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INTRODUCTION

Marine conservation (Abelson 2006), fisheries (Baine
2001, Dixon et al. 2006), and sustainable develop-
ment of coastal infrastructure (Chapman & Under-
wood 2011, Perkins et al. 2015) increasingly rely on
habitat construction/restoration and ecological engi-

neering to achieve economic or biodiversity-related
goals. In particular, much of the recent literature has
described large-scale changes to the physical struc-
ture and ecology of coastlines associated with urban-
isation and coastal development (Airoldi et al. 2005,
Firth et al. 2014, Bulleri & Chapman 2015). This can
result in loss of habitat (reviewed in Dugan et al.
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2011), loss of native species diversity (Chapman
2003a, Firth et al. 2013, Aguilera et al. 2014), biotic
homogenisation through spread of invasive species
(Vaselli et al. 2008), changes to relative abundances
and ecological interactions among species (Iveša et
al. 2010, Klein et al. 2011), reductions in reproductive
output (Moreira et al. 2006), loss of habitat for eco-
nomically important species (Toft et al. 2013), among
other changes.

It has been suggested that many of these ecological
impacts could be minimised or reversed by using
principles of ecological engineering (Mitsch & Jør-
gensen 2003) when building coastal infrastructure,
with ecological engineering defined as ‘the design of
sustainable ecosystems that integrate human society
with its natural environment for the benefit of both’
(Mitsch 2012, p. 6). Most projects on ecological engi-
neering of coastal infrastructure have focused on
small-scale engineering of novel microhabitats in
defence structures, such as seawalls (Chapman &
Underwood 2011, Chapman et al. 2017). To date, the
microhabitats included in such projects have mim-
icked relatively simple rock-pools (Browne & Chap-
man 2014, Firth et al. 2014, Evans et al. 2016), or
added small holes and crevices (Firth et al. 2014,
Coombes et al. 2015), although large lengths of the
Seattle Harbour walls have been extensively modi-
fied to create food and shelter for juvenile salmon
(Toft et al. 2013). More complex habitat types are cur-
rently being considered (e.g. prototype ‘Bioblocks’;
Firth et al. 2014).

Construction of new areas of habitat can poten-
tially offset degradation to natural communities else-
where (Hueckel et al. 1989), or target certain species
for population enhancement in fisheries (Butler &
Herrnkind 1997, Briones-Fourzán & Lozano-Álvarez
2001, James et al. 2007). It must be noted, however,
that created habitat seldom entirely mimics natural
habitat (Race & Christie 1982) and may take decades
to develop full ecological functions (Frenkel &
 Morlan 1991, Detenbeck et al. 1992, Pratt 1994). With
respect to artificial reefs that are constructed to
enhance fisheries, there is also concern that their
main role is to attract fish away from more natural
habitats, concentrating them into habitat of relatively
poor quality (Bohnsack et al. 1997). In addition,
there is considerable evidence that artificial habitat
does not attract and support similar assemblages as
natural habitat (Seaman 2007, Macreadie et al. 2011).
Thus, the concept of creating natural habitat in order
to later be able to degrade or destroy natural habi -
tat is not a suggestion that most ecologists would
 support.

For a range of benthic invertebrate fisheries, new
habitat is constructed for ‘sea ranching’ which can be
defined as ‘releasing juvenile specimens of species of
fishery importance raised or reared in hatcheries and
nurseries into the sea for subsequent harvest at the
adult stage or manipulating fishery habitat to im -
prove growth of the wild stocks’ (Mustafa 2003,
p. 142). To do this, habitat which is used naturally by
the target species is constructed, with no considera-
tion normally given to which other species may use it
(Bartley & Bell 2008). Target taxa include abalone,
sea cucumbers, lobsters, and fish (Bartley & Bell
2008). Some relatively complex ‘ranching’ habitats
have been constructed (e.g. elaborately featured con-
crete described by McCormick et al. 1994, James et
al. 2007) although this is generally done with little
 understanding of exactly which fundamental envi-
ronmental variables are important to the targeted
species and what the required thresholds of these
variables are, before artificial habitat becomes useful.

