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INTRODUCTION

Knowledge of species’ geographic distributions is
important for conservation efforts. In the absence of
comprehensive distribution data, habitat models can
be useful alternatives, e.g. to identify key habitats
and areas of concern for vulnerable populations
(Guisan et al. 1999), manage anthropogenic threats
(Redfern et al. 2013) and evaluate climate change
effects (Keith et al. 2014). In recent times, the ecolog-

ical niche modelling field has experienced enormous
growth (Peterson et al. 2011), in part driven by easy
access to biodiversity records through opportunistic
datasets and citizen science programmes. In general,
data obtained through platforms of opportunity can
be considered as a low-cost option, but they provide
only limited information for an understanding of fac-
tors affecting distribution and abundance (Evans &
Hammond 2004). However, Redfern et al. (2006)
claimed that cetacean habitat modelling data col-
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lected opportunistically can be considered to be al -
most equivalent to data collected using designed sur-
veys if all potential sources of bias are taken into con-
sideration. Several studies have demonstrated the
utility of opportunistic data in a variety of applica-
tions, such as distribution studies (van Strien et al.
2013), Red List assessments (Maes et al. 2015) and
population trends (McPherson & Myers 2009). Mod-
elling in the marine environment faces unique chal-
lenges that place greater emphasis on model accu-
racy. Difficulties arise from the characteristics of some
marine species, such as their large ranges, low de -
tect ability or large-scale migrations. Furthermore,
taking into consideration the spatio-temporal vari-
ability of the marine environment is crucial when trying
to develop useful habitat models (Redfern et al. 2006).

Despite their widespread use, there are still some
concerns regarding the accuracy of species distribu-
tion models (Peterson et al. 2011). Typically, the tem-
poral and spatial resolutions of analyses are deter-
mined by the availability of environmental data
rather than by an assessment of species’ characteris-
tics (Barry & Elith 2006, Jetz et al. 2012). Different
species might have different relationships with their
environments; while some might prefer more stable
conditions, others could be more dependent on
dynamic habitat features (Roberts et al. 2016, Fer-
nandez et al. 2017, Scales et al. 2017). Moreover, dif-
ferent variables used for modelling procedures can
show significant variation over a range of timescales.
Recent studies tested the effects of different temporal
grain selection of environmental variables when
modelling cetacean distributions (e.g. Mannocci et
al. 2014, Fernandez et al. 2017, Scales et al. 2017).
While Mannocci et al. (2014) found that climatologi-
cal time scales (e.g. seasonal or annual) might pro-
duce better distribution estimates for cetaceans, oth-
ers found that finer temporal grain (e.g. weekly data)
produce better results (Fernandez et al. 2017, Scales
et al. 2017). Therefore, the selection of an adequate
temporal grain for niche modelling can be a complex
issue. Both Mannocci et al. (2017) and Fernandez et
al. (2017) suggested that the selection of the temporal
scale to be used is dependent on many factors, such
as the study goal or the nature of the data collected.
Other potential problems might be related to the
logistic difficulties associated with sampling the mar-
ine environment. Therefore, niche models for mobile
marine species need to have enough flexibility to
accommodate all of the factors described.

Most cetaceans are top predators and therefore
represent a key element of the oceanic ecosystem.
However, it can be difficult to obtain accurate data

for good abundance or distribution estimates, due to
 certain cetacean characteristics, such as their mostly
pelagic ecology. To manage the potential hazards to
these highly mobile populations increasingly re -
quires a detailed understanding of their seasonal dis-
tributions and habitat (Roberts et al. 2016).

