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INTRODUCTION

Variation in individual reproductive success is a
cornerstone of evolutionary theory (Williams 1992).
Although much research has evaluated determinants
of reproductive success for a wide variety of organ-
isms and systems, these remain poorly known for
many species (Clutton-Brock 1988). Body size, condi-
tion, growth and timing of birth/hatching/germina-
tion are among the many factors identified as impor-
tant contributors to reproductive success across many
different taxa, including plants (Warwick & Brock
2003, Winter et al. 2008), reptiles (Ruby 1984, Mad-

sen et al. 1993, Olsson & Shine 1996), mammals
(Wauters & Dhondt 1989, Hodge et al. 2008), birds
(Lozano et al. 1996, Mauck et al. 2004) and fishes
(Jacob et al. 2009, Buston & Elith 2011).

In many animal systems, females select male mates
in an attempt to maximise their own fitness (Anders-
son 1994). Sexual selection theory (Andersson 1994)
suggests that females are likely to favour males with
traits that signal fitness benefits to the female (i.e.
traits that could increase the number of offspring that
survive to reproductive age). Female choice is partic-
ularly common in species where males defend nests
or care for young (and indeed, female choice can
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drive the evolution of male parental care; Alonzo
2012). In these systems, male reproductive success
may also be determined by the quality of care that
males are able to provide to their offspring (Anders-
son 1994, Møller & Thornhill 1998).

The question of ‘what makes a good male’ has
been addressed for many species with male parental
care. For example, females of the sand goby Poma -
toschistus minutus appear to prefer males with better
nesting sites (Lehtonen & Lindström 2009). In other
species, females may assess male quality based on
courtship and parental behaviour patterns of males
(Oliveira et al. 2000, Reid et al. 2004), or by the
choices made by other females (Alonzo 2008). For
many species with male parental care, females tend
to favour males with larger body size and/or greater
body condition (e.g. Bisazza & Marconato 1988,
Magnhagen & Kvarnemo 1989). Body size and/or
condition may be good indicators of sufficient ener-
getic reserves that enable males to care for offspring
over longer durations (Côte & Hunte 1989, Lindström
& Hellström 1993). For pouch-brooding males, larger
body size (and a larger pouch) is associated with
improved survival of offspring (Dzyuba et al. 2006).
Larger males often rank more highly in social domi-
nance hierarchies, which can reduce likelihood of
egg predation by conspecifics (Bisazza et al. 1989)
and ensure access to better nesting sites (Perrone
1978, Magnhagen & Kvarnemo 1989, Rowland 1989,
Candolin & Voigt 2001). Similarly, increased body
condition may provide honest signals to females of a
male’s increased reproductive output (Chastel et al.
1995), attractiveness to other females (Morales et al.
2003) or prolonged lifespan (Kasumovic et al. 2009).

Body size and condition are often functions of age
and growth rate. ‘Age’, in turn, is a function of an indi-
vidual’s birth (or hatch) date. Individuals born earlier
will have more time to grow and may attain a larger
size by the onset of a breeding season (Lindholm et al.
1994, Cargnelli & Gross 1996, Taborsky 1998). How-
ever, age may become decoupled from size if an ear-
lier birth date means that important periods of growth
happen under less opportune conditions (e.g. where
scope for growth is highly seasonal). For this reason, a
consideration of absolute birth (or hatch) date may be
useful. If female choice favours males with increased
body size and/or condition, then birth (or hatch) dates
and/or growth rates may shape the reproductive
 success of males (Taborsky 1998).

Additionally, the potential influence of birth dates
and growth rates may extend beyond body size and
condition. Variation in growth rate can influence
longevity (reviewed by Metcalfe & Monaghan 2003)

and/or timing of maturation (Rowe & Thorpe 1990).
Similarly, variation in hatch dates can affect timing of
maturation (Uller & Olsson 2010), vulnerability to
predators (Karban 1982) and/or future reproductive
tactics (Fagundes et al. 2015, Welsh et al. 2017).