Theory from the rich history of studies on the fac-
tors that promote species diversity in natural benthic
habitats (Menge & Sutherland 1976, Sousa 1979,
Underwood 2000) can be drawn upon to guide eco-
logical engineering and habitat construction. For
example, theory suggests that large benthic species
diversity is promoted by increased structural com-
plexity of habitat (McGuinness & Underwood 1986,
Archambault & Bourget 1996) and moderate physi-
cal instability of substrata (Sousa 1979, McGuinness
1987b). Marine habitats where these 2 features are
brought together, and which are particularly rele-
vant to many coastal developments (Green et al.
2012) and fisheries (Shepherd & Turner 1985,
Džeroski & Drumm 2003), are intertidal boulder
fields and  subtidal boulder reefs. Some boulder
fields are relatively physically stable over time due
to the boulders being closely fitted (Bishop &
Hughes 1989) or being too large for waves to move
(Nott 2003), but other coastal boulders are periodi-
cally moved (McGuinness 1987a). The ecological
complexity and instability of these boulder fields
has led to them being featured in research that
helped frame general theory on ecological succes-
sion (Sousa 1979, reviewed by Chapman 2017).
Insights about succession are still being drawn from
these habitats (Liversage et al. 2014), as well as
insights about species diversity (Chapman 2002b,
Le Hir & Hily 2005), species invasion (Green &
Crowe 2013, Kotta et al. 2016), disturbances and
species area relationships (McGuinness 1987a,b),
and habitat construction/restoration (Chapman 2012,
2013, Green et al. 2012).
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Boulders are defined as unconsolidated rocks
>256 mm in maximum diameter (Wentworth 1922;
although in this review large cobbles are also gener-
ally considered as boulders). Because boulders are
easy to quarry, move, and manipulate, they are often
used to build coastal infrastructure (e.g. seawalls,
riprap, groynes, and gabion baskets), in addition to
artificial reefs (see sections below). Boulders are,
however, unique intertidal habitats, not replicated by
rocky shores (e.g. Wallenstein & Neto 2006); they
have potential to therefore provide important inter-
tidal habitat, but little re search has been done on
how best to construct infrastructure using boulders to
create habitat for natural fauna and flora. Ecological
engineering may be useful for achieving this goal,
especially in semi-sheltered locations, where boulder
fields can support a range of rare specialist species
(Kangas & Shepherd 1984, Chapman 2012), and
great species diversity (Chapman 2002a). Intertidal
boulder fields will be come more important as habitat
when sea levels rise and storms increase, both of
which will reduce the area of intertidal habitat,
including rocky intertidal habitats such as boulder
fields (Jackson & McIlvenny 2011). This will be espe-
cially severe where there is no room for habitats to
migrate inshore (coastal squeeze; Pontee 2013). The
high sensitivity of intertidal boulder habitats to wave
energy (Sousa 1979, McGuinness 1987a) means that
among rocky habitats, relatively large impacts can
be expected to affect boulder fields, and activities
such as habitat restoration may become increasingly
required.

The research that has already been done on resto-
ration and creation of boulder habitat has demon-
strated that in estuaries and on the open coast, the
engineered habitat is colonised quickly by a diverse
suite of species (Chapman 2012, Støttrup et al. 2017).
In addition, the methods required are relatively low-
cost and have a high chance of being successful.
While there is an intrinsic problem with incorporat-
ing a dynamic structure (e.g. a boulder field) into
engineered coastlines (where the need is often to
create long-lasting and stable shorelines), there are
still many potential advantages of using boulders to
enhance habitat around engineered structures. Nat-
ural habitats associated with armouring (e.g. sur-
rounding soft-sediment or rocky shore) are often
heavily impacted by the built structures (Airoldi et al.
2005, Walker et al. 2008); although engineered boul-
der habitat may replace areas of those natural habi-
tats, the ecological benefits of the created habitat
may outweigh the impact caused by habitat replace-
ment (e.g. shifting from impacted soft sediment to

biologically diverse boulder field). If impacts from the
armouring on natural surrounding habitats are mini-
mal, however, habitat replacement with boulders will
likely be inadvisable.

