we changed the linear
lysis term of the baseline case (Lenes et al. 2012) to a
more complex formulation of Eqs. (1) to (3). Calcula-
tion of the new realized Karenia brevis lysis term, lkb,
was now described by:

lkb =  lrm × ℵ (1)

lrm =  lmax × (P2
kb / 90 000) (2)

ℵ =  1 – min(Felim, Plim, Nlim)2 (3)

where lmax was the maximum lysis rate and lrm the
realized maximum lysis rate.

The parameter 90 000 of Eq. (2) was the square of
the Karenia brevis biomass (Pkb) (300 mmol C m−3) at
which the maximum lysis rate occurred in the model.
The nutrient limitation adjustment, ℵ, was then based
on the minima of the K. brevis iron, phosphorus, and
nitrogen limitation terms (Felim, Plim, Nlim) at each time
step of the model (Lenes et al. 2005, 2008, 2012).
 Finally, the value of 0.6 d−1 for lmax obtained from
 experimental lytic declines of K. brevis, subjected
to bacterial attack of heterotrophs isolated from
the WFS (Roth et al. 2007). An additional numerical
stability constraint was imposed that the refuge
 population of K. brevis was 0.1 mmol C m−3, below
which amount of biomass no lytic losses prevailed.

Model validation

Here, we utilized monthly nutrient data (see Fig. 2)
of 3 cross-shelf sections off Tampa Bay, Sarasota, and
Charlotte Harbor during cruises in 2001 of the

Fig. 1. Location of the 1-dimensional model (+) southwest of
Sarasota above the 20-m isobath (27.17° N, 82.90° W), in
relation to Tampa Bay and Charlotte Harbor, Florida, USA.
The bounded area represents the validation region over
which the maximum weekly Karenia brevis concentrations 

were obtained
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NOAA/EPA ECOHAB:Florida and ONR HyCODE
programs (Vargo et al. 2008, Walsh & Kirkpatrick
2008). We summed these measurements to compute
total dissolved nitrogen (TDN = NO3 + NH4 + DON)
and total dissolved phosphorus (TDP = PO4 + DOP).

For additional verification of the model’s HAB pre-
dictive efficiency, the weekly maximum cell counts of
Karenia brevis (see Fig. 3) were obtained from the
Florida HAB historical database, maintained by the
Florida Wildlife Commission’s Fish and Wildlife
Research Institute (FWC FWRI), at both the surface
(<3 m depths) and bottom (<5 m above sediments)
within 35 km of the west Florida coast between
Cedar Key and Naples (Fig. 1). We used this near -
shore information as an estimate of an alongshore
cumulative WFS catchment basin of onshore trans-
port of phytoplankton populations during net biolog-
ical growth and loss processes (Walsh et al. 2003).

Such an approach allowed us to compare the simu-
lated biochemical bloom dynamics by mimicking a
drifting bloom independent of the horizontal physical
processes and sampling bias (Young & Christman
2006, Heil & Steidinger 2009). The maximal Karenia
brevis cell counts, i.e. the observed net population
successes of their HABs against all gains and losses,
were then converted to carbon units of mmol C m−3

for comparison of these additional validation data
with the model output, using conversion factors of
5.0 × 10−6 µg chlorophyll (chl) cell−1 and a C:chl ratio
of 30 (Lenes et al. 2012).

Finally, the sparsest data set was a few observa-
tions of total bacterioplankton biomass within near -
shore WFS waters (see Fig. 4) during June 1993
(Pomeroy et al. 1995) and September 2001 (Jones et
al. 2011). These points were presented to represent a
range of values measured during bloom and non-
bloom scenarios, not as explicit validation. Accord-
ingly, based on the richest data set of weekly cell
counts of Karenia brevis (see Fig. 3), 6 different sta-
tistical criteria (see Table 1) were evaluated for the 2
simulation cases of linear and non-linear lysis terms
to assess the predictive efficiency of the revised
HABSIM model. The fidelity of model output was
again gauged (Lenes et al. 2012) with estimates of:
average error (AE); average absolute error (AAE);
root mean squared error (RMSE); general standard
deviation (RMSE/P); modeling efficiency (MEF); and
the coefficient of determination, i.e. the square of the
correlation coefficient (r2).

The statistical goodness of fit criteria were calcu-
lated over 3 Karenia brevis HAB phases of 2 different
lysis model cases during 2001. The statistics for
Cases 1 and 2 of the linear and nonlinear lytic terms

were first calculated over the full temporal period of
model simulations of HAB onset, maintenance, and
demise phases from April to December 2001. Then,
the statistics for other Cases 1a and 2a were instead
computed through the HAB maintenance phase, up
to 5 October 2001, only.