Alternative reproductive tactics are an important
aspect of many fishes with male parental care. For
example, males of the ocellated wrasse Symphodus
ocellatus use different reproductive tactics based on
their size and age (Alonzo et al. 2000); the largest
males construct and defend nests, and are often
aided by intermediate-sized ‘satellite males’ that
attract females and defend the nest from the smallest
males that employ a ‘sneaker’ (i.e. parasitic) tactic
(reviewed by Alonzo & Warner 2000a). Fitness pay-
offs vary among male tactics, and detailed studies of
this system have contributed greatly to our under-
standing of the evolution of life history strategies
(e.g. Alonzo & Warner 2000a,b, Alonzo & Heckman
2010, Alonzo 2012). Importantly, tactics used by
males appear to be shaped by their age (birth date)
and by their growth history (Alonzo et al. 2000).

The ‘birthdate effect’ (sensu Taborsky 1998) has
also been evaluated for the peacock blenny Salaria
pavo, another well-studied reef fish with alternative
reproductive tactics (males may defend nests or
 engage in a sneaker strategy; Goncalves et al. 1996).
Fagundes et al. (2015) conducted an extended mark−
recapture study of peacock blennies and concluded
that nest-holding males were born earlier in the sea-
son, but had similar growth rates to sneaker males.

Here, we investigated a set of age-based demo-
graphic traits that may contribute to male reproduc-
tive success in the common triplefin Forsterygion
lapillum. This species has male parental care and an
accessible record of life-history traits associated
with developmental history (provided by the growth
increments recorded within the ‘ear stones’, or oto -
liths). We quantified morphological traits and recon-
structed life-history traits of adult males that differed
in their breeding status. We evaluated a set of non-
mutually exclusive hypotheses that male breeding
status is predicted by (1) body size and/or condition,
(2) timing of hatching and/or (3) growth rate during
development.

MATERIALS AND METHODS

Study species

The common triplefin is a small temperate reef fish,
widely distributed around the New Zealand coast

198



Moginie & Shima: Drivers of reproductive success

(Francis 2001). Common triplefin are exposed to a
range of environments associated with ontogenetic
shifts throughout their lifetime. Eggs are laid over
much of the year, on cobble substrate of coastal rocky
reefs (Feary & Clements 2006, Wellenreuther & Cle -
ments 2007) and larvae hatch after ∼2−3 wk (Francis
2001). After ∼52 d, larvae return to rocky reefs (Shi ma
& Swearer 2009) and settle within fronds of brown al-
gae (McDermott & Shima 2006). Juveniles migrate
from algal canopies to benthic cobble habitats and
become reproductively mature after several months
(typical life expectancy is ~1−1.5 yr, Moginie 2016).

During the main spawning season (August to No-
vember for the study location), sexually mature males
develop ‘nuptial pigmentation’, characterised by a
change from a mottled, pale-brown body colouration
to a more uniformly black body colouration, typically
with a blue margin along the anal fin (Wellenreuther
& Clements 2007). Sexually mature males often de-
fend small territories (~1 m2) that contain potential
nesting sites (typically the underside of a cobble;
Francis 2001), and will actively court passing females
(Handford 1979). Adult females lay eggs within the
nest of a chosen male, and thereafter, the male pro-
vides sole parental care that consists of  aeration and
defence of eggs until hatching. Males routinely guard
clutches of ∼2000 eggs (likely from multiple females),
and may care for multiple clutches throughout their
reproductive lifetime (Mensink et al. 2014). Alterna-
tive male reproductive tactics (e.g. sneaker males,
satellite males; Alonzo & Warner 2000a) have not
been documented for this species and it is not known
if these are a feature of this system (although alterna-
tive reproductive strategies have been documented
for other triplefin species; de Jonge et al. 1989).