The aim of this paper is to stimulate research and
application of knowledge in using boulders for mar-
ine ecological engineering and habitat restoration.
We reviewed the current understanding of engi-
neered marine boulder habitat, focusing on the les-
sons learnt from projects of restoration of degraded
habitat, deployment of new habitat, and engineered
habitat for coastal defences. Future directions are
dis cussed concerning (1) incorporating the factors
that support high species diversity in natural boul-
der reefs into mainstream ecological engineering
projects, (2) fine-tuning the artificial provision of
habitat for important target species that use boulder
reefs, and (3) maximising the benefits from pre -
viously demonstrated boulder-habitat construction/
restoration.

ECOLOGICAL RESTORATION OF BOULDER
HABITAT

Intertidal habitat restoration

Areas of intertidal boulder habitat can be degraded
via anthropogenic disturbances such as boulder ex -
traction (Dahl et al. 2009), pollution (Irvine et al.
2006), sedimentation (McGuinness 1987b, Fabricius
& Wolanski 2000), and bait collection (Cryer et al.
1987). Also, seawalls and other coastal defences in
urban areas have replaced natural shoreline habitats,
including intertidal boulder fields (Chapman 2012).
The associated loss of species diversity (Chapman
2003a) and of sought-after ecological functions (e.g.
fisheries production; Toft et al. 2013) can be reversed
by restoring the boulder habitats.

This can be done in ways that are largely passive;
for example, boulder habitat can be introduced to the
base of seawalls that would otherwise have low habi-
tat diversity (Fig. 1A) by leaving building rubble after
construction (Fig. 1B). This would replace some areas
of habitat naturally occurring at the base of the sea-
wall (e.g. soft sediment) and effectively produce a
third type of habitat (including the seawall). The
replacement will only occur, however, along a nar-
row band metres from the seawall, and may protect
the seawall from wave action to some extent (Griggs
et al. 1995). Also, construction of boulder habitat near
seawalls should only be considered if a high habitat
value of the constructed habitat can be demonstra -
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ted, especially if constructed from discarded building
rubble. The assemblages developing in this kind of
artificial intertidal habitat can be similar to those in
naturally occurring boulder fields, although rarer
species can be absent (Chapman 2006). As yet
unknown features of natural boulder fields may be
absent from beds of rubble adjoining seawalls, and
these features may be required by some specialist
species, which are only known to colonise restored
habitat in non-armoured shores. For example, the
gaps/interstices underneath and among boulders
(Liversage et al. 2017) may be different in con-
structed and natural boulder fields, and be a feature
to which the specialist species respond. Reversion to
a ‘living’ shoreline is the most complete restoration
option (Fig. 1C). Examples of restored living shore-
lines include sand dunes, beaches, mangroves and
saltmarshes (Bilkovic et al. 2016). Boulder habitat
included in living shorelines is expected to allow
inclusion of rare boulder species (e.g. Chapman
2012). To include fish in such restorations, habitat
‘benches’ can be incorporated (Fig. 1C), which is a
method that has been used in marine (Toft et al.
2013) and freshwater (Pander & Geist 2010) restora-
tion projects.

Boulder habitats can also be actively restored by
the addition of new boulders to replace those previ-
ously extracted from the area, which has been done
extensively in some regions to gain material for con-
structing harbours and coastal defences (Schwarzer
et al. 2014, Støttrup et al. 2017). The effectiveness of
deploying new boulders for intertidal habitat restora-

tion has been demonstrated, particularly for enhanc-
ing species diversity of invertebrates. For example,
Chapman (2002a) found that 117 invertebrate taxa
colonised new boulders added to existing boulder
fields after only 38 d. Additions of new boulders to
existing boulder fields have been done to test hypo -
theses for basic research, but can also provide impor-
tant information for the practice of restoration by
increasing the density of boulder habitat in areas that
have been degraded.

Colonisation of new boulders by mobile species
generally occurs quickly, but with great variability
(Chapman 2002a, 2003b, 2007), mirroring the distrib-
utional variability in the natural assemblages (Chap-
man 2002b, Liversage & Benkendorff 2013). Coloni-
sation can be affected by the size of the newly added
boulders (Chapman 2007), the habitat on which the
boulders are placed (e.g. sand or algae; Chapman
2002a), the rock type of the boulders (Liversage et al.
2014), and the state of the sessile assemblage already
on boulders (Chapman 2003b), but effects are very
context dependent (e.g. vary spatially or among dif-
ferent taxa). Many mobile invertebrates migrate fre-
quently across the inter-boulder matrix (Liversage et
al. 2012, Liversage & Benkendorff 2017), so whether
or not a boulder is positioned adjacent to existing
boulders is unimportant for their colonisation (Chap-
man 2003b).