RESULTS

Evidence of the improved model performance was
first demonstrated by the simulated total dissolved
nutrient stocks (Fig. 2). In the baseline case, both the
model’s surface TDN and TDP underestimated the
observed concentrations during HAB termination
(Fig. 2). In the new lysis case, the simulated TDN
closely matched observations of HAB onset in July
and August 2001, HAB maintenance during Septem-
ber and October 2001, and HAB demise in November
and December 2001, where these periods were
defined by: (1) exponential growth, (2) maintenance
of the vertically integrated biomass, and (3) rapid
decline in abundance (Vargo 2009, Lenes et al. 2012).

75

Fig. 2. Simulated daily surface concentrations (µmol kg−1)
for Case 1 (baseline; solid line) and Case 2 (new lysis;
dashed line) of (A) total dissolved nitrogen (TDN = NO3 +
NH4 + DON) and (B) total dissolved phosphorus (TDP =
PO4 DOP) in relation to the observed TDN and TDP (s).
DON: dissolved organic nitrogen; DOP: dissolved organic 

phosphorus
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The model also yielded larger TDP stocks, approxi-
mating those observed (Fig. 2B). These results sug-
gested that the model was now accurately reproduc-
ing cell death, since Karenia brevis represented the
largest source of potential dissolved nutrients.

In order to quantify model improvement, we then
compared the simulated surface concentrations of
Karenia brevis in the baseline and new cases of the
model with the weekly carbon biomass equivalents
of the FWC FWRI cell counts (Fig. 3A). Little change
in either case of the model’s HAB biomass was found
during initiation of the bloom in July and August
2001 (Fig. 3A). However, a significant divergence of
results began during the maintenance phase, with a
30% difference in predicted HAB biomass between
the 2 cases by the third week of September 2001.
This divergence of the model’s surface HAB concen-
trations reached a maximum of 42% by November
2001 (Fig. 3A). In comparison, the near-bottom bio-
masses of the model did not vary significantly be -
tween the 2 cases (Fig. 3B), since the K. brevis popu-
lation changes at depth were still mainly dictated by
settling velocities, swimming speeds, and wind-
induced vertical mixing (Lenes et al. 2012).

The improved fidelity of the non-linear lysis case of
the model (Fig. 3) reflected both greater lytic losses of
Karenia brevis and increased success of their bacter-
ial competitors (Fig. 4). Note that the greater simu-
lated biomass of mature populations of these micro-

bial predators now extended over longer time peri-
ods during the termination phase of the K. brevis
HABs (Fig. 4). Yet, without another non-linear de -
finition of predator–prey interactions, in turn, of bac-
terioplankton and ciliates of this present version of
HABSIM, the predicted heterotroph biomass in Sep -
tember 2001 overestimated the bacterial stocks
observed at that time on the WFS (Jones et al. 2011).

Statistical analysis of the fidelities of the prior base-
line (Case 1) and new lysis (Case 2) cases of the
model (Table 1) indicated that HABSIM had already
successfully reproduced the initiation and early
maintenance phases of the 2001 Karenia brevis HAB
on the WFS, with a MEF of 0.75 between 1 April and
5 October 2001 (Case 1a; Table 1). Now, over all HAB
phases of Cases 1 and 2 (Table 1) between 1 April

76

Fig. 3. Simulated daily Karenia brevis concentrations (mmol
C m−3) for Case 1 (baseline; solid line) and Case 2 (new lysis;
dashed line) cases at the (A) surface and (B) near-bottom
layer in relation to the observed weekly maximum K. brevis

concentrations (s)

Fig. 4. Simulated daily surface bacterial biovolume (mmol C
m−3) for Case 1 (baseline; solid line) and Case 2 (new lysis;
dashed line), in comparison with observations during June
1993 in the absence of a large Karenia brevis harmful algal
bloom (HAB) and September 2001 within a large K. brevis

HAB

Statistic Case 1 Case 1a Case 2 Case 2a

AE 44.25 5.48 19.23 −8.52
AAE 57.95 24.12 44.48 25.72
RMSE 92.53 42.66 67.47 43.90
RMSE/P 2.38 0.73 1.74 0.75
MEF −0.46 0.75 0.22 0.73
r2 0.28 0.75 0.33 0.77