Sampling the breeding population

We sampled a breeding population of the common
triplefin to evaluate relationships between ‘breeding
status’ and a set of life history traits. We collected
adult males from a single site with a large population
of common triplefin (Kau Bay in Wellington Har-
bour, 41° 17’ 12’’ S, 174° 49’ 43’’ E). Collected individ-
uals were immediately euthanized in accordance
with ethical standards (AEC 2012R10). Collections of
new individuals were made repeatedly over a 4 mo
period during a breeding season (August to Novem-
ber 2014). Males were identified from nuptial pig-
mentation (gender was confirmed with subsequent
dissection). We sampled males haphazardly (individ-
uals were targeted and collected using hand nets) on

a permanently marked transect running parallel to
the shoreline for 60 m, along a 5 m depth contour.
This breeding population was sampled repeatedly
over 15 sampling dates between August and Novem-
ber. We estimated that each collection removed ~0.6%
of the local population (we make an assumption that
our collections had minimal effects on the social inter -
actions and mating opportunities of resident fish).

Characterising breeding status

We used 2 criteria to characterise the ‘breeding sta-
tus’ of each sampled male prior to collection. Firstly,
we classified each fish as either ‘territorial’ or ‘non-
territorial’ based on visual observations of focal indi-
viduals (3 min duration). Fish classified as territorial
showed evidence of site attachment (i.e. returns after
displacement; Maher & Lott 1995), exclusive habitat
use (i.e. the sole occupant of the cobble; Petty &
Grossman 2007) and behaviour patterns consistent
with territorial defence (i.e. chases directed at other
encroaching individuals; Maher & Lott 1995). Sec-
ondly, for all fish that were characterised as territo-
rial, we scored the presence or absence of eggs at
their nesting site. This method facilitated categorisa-
tion of ‘breeding status’ as follows: (1) non-territorial
males (‘floaters’), (2) territorial males without eggs or
(3) territorial males with eggs. We acknowledge that
this approach categorises the breeding status of indi-
viduals based on a single observation (and this point
sampling introduces a source of error). However, we
make an assumption that (1) this error is randomly
distributed, and (2) our sampling effort is sufficient to
enable us to evaluate a potential relationship be -
tween breeding status and measured traits despite
this error.

Estimating predictors of breeding success

We quantified a set of phenotypic and life-history
traits for sampled males and evaluated their ability to
predict variation in breeding status. Specifically, we
measured the size (standard length, SL) of fish to the
nearest millimetre using callipers, and quantified mass
(wet weight) to 0.0001 g using a microbalance. We cal-
culated body condition (Fulton’s K; Ricker 1975) as:

(1)

Additionally, we used otoliths to reconstruct indi-
vidual life histories (dates of hatching and lifetime

= wet weight
SL3K
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growth rates). Specifically, we extracted sagittal oto -
liths from each fish and placed them in 15% mol
H2O2 for 12 h to remove adhered tissue. Otoliths
were then mounted on plastic discs in a clear resin
and hand-polished with 9 μm diamond lapping film
(3M) to expose daily growth increments. We evalu-
ated a single otolith for each fish, and took a series of
photos along the postrostral axis using a Canon D3-
50 camera affixed to a Leica compound microscope.
Images were then aligned in a common focal plane,
using natural imperfections in the otoliths as refer-
ence points, to obtain a complete and uninterrupted
record of daily otolith increments. We used image
analysis software (ImagePro Premier 9.2) to process
images, and to count daily increments. We did not
obtain estimates of individual otolith increment
widths because we were unable to resolve these
along a common growth axis for most sampled indi-
viduals. We identified a ‘hatch check’ as an approxi-
mate doubling in increment width near the centre of
the otolith (after Shima & Swearer 2009). For each
fish, we estimated cumulative ‘age’ as the number of
increments from the hatch check to the otolith edge.
We calculated a ‘hatch date’ as the difference be -
tween the ‘collection date’ (date fish was sacrificed)
and ‘age’. We estimated ‘mean growth rate’ over the
lifetime of the fish as SL divided by ‘age’.

Statistical analyses

Males collected over 15 sampling dates were
pooled for all analyses. We used a general linear
model (‘stats’ package, R version 3.2.2; R Core Team
2015) to independently evaluate the hypotheses that
males of differing breeding status (i.e. floaters, terri-
tory holders without eggs or territory holders with
eggs) varied in: (1) size (SL), (2) body condition (Ful-
ton’s K) and (3) hatch date.