Large amounts of dispersal also enable rapid colo -
nisation of new, large-scale patches of boulders ad -
ded near existing boulder fields, which can enhance
and restore spatial dimensions of the habitat. After
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Fig. 1. Levels of intervention for restoration of boulder habitat on shores modified by armouring, and the expected
presence/absence of populations of common and rare boulder species in each scenario: (A) no restoration and lack of boulder
habitat, (B) passive intervention with placement of building rubble at the base of the construction, and (C) replacement of the
construction with a ‘living shoreline’ (e.g. sand dune, beach, saltmarsh or mangrove; Chapman & Underwood 2011) and resto-
ration of a natural boulder field. This may involve boulders of a different shape to fragments of building rubble and of the nat-
urally occurring rock type(s). A ‘bench’ may also be included at a distance from the base for increasing habitat use by fish (Toft
et al. 2013). In (A) some common boulder species may survive on the armouring but populations can be expected to be limited.
Likewise, some rare boulder species may survive in rubble (B) but this has not yet been found (e.g. Chapman 2006). Restored
natural boulders (C) consistently harbour extensive populations of common and rare boulder species (Chapman 2012, 2013)
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only a few weeks, mobile assemblages in new pat -
ches of 50 to 100 boulders were similar to those in
nearby existing boulder fields (Chapman 2013), al -
though sessile assemblages can remain different for
1 yr or longer after deployment (Chapman 2012). The
size of the added habitat patch can be important for
colonisers; some are associated with large additions
of boulders and others with smaller additions (Chap-
man 2013).

Subtidal habitat restoration

When boulder habitat is restored in the subtidal
zone, the aim is often to enhance fish populations for
reasons related to species diversity or fisheries pro-
duction. Much research has focused on the habitat
value for fish of artificial reefs, many of which are
constructed with rock boulders or concrete blocks of
various sizes. This research was reviewed in detail by
Baine (2001). Here, we reviewed recent research that
focused strongly on restoration of natural boulder
habitat. For example, projects in the Danish Kattegat
have recently aimed to produce restored boulder
habitat that closely mimics the original natural boul-
ders, which were extensively extracted within the
region (Schwarzer et al. 2014). Large boulders were
piled between 2.5 and 6 m high to restore the cav-
ernous boulder reef to the height above the seafloor
recorded prior to boulder extraction (Stenberg et al.
2015). Restoration caused economically important
fish to spend more time within the habitat than out-
side (Kristensen et al. 2017) and have greater abun-
dances compared to the same area pre-restoration
(Støttrup et al. 2014). Enhanced fish populations in
these restored boulder reefs also appeared to in -
crease the frequency of visitations by predators such
as dolphins (Mikkelsen et al. 2013).

Another example is from restoration of reefs in the
Red Sea (Abelson & Shlesinger 2002). Reef fish pop-
ulations were successfully enhanced in the degraded
reefs by deploying limestone boulders. The size of
boulders was important; larger boulders promoted
greater fish colonisation (Abelson & Shlesinger
2002). Similarly, addition of large boulders was used
to restore reef structures damaged by 2 ship-ground-
ings in Florida (Miller & Barimo 2001). In this case,
recruitment of corals was monitored; more species
and greater abundances recruited to a site restored
with natural boulders compared to a site where boul-
ders were artificially stabilised with cement (Miller &
Barimo 2001). Støttrup et al. (2017) provided a sum-
mary of considerations that are required for projects

of subtidal boulder-habitat restoration, which in -
cludes the hydrodynamic and sedimentary condi-
tions of the restoration site, and the capacity of the
seafloor to carry the boulders.