The Azores harbour a high diversity of cetaceans,
with 28 species registered to date (Silva et al. 2014).
Silva et al. (2014) found that some species are highly
migratory and only occur during specific time periods
(e.g. Atlantic spotted dolphins during  summer−early
autumn or blue whales during spring−early summer)
while others are observed in the area year round (e.g.
sperm whales). Silva et al. (2014) also found impor-
tant variations in the encounter rates for some spe-
cies (e.g. bottlenose dolphins and Risso’s dolphins).
Silva et al. (2013) found evidence of the importance
of the Azores for feeding purposes for some baleen
whales (blue and fin whales). Two main studies
focussed on cetacean distribution patterns in the
area. Silva et al. (2014) used a long-term dataset
(1999−2009) obtained from opportunistic (Azores Fi -
sheries Observer Programme, POPA) and dedicated
boat surveys, together with land-based observations,
to analyse the spatial and temporal distributions of
24 cetacean species. Recently, Tobeña et al. (2016)
produced distributional models for 15 cetacean spe-
cies using data obtained from POPA, from May to
November, between 2004 and 2009.

Here, we investigated the role of using different
temporal scales when modelling the niches of ceta -
ceans, focussing on dynamic marine environments
and using a set of 10 cetacean species with different
ecological characteristics. Four different modelling
scenarios were tested: (1) spatial coverage of envi-
ronmental predictors; (2) temporal coverage of envi-
ronmental predictors; (3) spatio-temporal generation
of background points; and (4) total number of back-
ground points generated. Dynamic distributional maps
for those species in the Azores were created, using
the ‘best’ scenarios.

METHODS

Study area

The study area is located in the Azores archipel-
ago, a group of North Atlantic oceanic islands located
approximately 1800 km west of Lisbon, Portugal. The
region is strongly influenced by the Gulf Stream and
all branches of this current. Its large-scale oceanic
circulation is dominated by the Azores Current,
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which generates considerable mesoscale variability
(Santos et al. 1995). Data were restricted to 4 of the
9 islands of the archipelago where whale watching
activities are concentrated: São Miguel, Terceira,
Pico and Faial (Fig. 1).

Occurrence data

Cetacean occurrence data were obtained from the
MONICET platform for the period from January 2009
to December 2015. MONICET (www.monicet.net) is
an online platform created in 2008 which collects
standardized data of commercial whale watching
companies and stores the data in a flexible and stable
online database. Presently 7 Azorean whale watch-
ing companies contribute with 2 kinds of data:

 sightings locations and photographs
for photo-identification purposes. On
each whale watching trip, companies
collect a minimum set of basic data
(including geographical coordinates,
species identification, sea state, num-
ber of individuals and activity state),
which is checked and validated by
qualified personnel for quality control.

We selected 10 cetacean species
(short- beaked com mon dolphin, sperm
whale, bottlenose dolphin, Atlantic
spotted dolphin, fin whale, Risso’s dol-
phin, short-finned pilot whale, sei
whale, striped dolphin and blue whale)
based on data availability and ecolo -
gical significance (Table 1). The cho-
sen species cover a wide range of eco-
logical characteristics, from ba leen
whales, which feed mainly on small

crustaceans, to deep divers such as sperm whales
that feed on deep-water squid.

Environmental variables

Five terrain variables (depth, slope, distance to the
200 m and 1000 m bathymetric lines and distance to
canyon-like features) were derived from a digital ele-
vation model (DEM) of the EMODnet Bathymetry
portal (www.emodnet-bathymetry.eu/): depth was di -
rectly read from the DEM; slope and distances to the
200 m and 1000 m bathymetric lines were calculated
using QGIS 2.14.3. The topographic position index
(TPI) measures where a point is in the overall land-
scape/seascape in order to identify features such as
ridges, canyons, or midslopes (Wright & Heyman
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Common name                                     Scientific name                                Total              2 km              4 km         4 km/chl a

Short-beaked common dolphin          Delphinus delphis                            5648              2909               2824                NA
Sperm whale                                        Physeter ma crocephalu s                5278              2085               1944                NA
Bottlenose dolphin                               Tursiops truncatus                           1843              1467               1422                NA
Atlantic spotted dolphin                      Stenella frontalis                              1777              1322               1281                NA
Fin whale                                              Balaenoptera physalus                    801              575               549                234
Risso’s dolphin                                     Grampus griseus                              731              576               552                NA
Short-finned pilot whale                     Globicephala macrorynchus           559              260               193                NA
Sei whale                                              Balaenoptera borealis                      381              237               231                159
Striped dolphin                                    Stenella coeruleoalba                      341              287               286                NA
Blue whale                                            Balaenoptera musculus                   281              194               189                104

Table 1. Number of total cetacean sightings for the different combinations of spatial resolutions (2 and 4 km). The last column
represents the number of presence grids available after filtering for no-data pixels when using chlorophyll as the covariate. 