We evaluated variation in growth rate (response
variable) as a function of hatch date (modelled as a
continuous variable), breeding status and the inter-
action between hatch date and breeding status.
Additionally, for a subset of hatch dates (March and
April 2014), we investigated differences in growth
rate between males of different reproductive status,
after statistically accounting for variation in hatch
date between males (using ‘least square’ [LS] means).
We evaluated variation in these adjusted growth
rates among males of differing reproductive status
using Tukey tests. Assumptions of statistical tests
were satisfactorily met for all statistical analyses. We
used the packages ‘LSmeans’ (Lenth 2016) to evalu-

ate differences between adjusted growth rates,
‘CAR’ (Fox & Weisberg 2011) to assess the assump-
tion of linearity in our general linear models and
‘stats’ (R version 3.2.2; R Core Team 2015) to perform
ANOVAs and our general linear model.

RESULTS

We sampled 141 adults, and of these, 55 (39%)
were identified as floater males and 86 (61%) were
identified as territorial males. Eggs were present in
47 of the 86 territories and absent in the remaining
39. We were not able to reconstruct hatch dates
and/or growth rates for all sampled fish due to imper-
fections in otoliths. We successfully resolved daily
otolith increments for the entire postrostral axis for a
subset of 51 males (20 floater males, 18 territorial
males without eggs and 13 males with eggs present),
which facilitated estimates of ‘hatch date’ and ‘growth
rate’ for these individuals.

Effects of body size and condition on 
breeding status

Size (SL) of males ranged from 33.90 to 53.07 mm,
and varied significantly with breeding status (F2,138 =
22.566, p < 0.001; Fig. 1a). Territorial males were
~4 mm (or roughly 10%) larger than non-territorial
males, but the sizes of territorial males did not vary
with presence or absence of eggs (Fig. 1a). Body con-
dition (g mm− 3) of males ranged from 8.54 × 10−6 to
2.05 × 10−5 and varied significantly with reproductive
status (F2,138 = 9.886, p < 0.001; Fig. 1b). Body condi-
tion did not differ between floater males and territo-
rial males without eggs. However, territorial males
with eggs had a condition index that was 6.1%
greater than the other 2 groups (Fig. 1b).

Effect of hatch date on breeding status

Life-history reconstructions from otoliths suggest
that sampled males hatched over a 9 mo period, from
11 October 2013 to 15 June 2014, with a median hatch
date of 9 March 2014. Hatch dates differed among
males of different breeding status (F2,49 = 44.284, p <
0.001, Fig. 2). Floater males hatched significantly later
than both territorial males with eggs (Tukey: p <
0.001) and without eggs (p < 0.001). For territorial
males, hatch date was earlier for males with eggs
compared to males without eggs (p = 0.00957).
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Relationship between growth rate, hatch date and
breeding status

Growth rates for sampled males increased with
hatch date irrespective of their breeding status
(F1,48 = 262.99, p < 0.001, Fig. 3). However, the rela-
tionship between growth rate and hatch date varied
with male reproductive status (interaction term:
F2,46 = 14.087, p < 0.001). Fig. 3 illustrates the signifi-
cant interaction between hatch date and growth that
is most likely attributable to the steeper relationship
between growth rate and hatch date for floaters.
Given the minimal overlap in hatch dates between
floaters and territorial males, we performed 2 further
analyses to investigate the relationship between
hatch date, growth rate and reproductive status.