Future research on restoration of boulder habitat

While much is known about biotic responses to
restored intertidal and subtidal boulder habitats,
there are important aspects of their restoration that
have not yet been sufficiently researched. These re -
late to the substratum on which boulders are placed
and the engineering of reef structure from layering of
boulders. Boulders generally rest on sediment mix-
tures of varied grain size (fine sand to gravel or peb-
bles) and these affect the abundances and diversity
of biota in the sediment (Cruz Motta et al. 2003).
There has been limited research on the interactions
be tween this biota and that occupying the boulders
themselves (Cruz-Motta 2005), and this is an impor-
tant field for future research. For some taxa found on
natural boulders, underlying fine sediment is asso -
ciated with greater abundances, and greater rates of
immigration onto the boulder from surrounding
areas compared to coarse sediment (Liversage et al.
2012). Boulders can also overlay rock platform, and
the value of this substratum relative to sediment is
currently unknown. Much of the ob served variability
in colonisation of restored boulder habitat (Chapman
2002a, 2003b, 2007) may reflect the varied underly-
ing substrata. A number of future research directions
would help develop a better understanding of these
dynamics; e.g. more studies could pair biotic meas-
urements of under-boulder assemblages with abiotic
measurements of the substratum on which boulders
were lying. More studies could also perform manipu-
lations of under-boulder conditions to determine
biotic responses. These conditions include the gaps,
or interstices, underneath boulders, measurements of
which could benefit from more fine-scale methods.
Such research will be essential to inform future boul-
der-habitat restoration projects.

Studies on high-shore boulder fields have shown
the importance of the number of boulder layers. A
double layer creates interstices not present in single
layers. Double layers increase species diversity and
abundances of some crabs, snails, and limpets due to
effects from shading (Takada 1999). While previous
subtidal boulder restoration projects have used mul-
tiple layering (Støttrup et al. 2017), there have been
no comparisons to determine the relative effects of
varying this characteristic. Effects will likely involve
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not only shading, but also introduction of a more cav-
ernous structure (Richter et al. 2001, Alexander
2013). The caverns or gaps provide space for the bod-
ies of animals to fit under boulders where they are
protected from the high levels of predation experi-
enced if they become exposed (Shepherd & Clarkson
2001). It is important for theory on boulder-habitat
restoration for effects of these caverns/interstices to
be better understood.

The demonstrated ecological success and cost ef -
fectiveness of restoration, particularly for intertidal/
shallow subtidal reefs, points towards the next step
as being an increase in the scale of restoration ef -
forts. The recent studies can be considered as ‘proof
of concept’, and large-scale application of the pro ven
methods can be undertaken in situations such as res-
toration of natural shorelines following dismantling
of coastal defences (Toft et al. 2014) and in areas
where boulders have historically been extracted.

CREATION OF NEW HABITAT

Boulder habitat created for fisheries

Not all benthic areas are able to maintain a long-
term stable field of boulders (Støttrup et al. 2017), but
it is still feasible in many coastal areas to create new
boulder habitat where none existed previously. New
areas of boulders or boulder-like habitat are created
in the construction of artificial reefs, and also for sea
ranching. Creation of artificial reefs for fish has been
reviewed in detail by Baine (2001) and others, so
here we focus on sea ranching (Bell et al. 2008),
which includes many examples where boulder habi-
tat specifically provides a key requirement. Ranching
is most commonly done for abalone fisheries, be -
cause juvenile Haliotis spp. require protection from
predation in sheltered habitat, which is generally
boulders (Shepherd & Turner 1985, Read et al. 2013).
Novel shelters for fisheries enhancement of abalone
have been constructed from artificial materials, such
as plastic (McCormick et al. 1994), but most often
concrete structures are used. These can be similar in
structure to naturally occurring boulders (Mc Cor -
mick et al. 1994), or they can be highly artificial in
structure (Davis 1995, James et al. 2007). If retention
of natural dynamics is of concern, it is likely that the
use of natural habitat types would be most ideal for
creation of new habitat. Thus, the addition of rock
boulders (Dixon et al. 2006, Roberts et al. 2007, Read
et al. 2013) or structures of similar design and/or
function (McCormick et al. 1994, Davis 1995) could

be considered as the preferred option. Examples of
these structures that can be sourced without degra-
dation to marine habitats include quarried boulders
(Chapman 2002a), rock pavers/blocks (Chapman
2003b), or concrete structures designed to function
similarly to rock boulders (Liversage et al. 2017).