NA: no data available

Fig. 1. Study area, showing 2 km grids sampled from 2009 to 2015 by the
whale watching companies in the eastern and central groups of the Azores
Archipelago. Islands are shown in dark grey (F: Faial, P: Pico, T: Terceira and
SM: São Miguel). The inset map shows the relative position of the Azores (AZ)
in relation to the Iberian peninsula and Africa. Lines represent the 1000 m

bathymetric lines
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2008). We calculated the TPI with the SAGA GIS
(www. saga-gis.org/) implementation (based on Gui -
san et al. 1999, Weiss 2001), using a small radius of
2000 m and a bigger radius of 6000 m. We selected
features corresponding to V-shape river valleys and
deep narrow canyons (Weiss 2001). We applied a fil-
ter (<3 km) to eliminate artefacts and small features.
Distance to the edge of these canyon-like features
was  calculated (Fig. 2).

Three oceanographical variables (sea surface tem-
perature, distance to thermal fronts and chlorophyll a
[chl a]) were used for this study. Two of these were
calculated using NASA’s multi-scale ultra-high reso-
lution (MUR) sea surface temperature (SST), which
merges many satellite infrared and passive micro-
wave datasets into global daily maps at 1 km resolu-
tion. Thermal ocean fronts were detected from each
MUR SST daily map (Miller 2009). We then gener-
ated 8 d and monthly ocean front metrics from the
composite front maps (Miller et al. 2015). The vari-
able Fdist (front distance) quantifies the distance to
the closest major front.

Biological productivity was indicated using satel-
lite ocean colour estimates of chl a, from the ESA
Ocean Colour Climate Change Initiative based on
monthly and 8 d composites (Version 2.0 dataset,
OC4v6 algorithm, 4 km resolution, www.esa-ocean-
colour-cci.org). Lagged chl a products for 2 and 4 wk
before each study period were calculated. All vari-
ables were tested for correlation using the variance
inflation factors (VIF) implemented on the usdm R
package, setting a VIF threshold of 10 (Naimi et al.
2014). No correlation was found between the envi-
ronmental variables.

Temporal and spatial resolutions

Two spatial (2 and 4 km) and 2 temporal (8 d and
1 mo) resolutions for the eco-geographical variables
were used. Two grids of 2 and 4 km were created
using QGIS; environmental variables were resam-
pled using a cu bic interpolation. Data were divided
in 8 d and monthly periods (averaged when neces-
sary) and projected on the respective spatial grids
(Table 1). A complete set of environmental layers was
constructed for each spatial grid and temporal reso-
lution.

Modelling techniques and evaluation procedures

MAXENT modelling (Phillips et al. 2006) was used
to test the effects of different grouping and data filter
scenarios. For each species and modelling scenario,
10 runs were performed using the default MAXENT
settings. The variables to be used for each species
modelling were selected using an iterative process.
The percentage contribution, permutation impor-
tance and the jackknife test given by MAXENT were
used to select the variables used in the final models
(Kalle et al. 2013).

