
MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Vol. 592: 109–117, 2018
https://doi.org/10.3354/meps12488

Published March 29

© Inter-Research 2018 · www.int-res.com*Corresponding author: rpausch@ucsc.edu

INTRODUCTION

As Caribbean coral cover declined through the final
decades of the 20th century (Jackson et al. 2014), so-
lutions were sought to replace Caribbean reef coral
structure. Live coral produces framework, undergird-
ing ecosystem services by providing shoreline protec-
tion, harboring diverse organisms through varying
life stages, and regulating biogeochemical cycles
(Moberg & Folke 1999). ‘Coral gardening’ (Rinkevich
2005), wherein wild fragments are collected, propa-
gated in common-garden in situ nurseries, and then
‘outplants’ transplanted to the reef, has become an in-
creasingly popular tool to combat the ongoing degra-

dation of reefs. Outplanting of foundation Caribbean
elkhorn and staghorn corals (Acro pora palmata and
A. cervicornis) has been widely implemented across
the Caribbean (Young et al. 2012) and in the Florida
Keys as a necessary recovery action under the US En-
dangered Species Act recovery plan (National Marine
Fisheries Service 2015). A. cervicornis, with high
growth rates and ease of fragmentation, is the target
of most current restoration efforts, including consider-
able investigation of the influence of coral traits, out-
plant configuration, and location on success (Griffin et
al. 2015, Mercado-Molina et al. 2015, Ladd et al. 2016,
2017, Drury et al. 2017). The larger and more robust
elk horn coral A. palmata is being increasingly tar-
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geted in coral gardening efforts, but little investigation
has addressed factors affecting its outplant success.

Historically prolific in the upper Florida Keys
(Precht & Miller 2007), by the early 2000s A. palmata
cover had declined by more than 95% from previous
abundances (Miller et al. 2003), with rapid declines
continuing since then (Williams et al. 2014b, Suther-
land et al. 2016). Important drivers of A. palmata
mortality include storms, disease, predation by the
corallivorous snail Coralliophila abbreviata (Williams
& Miller 2012), as well as acute thermal bleaching
events (Williams et al. 2017). Rising global tempera-
tures pose an ongoing threat, as the Florida reef tract
is projected to experience severe annual thermal
bleaching by 2040, and other regions of the Carib-
bean as early as 2030 (van Hooidonk et al. 2015).
While common habitat of existing A. palmata is in
shallow fore reef and reef crest habitats, surprisingly
robust populations, including thriving thickets, are
found in alternate environments in the upper Florida
Keys (Miller et al. 2008) including mid-channel patch
reefs and along back reef fringes behind the reef
crest. These stands are often sheltered from wave
energy and surrounded by shallow water resulting in
greater fluctuations in temperature, particularly in
summer when solar radiation warms the surrounding
water. Fore reef populations are at the shelf margin
where they are exposed to relatively greater mixing
with deeper offshore water that likely serves as a
buffer from extreme temperature fluctuation.

Genotypic diversity in wild A. palmata stands is
variable across its range (Baums et al. 2006), but in
the upper Florida Keys it is particularly low, and de -
clining (Williams et al. 2014b). Consequently, pre-
serving or enhancing genotypic diversity is a priority
of active coral restoration in the region. While all
genotypes contribute to reef-wide diversity and sex-
ual reproductive potential, certain genotypes may
possess traits more favorable for outplanting (e.g.
resistance to transplant stress, accelerated growth
rate), or may be better suited for certain habitats or
reef of origin (Baums 2008).

Basic principles of restoration genetics suggest that
individual organisms will perform best in habitats
most similar to their native habitat (i.e. local adapta-
tion). This principle is generally operationalized by
management agencies by discouraging translocation
over long distances, or to areas where some level of
genetic connectivity with the native sites is not evi-
dent (e.g. Florida Fish and Wildlife Conservation
Commission 2007). Existing evidence for local adap-
tation in corals is ambiguous, with both locally adap -
ted and generalist genotypes described, sometimes

within a single species (Smith et al. 2007, Vermeij et
al. 2007, Drury et al. 2017). High clonality in some A.
palmata has been cited as evidence of local adapta-
tion of highly replicated genotypes (Baums 2008).
However, rapid climate and other environmental
changes ongoing in coastal habitats raise the possi-
bility that historically adapted genotypes may experi-
ence a disparity with their local environment. This
phenomenon suggests an alternate restoration strat-
egy using non-local genotypes that are adapted to
future, rather than present, conditions at a restora-
tion site (so called ‘predictive provisioning’; Jones
2013, Williams et al. 2014a).