Important factors for creation of new abalone habi-
tat include how the boulders are layered. Survivor-
ship can be greater when multiple layers are created
(Dixon et al. 2006), although this effect can be vari-
able (Read et al. 2013). The presence of conspecifics
in a newly deployed habitat can make a large differ-
ence to subsequent recruitment (Davis 1995), so ini-
tial seeding may be useful. Disturbance of substrata
by water motion (especially during storms) can cause
large reductions in the habitat value of created habi-
tat (Roberts et al. 2007), so the exposure level of
deployment locations is an im portant consideration.
Overall, there is increasing evidence that the size
and stability of boulders not only affects sessile spe-
cies assemblages (Sousa 1979, McGuinness 1987b),
but also mobile species, such as abalone (McClintock
et al. 2007, Roberts et al. 2007, Liversage 2015).

Boulder habitat created for conservation

Boulder habitats have been highlighted as requir-
ing important consideration in programmes of coastal
conservation (Thompson et al. 2002, Banks & Skil-
leter 2007, Rush & Solandt 2017). If such programmes
aim to maintain or increase overall species diversity,
they may benefit from including the creation of new,
biologically diverse (e.g. Chapman 2002b, Le Hir &
Hily 2005, Liversage & Benkendorff 2013) boulder
habitat. Particular species of conservation concern
could also be targeted, as a range of endangered or
threatened marine and freshwater species rely on
habitats provided by boulders and cobbles (Table 1).
For example, some rare and threatened intertidal sea
stars (Parvulastra vivipara and P. parvivipara) are
completely reliant on small patches of boulder habi-
tat in isolated intertidal rock pools (Dartnall 1969,
Roediger & Bolton 2008, Liversage 2015). Their pop-
ulation sizes may be increased by addition of boul-
ders into empty rock pools, or even creation of new
rock pools (Underwood & Skilleter 1996, Evans et al.
2016) with added boulders.

Moreover, creation of new boulder habitat should
not only be considered for abalone of commercial
importance, but also those of conservation impor-
tance, including the Endangered white abalone
Halio tis sorenseni (Rogers-Bennett et al. 2016). This
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species, along with 2 other abalone on the North
American Pacific coast (Table 1), is at risk of extinc-
tion, largely associated with recruitment failure
(Stier hoff et al. 2012). It requires the same boulder
habitat for recruitment and survival (Lafferty et al.
2004) as other Haliotis species (Shepherd & Turner
1985), and this habitat could be created artificially.

Future research on creation of boulder habitat

Both for species used in fisheries and those in -
cluded in conservation programmes, further research
is required on the small-scale requirements of the
rock substrata for colonisation and persistence of
populations. The rationale for the designs of concrete
structures for new abalone habitat is to mimic the
natural interstices among boulders that protect juve-
niles from predation (McCormick et al. 1994). The
importance of the specific characteristics of the inter-
stices in the habitat for juvenile abalone will vary
depending on the predators present. Molluscivorous
fish, large crabs, and sea stars are particularly effec-
tive at causing post-settlement abalone mortality
(Read et al. 2013). These predators will be excluded
from narrow interstices among substrata such as
boulders or cobbles; e.g. Aguirre & McNaught (2013)
showed that the presence of cobble refuges increases
survivorship of juvenile abalone by a factor of 16
when large predatory sea stars are active. Smaller
predators can, however, still reduce abalone recruit-
ment in boulder habitat (Read et al. 2013). Design of
the interstices in habitat created for abalone fisheries
could be done to target specific problem predators
for exclusion.

To our knowledge, only one study has manipulated
these interstices and determined the effects on some
invertebrates with similar ecologies to abalone (Liv-
ersage et al. 2017). Macroinvertebrates including
chitons, sea cucumbers, and sea urchins had greater
abundances in wide compared to narrow interstices
underneath natural boulders and artificial boulders
designed to control the properties of the interstices
(Liversage et al. 2017). Abalone were not present in
these assemblages, but juvenile abalone likely use
interstices in a similar way as other molluscs living
under boulders, such as chitons. If so, this would pro-
vide further evidence that the interstices are a habi-
tat feature requiring important consideration when
creating or restoring habitat for abalone.

Another future research direction could be an
expansion of the use of boulders for sea ranching of
other species. For example, sea cucumbers that do
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not use refuges suffer heavy predation during sea
ranching (Purcell & Simutoga 2008). Efforts could be
switched to species that utilise boulders as refuges
(Džeroski & Drumm 2003), which could be artificially
provided. Similarly, future research could investigate
artificial provision of habitat for other taxa that are
harvested and which use habitats such as boulders
and cobbles, including crabs (e.g. Richards 1992) and
sea urchins (e.g. Smoothey & Chapman 2007).