Data bias corrections

Bias correction can have an important influence on
model performance (Phillips et al. 2009, Varela et al.
2014). We used a spatial filtering of the presences to -
gether with a target background approach to correct

for sampling bias.
Whale watching activities in the

Azores are characterized by the use of
land-based lookouts (Magalhães et al.
2002) which guide the boats to the ani-
mals. Once the boats arrive at the ani-
mals, the sighting event and recording
begins. It is common for multiple
whale watching companies to record
the same sighting event as several
boats cluster around easily accessible
animals. Therefore, a spatial data fil-
tering (or data thinning) procedure
was applied (Peterson et al. 2011).
Sightings were filtered based on tem-
poral and spatial proximity. Occur-
rence registers of the same species
completed by any whale watching
company within 1 h of the first sight-
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Fig. 2. Canyon-like features (represented in black) from the central and east-
ern regions of the Azores area derived from the EMODnet Bathymetry using 

the topographic position index
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ing within a 2 and 4 km radius were considered
duplicate and filtered out.

For each model run, a total of 10 000 and 50 000
background points were selected (Phillips & Dudík
2008) using 2 different techniques: (1) a non-targeted
and (2) a targeted background approach. Points were
always selected from the area contained in the mini-
mum sampled area (MSA) obtained by drawing a
minimum convex polygon (MCP) around the sight-
ings of each trip (see Fig. S1.1 in Supplement 1 at
www. int-res. com/ articles/ suppl/ m595 p217 _ supp. pdf).
A trip is defined as the time between the boat leaving
the main harbour and its return. The area inside the
polygon was defined as the area sampled on the trip.
For each day with at least 1 whale watching trip, an
MSA was established. If several trips were made on a
day, then the total sampled area was calculated by
merging all of the MSAs.

For non-targeted background, points were ran-
domly selected from all daily MSAs. For the targeted
background, points were selected using detect abil -
ity as a vector of probability weights. For both ap -
proaches, no specific temporal or spatial structure
was used for the background points selection. Ten
iterations were performed to minimize potential
biases derived from randomization. Detectability
functions were constructed using a modified distance
sampling approach. These methods are based on line
or point transect sampling. The main assumption is
one of imperfect detection: objects located on the
lines or points are always seen, but become harder to
detect with increasing distance to the line or point
(Thomas et al. 2006). This study uses the ‘detect -
ability index’ of Thompson & George (1994). Lookout
stations are ‘sampling points’, and detectability de -
creases with distance from these points. We applied a
multiple-covariate model, where method detection
functions are modelled based on distance and addi-
tional covariates (Marques et al. 2007). Species were
placed into 4 main groups: small dolphins, large dol-
phins, sperm whales and baleen whales. Two covari-
ables were used: the mean sea state (a proxy for visi-
bility) and the company that collected the data
(assuming observer skills vary between companies).
The mean sea state was calculated using all of the
registers collected by the companies for each trip and
categorized in 2 groups (Beaufort ≤3 and >3). Impor-
tant differences were found for distance of sightings
to the main lookout points between the companies
collecting the data (see Supplement 1). Species
detectability was calculated for each grid of the
MSA. Grids with presences of other species were
assumed to be visited by boats, and therefore set to

maximum detectability. On grids sampled more than
once per day, only the highest detectability value
was kept.

Model performance evaluation

Models were evaluated using 3 methodologies: (1)
a cross-validation based on a space/time evaluation
structure, (2) a restricted independent dataset and (3)
a null model.

(1) A cross-validation based on a geographically
structured approach (Araújo & Rahbek 2006, Jimé -
nez-Valverde et al. 2011, Peterson et al. 2011) was
applied by segregating our data into different spatio-
temporal bins (Radosavljevic & Anderson 2014). Al -
though any environmental biases present in the over-
all dataset still exist, this approach segregates such
biases temporally or geographically, allowing for
evaluations capable of detecting overfitting to any
corresponding environmental biases. We applied
a masked spatio-temporal structured approach, by
screening out the environmental data for background
sampling from the time period (and area in some
cases) corresponding to the localities used for model
evaluation. Each bin corresponds to a temporally
independent evaluation dataset, including, in some
cases, unsampled areas. Five folds of equal size were
created for each species, determined by the exten-
sion of the sampling periods.