Further investigation of the effects of fragment
genotype and outplant location on overall fragment
success is of interest to coral population enhance-
ment efforts, as these are factors that can be con-
trolled and ideally optimized during outplanting ef -
forts. Size of fragment at time of outplanting may also
be controlled for with differing levels of propagation
investment. Elkhorn coral is one of the fastest grow-
ing species in the Caribbean, yet twice as many frag-
ments can be produced per year if they are out-
planted, for example, after 6 mo nursery propagation
time rather than 1 yr. This motivated our investiga-
tion into the performance of 2 size classes that are
realistically feasible for nurseries to grow on a large
scale. Better, or equal, performance by relatively
smaller fragments can improve restoration efficiency
by reducing the time and effort required to produce
larger fragments.

Here, we report the results of 2 experiments: one
testing the effect of outplanted fragment size and the
second testing performance of 4 genotypes out-
planted to 2 distinct habitat types. We hypothesized
that large fragments would exhibit both greater net
increase in size and higher survivorship than small
fragments, due to the larger circumference of grow-
ing margins (at the base and branch tips) and greater
surface area allowing for increased resilience to partial
mortality from predators and disease. If A. palmata
genotypes are finely adapted to their native habitat
or site, we would expect that individual genotype
performance would depend on habitat, and ‘native’
genotypes should outperform transplants at a given
site or habitat type. Serendipitously, these experi-
ments coincided with extreme summer thermal stress
events in both 2014 and 2015. Hence, the experi-
ments provided comparisons of the effects of size,
genotype, and outplant habitat on fragment perform-
ance under elevated thermal stress which, though
anomalous when compared with historical records,
may represent the norm in coming decades.
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MATERIALS AND METHODS

Size experiment

Two size treatments, ‘large’ and ‘small’ Acropora
palmata fragments, were outplanted in pairs 1 m
apart across 3 replicate fore reef sites in May 2014.
Hereafter, ‘outplants’ and ‘fragments’ are used inter-
changeably, with n = 126 pairs. Due to the irregular
morphology and common partial mortality of A. pal -
mata fragments, a live area index (LAI) was used in
this study as a proxy for size. LAI was calculated as
the square of the average of length, width, and
height, multiplied by the proportion of live tissue
cover (Williams & Miller 2012). Large fragments
averaged 108 ± 27 cm2 (mean ± SD) LAI with average
length and width dimensions of 14 and 9 cm, respec-
tively. This size represents a fragment cohort requir-
ing 9 to 12 mo in-nursery propagation time (K. Ripple
pers. comm.). Small fragments, resulting from 6 to
9 mo propagation time, averaged 51 ± 14 cm2 LAI,
with average length and width of 10 and 6 cm,
respectively. All fragments were propagated from a
single genotype, named SLg (see below), by the
Coral Restoration Foundation (CRF) in an in situ
nursery and then attached to cleared reef substrate
with 2-part underwater epoxy.

We targeted outplant locations of similar depth
where A. palmata previously existed, as indicated by
remnant skeletons. Depths of outplants were approx-
imately 6 m at French (FR) reef, 5 m at Molasses (ML)
reef, and 4.5 m at Pickles (PI) reef. The outplant and
source site coordinates are provided in Table S1 in
the Supplement at www. int-res. com/ articles/ suppl/
m592 p109 _ supp. pdf. Full surveys to measure size
and condition were conducted in June 2014 (initial),
November 2014, June 2015, and December 2016
(final). Due to severe thermal heat stress and concur-
rent bleaching that occurred from July to September
2014, two additional ‘condition-only’ surveys were
conducted in August and September 2014. Condition
metrics included a visual estimate of percent live tis-
sue cover, bleaching severity, and presence/absence
of the corallivorous snail Coralliophila abbreviata on
the fragment. For each fragment alive at the final sur-
vey, the number of surveys in which snails were pres-
ent was averaged to give a mean snail presence score
for each fragment. Bleaching severity was quantified
as an ordinal score with 0 = none, 1 = pale coloration
of part of the fragment, 2 = pale coloration of >90% of
fragment, 3 = bleached white over part of fragment,
or 4 = bleached white over >90% of fragment. Size
was measured in situ as length (longest dimension),

width (axis perpendicular to length) and height.
Growth, including both expansion and partial mor-
tality (i.e. net change in size), was measured as the
change in LAI over the whole experiment, reported
only for fragments with >0% live tissue cover at the
final survey.