Firstly, we conducted a secondary ANCOVA with-
out floaters to evaluate differences in growth be -
tween territorial males with eggs and without eggs.
For the subset of males that were territorial, individ-
uals with eggs had faster growth rates than individu-
als without eggs regardless of hatch date (F1,27 =
13.21, p = 0.001). Secondly, we graphically compared
adjusted mean growth rates (LS means) among floaters
and territorial males (with and without eggs), for the
2 mo where there was an overlap in hatch date (i.e.
March and April 2014, from Fig. 2). Estimates of LS
means (±95% CI) suggest that growth rates (cor-
rected for variation in hatch dates) did not differ
between floater males and territorial males that had
not received eggs. However, estimated 95% CI for
territorial males with eggs did not include mean val-
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Fig. 1. Variation in (a) size (mean standard length, ± 95% CI)
and (b) body condition (mean Fulton’s K, ± 95% CI) of adult
male common triplefin Forsterygion lapillum of different
breeding status: territorial with eggs, territorial without eggs
and floaters. Different letters above bars indicate significant
differences among groups based on post hoc Tukey tests
(α = 0.05). Response axes are offset from 0 for graphical 
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Fig. 2. Breeding status varies with hatch date. Given are
proportions of male common triplefin of differing breeding
status (white: territorial with eggs; grey: territorial without
eggs; black: floaters; sampled August to November 2014) that
hatched in a given month (from October 2013 to June 2014)

0.30

0.25

0.20

0.15

0.10
Oct Dec AprFeb Jun

M
ea

n 
gr

ow
th

 r
at

e 
(m

m
 d

–1
)

Hatch date 

Fig. 3. Relationship between growth rate (GR) and hatch
date (HD) (from October 2013 to June 2014) for male com-
mon triplefin of differing breeding status: territorial with
eggs (open circles, double line), territorial without eggs
(grey circles, grey line) and floaters (black circles, black
line). GRterritorial with eggs = 0.0005 × HD − 19.83, R2 = 0.8194.
GRterritorial without eggs = 0.0005 × HD − 21.78, R2 = 0.8292. 
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ues of either territorial males without eggs or floater
males (and vice versa), suggesting that growth rates
of males with eggs are faster than both males without
eggs, regardless of territoriality and independent of
hatch dates (Fig. 4).

DISCUSSION

Identifying determinants of reproductive success
has been a focus of investigation for many species,
spanning a diversity of mating systems (Clutton-
Brock 1988). In species with male parental care, body
size and condition have been identified as important
indicators of male fitness, and these traits have been
the subject of many studies (e.g. Lindström & Hell-
ström 1993, Uusi-Heikkilä et al. 2012). Variation in
body size and/or condition is likely to be influenced
by birth date and/or growth rate (Taborsky 1998,
Michel et al. 2018); however, the latter traits are less
commonly considered as underlying drivers of repro-
ductive success (but see Fagundes et al. 2015, Michel
et al. 2018). Our results suggest that reproductive
status of males is predicted by differences in size and
condition, but also by hatch date and growth rate
(and the 2 sets of traits may be decoupled from one
another, because late hatching individuals appear
to experience compensatory growth). Collectively,
these results suggest that triplefin breeding popula-
tions comprise mixtures of individuals that differ in a
range of traits and have corresponding  differences
in reproductive success. Our results also imply that

 different tactics (e.g. tortoise or hare tactics, sensu
Michel et al. 2018) may be employed by com -
mon triplefin to maximise individual reproductive
success.

Phenotype

Reproductive status was predicted by differences
in body size. Territory holders were larger than
floaters. Associations between body size and territo-
riality are common among fishes (e.g. Magnhagen &
Kvarnemo 1989) and other taxa (O’Neill 1983, Can-
dolin & Voigt 2001). Male body size can influence
competitive ability (Järvi 1990, McElligott et al. 2001)
as well as successful acquisition and defence of a
 territory or nesting site (Cole 1982).

Differences in body size did not predict the pres-
ence or absence of eggs between territorial males (i.e.
putatively, female mate choice) as is suggested in
other fish species such as the closely related mottled
triplefin Forsterygion varium (Thompson 1986) or the
sand goby Pomatoschistus minutus (Lindström &
Hellström 1993). Our results also appear to contradict
a recent study on the common triplefin by Mensink et
al. (2014), who found a significant effect of male body
size on the probability of acquiring eggs.