ECOLOGICAL ENGINEERING OF BOULDER
HABITAT

Engineering ‘soft’ coastal defences

Shorelines can be protected from wave action
and strong currents by using ‘soft’ engineering ap -
proa ches that utilise the barriers to water motion or
erosion provided by natural habitats. These barriers
are considered to produce a ‘living shoreline’ when
formed of large types of vegetation that dominate a
shore (Bilkovic et al. 2016). Various forms of vege -
tation in the intertidal zone have been studied in this
context, e.g. mangroves (Ewel et al. 1998) and salt-
marshes (Shepard et al. 2011). Habitats in the subtidal
zone have likewise been studied, e.g. sea grasses
(Fonseca & Cahalan 1992) and large macro algae
(Løvås & Tørum 2001). While there is considerable
interest in stabilising shorelines by relying on natural
vegetation, its effectiveness is highly variable, both
spatially and temporally (Koch et al. 2009). For ex -
ample, the biomass of wave-attenuating mangrove,
saltmarsh, and seagrass plants can vary drastically
among seasons and years, providing unreliable
shoreline stabilisation (Koch et al. 2009). While some
consideration does need to be given to the stability of
boulder reefs (Støttrup et al. 2017), this kind of habi-
tat may be engineered to provide shoreline stabilisa-
tion which is more reliable than that provided from
living structures, but which is still based on a natural
habitat type, unlike most sea defences. Biotic and
abiotic components of shore protection are not mutu-
ally exclusive (Currin et al. 2010, Bilkovic & Mitchell
2013); any level of incorporation of boulders into liv-
ing shorelines of vegetation can be expected to
increase reliability of shoreline stabilisation.

Fields of different sized boulders in shallow water
can attenuate waves approaching the shore (Cusson
& Bourget 1997, Guichard & Bourget 1998), and
when used as armouring directly on the shore (e.g.
‘rip-rap’), they provide useful habitat (Seitz et al.
2006) especially if the overall structure is highly

porous (Sherrard et al. 2016). Methods involving
engineering of boulder habitat could fill the need to
reliably stabilise shorelines while maintaining the
ecological functions expected from natural coasts
(Barbier et al. 2011).

Engineering ‘hard’ coastal defences

‘Hard’ coastal defences are highly engineered
structures that provide reduced diversity of habitats
and species compared to the natural habitats they re-
place (Chapman 2003a, Bulleri & Chapman 2010,
Gittman et al. 2016). So far, the only coastal defence
that has been studied in an ecological engineering
context, and which includes small boulders, has been
gabion baskets (Firth et al. 2014). Firth et al. (2014)
found that effects on abundances of epibiota were
caused by different sized boulders within the gabion
baskets, but the effects were spatially inconsistent.
Porous coastal defences, such as those provided by
gabion baskets, do provide useful habitat (e.g. Sher-
rard et al. 2016); it may be beneficial to prioritise this
type of defence (in some circumstances) over others
that are less porous and provide fewer types of micro -
habitats. On the open-coast with increased wave en-
ergy, however, gabion baskets are not considered a
suitable option (Jackson et al. 2006).

One feature of natural rocky shorelines excluded
by ‘hard’ coastal defences is rock pools, which con-
tain standing water during low tide. This feature is
required for highly diverse rock-pool inhabiting spe-
cies (Martins et al. 2007, Firth et al. 2013). Species
that use rock pools can only be introduced into verti-
cal seawalls by incorporating ecological principles
into construction practices (e.g. shaded rock pools in
constructed  cavities; Chapman & Blockley 2009).
Alternatively, existing coastal defence structures can
be retrofitted by attaching unshaded water-retaining
structures (Browne & Chapman 2014), drilling cores
into the structures (Evans et al. 2016), adding pre-
cast concrete rock pools (Perkol-Finkel & Sella 2015),
or  constructing concrete rock pools directly on the
defences (Firth et al. 2016). The goal is to enhance
biological diversity on the artificial structures, which
is achieved by increasing species’ vertical distribu-
tions, i.e. allowing low-shore species to colonise
engineered upper-shore areas (Chapman & Blockley
2009). This may be extremely important in areas
where, prior to modification, the rocky shore was
gently sloping and where the tidal range is not very
large. In this situation, the reduction of the area of
intertidal habitat caused by modification to a verti-
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cally orientated shore (e.g. seawall) may be more
than 90%. The relationship between species diver-
sity and area is well documented (McGuinness 1984),
so a large reduction in intertidal area by converting
gently sloping to steeply sloping habitat will likely
increase pressure on intertidal species.