Genotype experiment

Multilocus genotypes were determined via micro-
satellite markers (Baums et al. 2005) when coral frag-
ments were harvested and brought into nursery cul-
ture. Genotypes were tracked carefully throughout
nursery propagation according to best practices
(Johnson et al. 2011). Four genotypes were chosen
for the experiment based on abundant availability
from CRF’s early nursery culture effort. The Horse-
shoe genotype (HSg, with ‘g’ denoting genotype
name as opposed to outplant site) originated from a
mid-channel patch reef. Snapper Ledge (SLg) and
Conch Reef 2 (CN2g) were first collected from a fore
reef location, and Conch Reef 1 (CN1g) originated
from a more protected habitat behind the fore reef
(i.e. back reef). All 4 genotypes were outplanted from
nursery propagation in May 2015. The 2 habitat
treatments included mid-channel patch reef and
wave-exposed fore reef, with 3 replicate sites of each
habitat. Patch reef sites, including AAA (AA), Horse-
shoe (HS), and North Dry Rocks (ND), were approxi-
mately 3.5 m in depth. Fore reef sites ranged 4.5 to
6 m in depth and were the same sites from the size
experiment (Table S1). A total of 30 fragments of
approximately equal size (40 ± 15 cm2) of each of the
4 genotypes (n = 120) were outplanted to each of the
6 sites, totaling 720 outplants. Fragments were as -
sessed as described above for the size experiment in
surveys conducted early June, mid-July, and Novem-
ber 2015, and June and December 2016. Additional
condition-only surveys were conducted in Septem-
ber and October 2015 to assess response to the ther-
mal stress during fall 2015.

Statistical analyses

All data analyses were carried out using JMP v.13
except for survivorship, which was analyzed using
SPSS v.24 Wilcoxon survival analysis. Sizes were
compared within each site and genotypes within
each site and habitat. To compare peak bleaching
scores (i.e. scores of the survey when bleaching was
most severe) in the size experiment, a 2-factor ordi-
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nal logistic model tested the fixed effects of site and
size, as well as interaction. The same factors were
used in a fixed effects model for change in LAI and
average ranked mean snail presence in the size
experiment. In the genet experiment, 3-factor nested
effect models tested the effect of genotype, outplant
habitat, and site nested within habitat, as well as the
genotype × habitat interaction. These same factors
were used in testing the ordinal bleaching scores in
an ordinal logistic model. Holm-Sidak or Tukey-
Kramer post hoc pairwise comparisons were con-
ducted between levels of significant factors. The raw
dataset is archived online (Miller & Williams 2017).

RESULTS

Size experiment

Separate Wilcoxon survival analyses showed no sig-
nificant differences in survivorship between the large
and small sized fragments within any of the 3 sites
over the 2.5 yr period, with 25 and 26% survivorship
respectively across sites (Fig. 1a). However, fragments
at FR reef had almost triple the survivorship of those
at PI reef (43 vs. 15%) with ML reef intermediate
(22%; see Fig. S2 in the Supplement at www. int-res.
com/ articles/ suppl/  m592 p109 _ supp. pdf).
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Fig. 1. Kaplan-Meier survival curves for (a) frag-
ments of 2 size treatments from June 2014 to De-
cember 2016 showing no significant difference.
Survivorship (May 2015 to December 2016) for
fragments of 4 genotypes in (b) fore reef and (c)
patch reef habitats. Letters beside each curve
denote significantly different pairwise compar-
isons (Wil coxon post hoc, p < 0.05). Dashed lines
represent 95% confidence intervals. Note that
drops in survivorship coincide with survey dates
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Bleaching scores during the peak of bleaching in
September 2014 were significantly different between
sites (logistic ordinal regression; χ2

2 = 72.2, p < 0.001;
Fig. 2a) and sizes (χ2

1 = 4.68, p = 0.031), with no sig-
nificant interaction. Unexpectedly, small fragments
bleached significantly less than large fragments, a
pattern most apparent at ML reef although it experi-
enced the least bleaching of all sites. Fragments at PI
reef were the most severely bleached. Over the
30 mo experiment, small fragments added a signifi-
cantly greater increment of LAI (214 ± 34 cm2, mean
± SE) than did large fragments (103 ± 37 cm2; F1,55 =
5.75, p = 0.020; Fig. 3a). Site did not have a significant
effect on change in LAI.