Differences in body condition, however, did predict
presence/absence of eggs for territorial males.
Females may favour males in better condition for
 several reasons; elevated condition could indicate
greater energetic reserves that equate to improved
parental care (increasing the quality of care and/or
reducing the risk of egg predation by caregiving
males; Hanson & Cooke 2009). Indeed, Mensink
(2014) found that F. lapillum egg size was signifi-
cantly correlated to male condition, which may sug-
gest assortative (i.e. size-matched) mating between
larger (or better conditioned) females and males.

Conversely, the correlation between increased
body condition and presence of eggs may have been
driven by another mechanism. Females may lay eggs
indiscriminately with respect to male condition, and
the elevated condition of males with eggs could sim-
ply arise from filial cannibalism (i.e. males with eggs
routinely consume a portion of their clutch). Alterna-
tively, the apparent absence of eggs associated with
males in poorer condition could be the result of filial
cannibalism. Males that practice paternal care often
decrease in body condition when caring for young
(Lindström & Hellström 1993), and some species may
exhibit filial cannibalism (i.e. egg consumption) as a
mechanism to maintain body condition during this
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period (FitzGerald 1992, Vinyoles et al. 1999, Goma -
gano & Kohda 2008). Further work would be re -
quired to determine the drivers and implications of
these patterns.

Life history

We found that reproductive status of males is also
predicted by differences in hatch dates. All sampled
males that hatched earlier than March 2014 had
acquired territories, and all males that hatched ear-
lier than mid-November 2013 successfully obtained
eggs (Fig. 2). Admittedly, this is simply another way
to describe age-dependent effects, but an explicit
evaluation of hatch date (as opposed to age) focusses
attention on the important link between a potential
parental strategy (i.e. timing of reproduction) and its
consequences for the fitness of offspring (e.g. Shima
et al. 2018). Early hatching dates may have granted
the territorial males a longer growing period before
the onset of the breeding season in August 2014, and
may have driven the observed differences in body
size and condition. Additionally, the wide range in
hatch dates (∼9 mo, from October 2013 to June 2014)
suggests that later-hatching males may have devel-
oped in very different environmental conditions, with
possible consequences for individual growth (e.g.
Brett et al. 1969, Angilletta et al. 2004) and pheno-
type (Monaghan 2008, Shima & Swearer 2009).

Males with early hatch dates were more likely to
be territorial, and their territories were more likely to
contain eggs, suggesting that order of arrival (i.e. pri-
ority effects) probably influences male reproductive
success in the common triplefin. Priority effects have
been described for many species: e.g. Geange & Stier
(2010) demonstrated how earlier-arriving reef fish
are subject to less aggression and are less likely to be
displaced from their habitat by competitors, even if
they would otherwise be considered subordinate in a
cross-species dominance hierarchy. Similarly, subor-
dinate salmon may acquire, and successfully main-
tain, preferred feeding sites when they arrive before
more dominant individuals (Harwood et al. 2003).
Likewise, brown trout fry that obtain territories early
are able to successfully defend their territory against
competitors up to 30% larger in size (Johnsson et al.
1999).

If earlier-hatching male triplefin are the first to
arrive to a rocky reef, they may be more likely to
acquire and defend better territories relative to their
later-arriving conspecifics. In addition, earlier-arriving
males may mature at an earlier date than  later-

arriving males, potentially allowing the earlier-
hatching males to begin mating earlier in the breed-
ing season, when males typically receive more eggs
(Mensink 2014). Moreover, if females exhibit a pref-
erence for males with eggs (e.g. Alonzo 2008), then
early successful mating could result in feedbacks that
propagate increased reproductive success for males
over a protracted mating season.

Later-hatching males appear to have faster growth
rates than earlier-hatching males (Fig. 3). The signif-
icant interaction between growth rate and hatch date
was likely due to accelerated growth rates of the
floater males (Fig. 3). Floater males were younger
and smaller than territorial males and may not have
reached asymptotic size. Alternatively, floaters could
have experienced faster growth rates because they
hatched and developed in very different environ-
mental conditions compared to males that were iden-
tified as territorial. However, this would require the
colder, rougher sea conditions in which the floaters
hatched and developed to promote faster growth
than the relatively warm and calm conditions that the
territorial males experienced, which seems unlikely
given the evidence to the contrary (Friedland et al.
2000, MacKenzie & Kiørboe 2000, Neuheimer et al.
2011). Individuals hatching later in the season may
simply adopt a strategy of hyperphagia (e.g. Ali et
al. 2003) to achieve faster growth rates.