Table 1. Validation metrics applied to the Karenia brevis
harmful algal bloom (HAB) phases of multiple lysis model
cases during 2001. Statistics for Cases 1 and 2 of the linear
and nonlinear lytic terms are calculated over the full tempo-
ral domain of simulated HAB onset, maintenance, and
demise phases during April to December 2001. Statistics for
Cases 1a and 2a are computed through the maintenance
phase up to 5 October 2001, only. Metrics were: average
error (AE); average absolute error (AAE); root mean squared
error (RMSE);  general standard deviation (RMSE/P); model-
ing efficiency (MEF); and the coefficient of determination (r2)
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and 31 De cember 2001, introduction of the non- linear
lysis term increased the MEF from −0.46 to +0.22, or
an increment of 0.68. This is shown in Fig. 3A, where
the dashed line of the new model simu lation comes
closer to the observations.

The continued failure of the new model to fully
reproduce the termination of the 2001 HAB is attrib-
uted to 2 major factors. First, poorly parameterized
linear Karenia brevis grazing losses are now under
redefinition as non-linear interactions of explicit state
variables of additional ciliate, larvacean, and cope-
pod omnivores, harvested in turn by simulated top
predator scyphomedusae, chaetoganths, and oil
spills. Secondly, horizontal advection was absent in
the 1D simulation, once thermal stratification of the
WFS water column broke down in the fall (Weisberg
et al. in press).

DISCUSSION

Compilation of the life history of Karenia brevis on
the WFS found that these shade-adapted HABs ini-
tialized near bottom, between the 20 to 40 m iso-
baths, in response to low light tolerances (Steidinger
et al. 1998, Walsh et al. 2009, Weisberg et al. 2009).
At this distance from the coast, potential nutrient
sources for the HAB initiation phase included: ‘new’
nitrogen from the diazotrophic Trichodesmium spp.
(Lenes et al. 2001, Walsh & Steidinger 2001, Mulhol-
land et al. 2004, Lenes & Heil 2010); benthic reminer-
alization of prior spring diatom blooms (Darrow et al.
2003); and influxes from northern GOM rivers
(Stumpf et al. 2008). Once K. brevis concentrations
exceeded 1.0 to 2.5 × 105 cells l−1, or 1.0 to 2.5 µg chl
l−1, their associated intracellular and waterborne
brevetoxin stocks passed mortality thresholds for fish
and other marine life (Landsberg 2002).

During this maintenance phase of Karenia HABs
on the WFS, ichthyotoxic PbTx-1 dominated (Pierce
et al. 2008), providing a positive feedback to the
Karenia brevis populations, since dead fish decay at
a rate of as much as 50% per day in the warm sum-
mer GOM waters (Stevenson & Childers 2004).
Indeed, recent incubation experiments found that
K. brevis exhibited a realized growth rate of ~1.0 d−1,
when fed dissolved nutrients from decaying fish
(Killberg-Thoreson et al. in press), compared to the
more moderate rate of 0.2 to 0.3 d−1 generally ob -
served during blooms (Walsh et al. 2006).

In addition, Karenia brevis concentrations of 1.0 to
2.5 × 105 cells l−1 have been identified as the transition
point at which their HABs become monospecific with

regard to other competing phytoplankton species
(Landsberg 2002). Their initial success could have
been due to the allelopathy, while K. brevis outcom-
peted their faster-growing autotrophic counterparts,
as well as the bacterioplankton, for available nutrient
resources. These initial offshore HABs were subse-
quently transported toward the coast within the bot-
tom Ekman layer (Weisberg et al. 2009, in press). K.
brevis HABs then accumulated near the surface, once
their stocks increased from both growth and physical
aggregation processes, thus re ducing photoinhibition
through self shading (Walsh et al. 2009). With transi-
tion to their coastal maintenance phase, associated
toxicity led to fish kills that provided additional recy-
cled nutrients to fuel maximal fall K. brevis concen-
trations of >5.0 × 107 cells l−1 (Walsh et al. 2006, 2009).

During termination phases of these Karenia brevis
HABs, a shift in the dominant waterborne toxin forms
from PbTx-1 to PbTx-3 was observed on the WFS
(Fleming et al. 2011), once cells of K. brevis ruptured
through bacterial-induced lysis (Roth et al. 2007) and
sloppy copepod grazing (Tester et al. 2000). Such
observed temporal shifts of brevetoxin dominance
are not only an index of HAB status, but also have
implications for human health, since PbTx-3 more
strongly impacts respiratory functions of analogous
mammals (Wells et al. 1984, Bossart et al. 1998,
Singer et al. 1998, Benson et al. 2005). Thus, quantifi-
cation of cell lytic loss processes presented here to
more accurately model bloom termination can lead to
future simulations of the major toxin pathways as
well. This next step would have major public health
implications since, depending upon the strength and
direction of onshore winds, aerosolized sources of
marine HAB toxins can act as asthma triggers of
adverse pulmonary episodes.