Overall, snails were found on 7% of outplants alive
at the end of the experiment, ranging from 16% at PI
reef to 2% at FR reef across surveys. The mean snail
presence on fragments was marginally different
among sites (F2,55 = 3.05, p = 0.055) but size was not
significant.

Genotype experiment

At each fore reef and patch reef site, significant
differences in survivorship were found among the
4 genotypes (all p < 0.03), except for FR reef (p =
0.125), a fore reef site. Genotype survivorship
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Fig. 2. Frequency of peak bleaching scores as percentage of live fragments in the (a) size (Sept 2014) and (b) genotype (Oct
2015) experiments. Sites within each habitat (b) are pooled. Bleaching score colors range from dark brown, representing 0
(no bleaching), to white or 4 (>90% of the fragment completely bleached). Different letter cases or italics denote groups 

within which pairwise comparisons (Tukey-Kramer post hoc, p < 0.05) were performed

Fig. 3. Change in live area index (LAI; cm2) for duration of (a) size experiment and (b) genotype experiment. Error bars: one
standard error of the mean. Number of live fragments at end of experiment (n) shown in each bar. Genotypes and sizes with 

different letters differed significantly (Tukey-Kramer post hoc, p < 0.05)
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rankings were nearly identical among sites within
habitat types (Fig. S2) and are thus pooled in
Fig. 1. At fore reef sites, CN1g fragments exhibited
the highest survivorship at 70%, a level not signif-
icantly greater than CN2g at 64% (Fig. 1b). SLg
experienced the lowest survivorship overall: 48%
in the fore reef and 6% in the patch reef habitat
(Fig. 1c). Fore reef site ML had the lowest sur-
vivorship of all sites (14%), apparently due to dis-
ease observed there, while the other 2 fore reef
sites exhibited 83 and 79% survivorship across
genotypes (Fig. S2). In the patch reef habitat, SLg
and HSg genotypes showed poorer survivorship
than at fore reef sites (Fig. 1b,c); CN2g survived
best (86%). Mortality decreased substantially after
July through November 2015 (period of 2015
bleaching; Fig. 1c).

During the survey with the most severe observed
bleaching in October 2015 (Fig. S1), genotype, habi-
tat, their interaction, and site nested in habitat were
all significant factors affecting bleaching score (logis-
tic ordinal regression; all p < 0.001). All genotypes
showed higher bleaching scores at patch reefs than
fore reefs, but some genotypes (e.g. CN1g) exhibited
more severe bleaching than others (e.g. CN2g). SLg
bleached most severely at all sites, with 100% of live
patch reef fragments completely bleached (Fig. 2b).
FR and ML reefs, the deepest sites, experienced the
lowest bleaching scores.

Genotype had a significant effect on change in LAI
during the 18 mo experiment (F3,391 = 21.7, p < 0.001;
Fig. 3b), as did site (F4,391 = 27.5, p < 0.001; nested in
habitat), but habitat and the habitat × genotype inter-
action did not. CN2g exhibited significantly higher
change in LAI than any other genotype (Tukey-
Kramer, all p < 0.001), approximately double that of
the lowest (SLg; Fig. 3b).

Overall, snail prevalence was generally low during
this experiment (<7% averaged across sites at each
survey) until December 2016 (11%), when predation
became the most common cause of partial mortality
as opposed to disease or bleaching. Mean snail pres-
ence over all surveys was compared among geno-
types, habitats, and sites (nested in habitats), with
fore reef habitats showing significantly greater snail
presence than patch reefs (F1,391 = 5.3, p = 0.022).
Sites within habitats showed significant variation
(F4,391 = 12.3, p < 0.001). During the December 2016
survey, when the greatest number of snails were
observed, patch reef sites AA, HS, and ND had 24,
12, and 4% snail prevalence, respectively, while fore
reef fragments at FR, ML, and PI exhibited 5, 29, and
18% snail prevalence.

DISCUSSION

Both the genotype and outplant habitat, and in
some cases reef site within habitat played major roles
in fragment success over their first 2 yr, while frag-
ment size within the range tested was less important.
Although small fragments bleached less than large
fragments during the summer 2014 bleaching event,
survivorship was virtually identical between the sizes
tested. Site, independent of habitat treatment, influ-
enced survivorship and predation in both experi-
ments, and LAI change in the genotype experiment.
Genotype also had a strong effect on LAI change,
bleaching susceptibility and resultant coral mortality.
These genotype differences were exacerbated in the
shallower patch reef habitats where bleaching stress
was higher.