Regardless of hatch date, territorial males with
eggs grew faster than territory holders without eggs.
This supports a hypothesis that a faster growth rate
may give males an additional fitness advantage
 independent of hatch date. We speculate that faster
growth rates may result in more attractive male phe-
notypes, and/or may enable males to attain a more
attractive territory. However, we note that support for
this hypothesis is merely correlative, and we cannot
rule out the possibility that a causal relationship does
not exist (or that causality is reversed; e.g. filial can-
nibalism could drive this relationship, as discussed
above). Additionally, because we have only crude
estimates of reproductive success (e.g. presence/
absence of eggs), we cannot evaluate multiple pater-
nity, and therefore, true fitness differences among
putative alternative reproductive tactics. Further
studies would be required to determine the drivers
and consequences of these patterns.

Our results suggest the existence of multiple path-
ways to success for male common triplefin. Reproduc-
tive success may be maximised by hatching early.
However, if males fail to hatch early, then a faster
growth rate may enable individuals to overcome an
inauspicious birth date (i.e. a tortoise versus hare tac-
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tic, sensu Michel et al. 2018). Males born later in a
season (after March in this study) could be adopting
an alternative growth and/or reproductive tactic.
Conceivably, these younger males may forego territo-
rial behaviours in favour of a ‘sneaker male’ strategy
(e.g. Alonzo & Warner 2000a,b, Fagundes et al. 2015).
Although we can only speculate, young/small males
may effectively parasitize mating events between fe-
males and larger males. However, we also note that
sneaker males might be expected to divert energetic
resources from somatic growth towards reproductive
development (i.e. have slower somatic growth rates at
smaller sizes; Jennings & Philipp 1992). In our study,
floater males appeared to show the opposite pattern
(i.e. they grew faster), suggesting that these individu-
als may be investing disproportionately in growth at
the expense of any reproduction (although this does
not discount the possibility that they may still achieve
faster growth rates than males engaged in territorial
defence and/or nest guarding). As an alternative hy-
pothesis, these late-hatching males forego reproduc-
tive attempts in the present season and then attempt
to breed in the following season. Further research
would be needed to test these hypotheses.

Our work on the common triplefin complements an
important body of work conducted on other reef fishes
(in particular, the work on Symphodus ocellatus, e.g.
Alonzo & Warner 2000a,b, Alonzo et al. 2000, Alonzo
& Heckman 2010, Alonzo 2012; and the work on
Salaria pavo, e.g. Goncalves et al. 1996, Fagundes et
al. 2015). Both of these systems have been extensively
studied and have made important contributions to our
understanding of the evolution of alternative repro-
ductive tactics. For the common triplefin, we do not
yet have confirmation of alternative reproductive tac-
tics, but our ability to precisely estimate birth dates
and to demonstrate relationships between birth dates
and other traits linked to reproductive success moti-
vate questions related to the link between reproduc-
tive strategies of adults and the fitness consequences
for offspring (Shima et al. 2018). These effects may be
of particular importance for the common triplefin, a
comparatively short-lived species, possibly with more
limited opportunities for individuals to shift between
reproductive tactics over the course of their lifespan.

Conclusion

Overall, our study suggests that life history traits
(hatch dates and growth rates) could constitute
important determinants of male reproductive suc-
cess, particularity in systems with male parental care.

Correlated phenotypic variation (e.g. variation in
body size and/or territory quality) may be the proxi-
mate variables upon which females make their
choice, but  explicit consideration of birthdate effects
(Taborsky 1998) focusses attention on intergenera-
tional links that may, through important eco-evolu-
tionary feedback, drive the evolution of alternative
reproductive tactics (e.g. Shima et al. 2018). Correct
attribution of the life-history determinants of fitness
has important implications for both population
dynamics and evolutionary ecology in systems with
male parental care.
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