Although this new numerical lysis formulation of
the model described HAB demise on the WFS, it
should also represent future applications to addi-
tional coastal isomorphs of the English Channel, the
WIS, and the western Mediterranean Sea. For exam-
ple, during July through September 2004, fish kills of
Indian oil sardine Sardinella longiceps and respira-
tory distresses of humans, with asthma attacks of res-
idents in the capital city, Thiruvanathapuram
(Trivandrum) of Kerala State, India (Iyer et al. 2008),
were observed along the southern end of the Mal-
abar coastline of the WIS. These events were then
described as follows: 

This bloom resulted in large-scale fish mortality and
hospitalization of 200 people especially children who
suffered from nausea and breathlessness caused by …
Karenia brevis (D’Silva et al. 2012, p. 1245).
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Subsequently, massive fish kills and ~57 µg chl l−1

of Karenia mikimotoi were also observed ~220 km
farther north in the same coastal Kerala State, near
Kochi (Cochin), during October 2009 (Madhu et al.
2011). Previously, another red tide of ~1 × 108 cells
l−1, or >100 µg chl l−1, of Gymnodinium nagasa -
kiense = K. mikimotoi occurred off Magaluru (Man-
galore) of the adjacent Karnataka State during Sep-
tember 1989 (Karunasagar & Karunasagar 1992).
Then, massive diagnostic fish kills of snapper Lut-
janus spp. and contamination of mussels Perna viridis
were also found (Karunasagar & Karunasagar 1992).
Clearly, future numerical biophysical models, which
predict HAB onset, transport, maintenance, and lytic
demise, with release of wind-borne onshore asthma
triggers of brevetoxin and gymnocin aerosols, would
benefit coastal human residents and tourists in Ker-
ala and Karnataka States.

In another isomorph of the western Mediterranean
Sea, recent emergence of the previously cryptic
tychopelagic dinoflagellate Ostreopsis ovata also led
to hospitalization of >100 beach visitors along the
coast of Genoa, Italy, with respiratory problems, on
18 July 2005 (Zingone et al. 2006). Dispersed by
coastal currents before aerosol formation, the lipo -
phylic palytoxins of Ostreopsis spp. are more potent
than saxitoxins and brevetoxins (Riobo et al. 2004).
These regional Ostreopsis toxins have, thus far, been
responsible for sea-spray initiations of breathing dif-
ficulties of adjacent humans from Bari, Italy to Mar-
seilles, France, as well as farther downstream to
Barcelona and Majorca, Spain (Vila et al. 2001, Bres-
cianini et al. 2006, Tichadou et al. 2010). Accordingly,
these additional aerosolized toxins clearly warrant
predictive models of adjacent public health conse-
quences of marine algal cell lysis in many global
regions (Rhodes 2011, Parsons et al. 2012).

CONCLUSIONS

Over the last decade, significant progress has been
made in testing various hypotheses that drive bloom
formation of the toxic dinoflagellate Karenia brevis
(Vargo 2009). Yet, it is clear that we need a better
understanding of the biological loss processes that
lead to bloom termination. To predict both water-
borne and aerosolized toxin vectors associated with
HABs of Karenia spp. in European, Asian, and North
American waters, loss processes associated with dis-
tinct stages of bloom development, maintenance, and
termination must be defined in relation to their suite
of toxins. In this study, we tested the hypothesis that

heterotrophic bacterioplankton are a major source of
mortality for Karenia HABs by formulating a non-
 linear lysis term for simulation of K. brevis HAB ter-
mination on the WFS. The lysis term assumed that
particle encounters of planktonic microalgae and
bacteria can be described as the square of the phyto-
plankton biomass, similar to other particle encounter
studies. The formulation also accounted for nutrient-
limitation of K. brevis as a precondition for suscepti-
bility to bacterial attack. This indirectly accounted for
viral lysis and PCD due to similar environmental
stressors, creating a bulk biological lysis term. The
introduction of the non-linear lysis term increased
the modeling efficiency by 0.68 due to improved res-
olution of the bloom termination, setting the stage for
future simulations of waterborne and aerosolized
toxicity. In addition, future field studies of Karenia
spp. bloom dynamics should include quantification of
bacterial types and biomass to further refine both loss
terms and microbial nutrient cycling.
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