If specific habitat types are targeted, coastal eco-
logical engineering allows not only an increase in
species’ vertical distributions, but also their horizon-
tal distributions (i.e. along coastlines) on modified
shores. Intertidal boulder habitat generally occurs in
discrete areas, such as fields of boulders. Horizontal
distributions would be increased if boulder habitat
was introduced to built shores, which could allow
large-scale (i.e. 10s of km) increases in habitat for the
associated rare and specialist species (Kangas &
Shepherd 1984, Chapman 2012, Liversage 2015). Iso-
lated fragments of boulder habitat sometimes occur
naturally within rock pools on rocky shores (e.g.
Benedetti-Cecchi & Cinelli 1996, Maggi et al. 2012);
if basic rock pools can be engineered on built shores,
then engineering of habitat that includes rock pools
as well as associated boulders may be possible. While
dispersal toward and colonisation of the built boulder
habitat would be difficult for some direct developing
species (e.g. Liversage 2015), colonisation should
not be limited for the majority of boulder species that
are larval dispersers (Chapman 2017), provided
the engineered habitat meets their specific habitat
requirements.

Future research on boulder habitat engineering

The field of ecological engineering of ‘hard’ coastal
defences could benefit from expanded study in a
range of research directions related to incorporation
of boulder habitat into engineered solutions. For
example, while gabion baskets contain a highly mod-
ified form of habitat, further research could deter-
mine how to better mimic natural boulder habitats in
these structures. Other aspects of the boulders used
in gabion baskets could also be studied, such as the
ecological effects of the rock type used (Liversage et
al. 2014) and boulder shape (Liversage 2016).

Regarding seawalls, further research on the habitat
provided by boulders or rubble deployed at their
bases (Fig. 1b) could be useful, including how these
structures increase habitat complexity and poten-
tially dampen the effects of wave action. Before habi-
tat that effectively mimics natural boulders can be
effectively included in ‘hard’ coastal defences, how-
ever, research is needed on the habitat requirements

of the boulder-specialist species. Their requirements
can be relatively subtle (e.g. Liversage et al. 2017),
and much of the variability that occurs in the distri-
bution of species among individual boulders and
boulder fields has not yet been explained (Grayson &
Chapman 2004, Chapman 2017). But as our under-
standing of the ecology of boulder habitat increases it
will become more feasible to develop urban shore-
lines that include the highly novel elements of bio-
logical diversity represented by the rare species that
live in association with boulders.

CONCLUSIONS

As the impacts increase from rising sea levels
(Thompson et al. 2002) and amplified wave energy
(Reguero et al. 2015), the pressure on coastal land
managers to modify shorelines will increase. Effec-
tive coastal management requires that the modifica-
tions minimise impacts to coastal species diversity
and the functions provided by intertidal and subtidal
communities. This review has shown that there are
many opportunities available for using boulder
 habitat as a tool in the field of coastal ecological engi-
neering. In some regions where boulder habitats
are scarce, they could be engineered to increase
amounts of this rare habitat type and associated spe-
cialist species, while on coasts where boulder habi-
tats are common, including boulders in engineered
shorelines may still be beneficial. In addition, this
review has highlighted the benefits of in-depth con-
sideration of habitat requirements for managing
 species of fisheries or conservation value that use
boulder habitat.

The species that use boulder habitat are largely
hidden (i.e. located underneath the boulders or in
narrow interstices). Thus, they are not widely consid-
ered by coastal researchers, nor by managers of
coastal habitats. But as knowledge about this group
of species increases, the applications for that knowl-
edge, such as those described in this review, will
enable a unique and valuable element of biological
diversity to be incorporated into programmes of
coastal management and ecological engineering.
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