There is concern in the fields of conservation ge -
netics and population enhancement that poorly
sourced restoration material (e.g. seeds or outplanted
coral genotypes) may compromise the viability of
restored populations, due to loss or dilution of fine-
scale local adaptation of native genotypes. If Acro -
pora palmata is finely adapted to local sites or habi-
tats, genotypes outplanted to habitats similar to reefs
of origin would be expected to fare better than those
placed in a novel habitat. However, this was not a
consistent pattern in our results, in that CN2g, which
was sourced from a fore reef type habitat, showed
high survivorship, growth, and bleaching tolerance
across both habitat types (i.e. apparent high-per-
forming generalist) while the one genotype (HSg)
outplanted back to its native site grew less than half
as much as CN1g and CN2g at that site (mean 48 cm2

vs. 94 and 142 cm2, respectively). HSg also showed
significantly lower survivorship than CN1g and
CN2g at 2 of the 3 patch reefs (see Fig. S2 in the Sup-
plement at www. int-res. com/ articles/ suppl/  m592
p109 _ supp. pdf), emphasizing the potential ‘mis-
match’ of even robust genotypes planted back to
their native environments under predicted future
conditions of frequent thermal stress. SLg outplants
suffered almost complete mortality at non-native
patch reef sites (94%), but also demonstrated poor
survivorship (48%) in fore reef habitats more similar
to its origin, including PI reef, located 800 m from its
site of origin. Overall, with this small sample of 4
genotypes, our results ap pear to better fit a pattern of
generalists (both high and low performers) rather
than a pattern consistent with local adaptation. Drury
et al. (2017) similarly re ported A. cervicornis general-
ist genotypes and higher short-term growth by out-
planted A. cervicornis genotypes sourced from differ-
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ent (‘foreign’) sites than by the native genotype
across 8 reef sites in southeast Florida. Clearly, both
the establishment of a genotype in controlled culture
and its re-introduction into the wild represent strong
selective events. This selection as well as potential
acclimation to controlled nursery conditions may
dampen the observation of local adaptation in out-
planted populations.

While variable bleaching patterns are often related
to distinct Symbiodinium types across hosts, A. pal -
mata in the Florida Keys has been found to host clade
A3 (Symbiodinium ‘fitti’) almost exclusively (Thorn-
hill et al. 2006, Baums et al. 2014). Thus, the host
genotype-specific differences in bleaching suscepti-
bility observed were likely not driven by S. fitti clade
differences. Variation in bleaching among the 4 coral
genotypes was more pronounced in patch reef habi-
tats, and bleaching scores were lower in the fore reef
habitats which were situated ~2 to 3 m deeper than
patch reefs. Temperature loggers at one of the patch
reef sites (North Dry Rocks, see Table S1) re corded
22 d in 2015 during which temperatures exceeded
31.2°C (bleaching threshold determined for local A.
palmata population; Williams et al. 2017; Table 1) as
opposed to only 9 d at the nearest fore reef site (FR
reef, 12 km southwest of North Dry Rocks; Williams &
Miller 2015). This increased exposure to high tem-
peratures at patch reef sites, presumably caused by
shallower depth of the surrounding water and being
sheltered from cooler, offshore water certainly con-
tributed to the increased bleaching severity.

Slight variation in depth at differing sites could also
explain the more severe bleaching at shallower PI
reef during the size experiment. Interestingly, al -
though bleaching was significantly different be -
tween size classes at ML reef, survivorship was not.
We attribute these results to the relatively low num-
ber of fully bleached fragments, as compared to the
genotype experiment. Intermediate bleaching (e.g.

‘paling’) in A. palmata is less likely to lead to full
colony mortality (Williams et al. 2017), and thus
explains the steeper decline in survivorship in the
bleached SLg fragments of the genotype experiment
versus the size experiment.

After survivorship, growth is an important indicator
of coral success in that it contributes to both res -
toration goals (i.e. structural habitat provision) and
biological enhancement, whereby larger colonies
should source greater numbers of both sexual and
asexual propagules. Surprisingly, we found increased
production in ‘small’ fragments compared to ‘large’
after 30 mo, with the mean final size of surviving
small fragments exceeding that of large fragments by
~25% (261 ± 34 cm2 LAI versus 205 ± 34 cm2). While
we expected the initially greater extent of growing
branch tips in large fragments to produce increased
tissue, contrary results coupled with equal survivor-
ship suggests that little is gained by the added invest-
ment of 3 to 6 mo nursery propagation needed to
achieve our larger size class. These results, however,
should be interpreted within the context of a single
genotype and the 2014 and 2015 thermal stress
events, which likely drove some mortality of both
fragment size classes. In the absence of thermal
stress, other sources of partial mortality (e.g. disease
or predation) may more quickly compromise small
fragments that possess less tissue area, in which case
survivorship may show more dependence on colony
size (Nugues 2002, Williams & Miller 2006).

Many previous studies concerning size-dependent
survivorship and growth of transplanted A. palmata
fragments under ‘normal’ thermal regimes made use
of storm-generated fragments, which often exceeded
the size classes of this study, and may have consisted
of multiple genotypes. Lirman et al. (2000) found no
relationship between initial fragment size and sur-
vivorship, although the average initial size of frag-
ments was 651 cm2 versus our mean 78 cm2. Other
studies (e.g. Bruckner & Bruckner 2001, Garrison &
Ward 2008, Forrester et al. 2014) have found in -
creased survivorship with increasing original size,
but again this conclusion often spans size classes
larger than those of the current study. Forrester et al.
(2014) reported mean LAIs of 100 versus 1000 cm2,
whereas our fragments remained within the same
order of magnitude. However, similar to our results,
both Lirman et al. (2000) and Forrester et al. (2014)
found variable growth results with no relation to ini-
tial fragment size.

Corallivorous snail Coralliophila abbreviata preva-
lence was particular to site as well as habitat. Simi-
larly, though disease is far more temporally variable,
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                      Site                             Days over 31.2°C

                     AAA                                       N/A
                Horseshoe                                    21
           North Dry Rocks                               22
                    French                                        9
                  Molasses                                      7
                    Pickles                                       14

Table 1. Number of days where water temperature ex-
ceeded 31.2°C during the 2015 genotype experiment. Patch
reef sites are given in bold, all others are fore reef. Tempera-
ture data from site ‘AAA’ and the size experiment were not 

available due to logger failure
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we observed a disease ‘hot spot’ at the ML reef site in
the genotype experiment. Actively diseased fragments
with little or no signs of bleaching were ob served be-
fore the peak of bleaching and continued dying at this
site even after mortality at nearshore sites stabilized
following relief of thermal stress in November 2015.
These observations, along with the significant influ-
ence of site in determining bleaching severity, change
in LAI, and survivorship highlight the crucial impor-
tance of site selection, even within described habitat
strata or across small geographic distances. Spatial
patterns in disease, predation, and mortality were ap-
parent within 6 to 12 mo, suggesting that short-term
pilot studies with smaller numbers of fragments may
be prudent to detect favorable (or poor) sites prior to
committing large-scale outplants. We acknowledge,
however, that outplanting fragments across a variety
of sites and habitats should spread risk of local mortal-
ity events from temporally variable stressors (e.g. cold
thermal stress, storms, etc.).

Lastly, CN2g’s increase in LAI, relative bleaching
resistance, and increased survivorship suggests that
in certain genotypes desirable traits may be posi-
tively correlated, though potential tradeoffs in other
traits still need to be evaluated (e.g. reproductive
potential, skeletal density, cold tolerance, etc.). We
compare our findings to those of Ladd et al. (2017),
who similarly outplanted various genotypes of nurs-
ery reared A. cervicornis to a reef resembling our
fore reef sites. Ladd et al. (2017) reported that the 2
coral genotypes that bleached most during the sum-
mer thermal stress event actually had the greatest
total linear extension, in contrast with our SLg that
both grew the least and bleached the most. Ladd et
al.’s (2017) genotype with the highest survivorship
had significantly lower total linear extension (TLE;
i.e. growth) (second lowest of 8 genotypes), similar to
our CN1g’s performance, but overall our genotypes
displayed a smaller disparity between performance
metrics. Survivorship and net growth (measured in
TLE) varied significantly with genotype identity, con-
curring with both our findings and those of other
acroporid-based studies (Bowden-Kerby & Carne
2012, Lirman et al. 2014).

Though only 4 genotypes were tested in this study,
many more are now being propagated at scale. Suc-
cessful elkhorn generalist genotypes such as CN2g
should be carefully leveraged in maintaining a thriv-
ing population while including as much genotypic
diversity as possible to support sexual reproduction
and adaptive potential. Better understanding the
costs and benefits of using varying sizes, genotypes,
and outplant locations of these fragments will help

improve outplanting success as we rely more on
active restoration to recover A. palmata on reefs of
the future.
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