(2) An independent dataset was used, collected
with the 11.9 m sailing boat ‘Anacaona’, from the
Groupe de Recherche sur les Cétacés (GREC). The
survey took place around São Miguel Island, divided
into 22 d of effort in 2013 and 18 d of effort in 2014,
for a total of 280.1 h of effort. Due to data limitations,
this test was only performed with a reduced set of 6
species. See Supplement 2 for more information.

(3) Null models using only the geographic coordi-
nates of sighting locations as explanatory variables
were constructed for evaluation using a MAXENT
algorithm. Null model predictions were tested with
both of the previously described validation datasets
(temporal cross-validation and independent dataset).

For all of the evaluation procedures, the area under
the curve (AUC) for the receiver operator curve
(ROC) of each fold was used to quantify model per-
formance. A total of 50 AUC values were obtained for
the cross-validation scenario (10 runs × 5 folds) and
10 AUC values for the independent dataset (10 runs).
A Kruskal-Wallis test with a Nemenyi post hoc test
was used to look for significant differences between
the different scenarios tested. All modelling and data
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filtering analysis was produced using R 3.2.2 (R Core
Team 2015) with the Distance2 (Miller 2015), raster
(Hijmans 2016), qdap (Rinker 2013), MASS (Ven-
ables & Ripley 2002), dismo (Hijmans et al. 2017),
SDMTools (VanDerWal et al. 2014), pROC (Robin et
al. 2011) and PMCMR (Pohlert 2014) packages.

RESULTS

Model performance

In general, niche models for all species produced
high AUC values for the spatio-temporal masked
cross-validation approach, with consistent differen -
ces in performance depending on the temporal reso-
lution used (Fig. 3). The number of background
points selected or the spatial resolution of the envi-
ronmental data did not influence the models. Overall

the choice of both finer temporal scale and target
background selection produced significantly different
AUC values: models based on 8 d environmental
means typically outperformed those based on month -
ly data, whereas models using a targeted background
approach performed significantly better than those
using a non-targeted background selection in nearly
all cases. Both methods outperformed the null models
in the case of the 8 d temporal scale. However, for the
monthly scale, null models outperformed the non-tar-
geted approach, and no significant differences were
found with the targeted selection.

When looking into a more detailed analysis, the
niche of each species was influenced by a different
set of environmental variables (Tables S3.1, S3.2 &
S3.3 in Supplement 3), and model performance var-
ied by species and method (Tables 2 & 3). Looking at
the best results for each species, almost all AUC val-
ues for the masked cross-validation test varied be -
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Fig. 3. Comparison of the general area under the curve (AUC) test when using the spatio-temporal cross-validation approach
and pooling together results for all species, folds and iterations for: (1) targeted background (target, T), non-targeted back-
ground (non-target, NT) and null models; (2) environmental variables at temporal scales (8 d versus 1 mo) and (3) environmen-
tal variables at spatial scales (2 versus 4 km). Boxplots: 25th and 75th percentiles of the AUC obtained within the different sce-
narios; upper and lower whiskers: 10th and 90th percentiles; thick horizontal line: median. Significant differences calculated 

using a Kruskal-Wallis with a Nemenyi post hoc test are noted with letters
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tween 0.75 and 0.94, i.e. in the fair to excellent range
(Araújo et al. 2005 based on Swets 1988). However,
the values obtained for bottlenose dolphins and com-
mon dolphins were consistently poor (0.53 < AUC <
0.59). For the independent dataset, the best results
for the AUC values ranged between 0.67 and 0.82.
Nearly all models using environmental variables as
explanatory factors produced better results than null
models (except for Risso’s dolphin and bottlenose
dolphin models in the cross-validation tests).

The use of a targeted background approach im -
proved model performance for all species (except
common dolphin) on the cross-validation test, but

results were variable in the independ-
ent validation. An overlapping of the
standard deviations was found for some
species (e.g. sperm whale).

Model performance differed accord-
ing to the temporal resolution of en -
vironmental data and species. The 3
deep-diving species (sperm whale,
Risso’s dolphin and short-finned pilot
whale) showed no difference between
8 d or monthly means. Furthermore, for
the first 2 species, no differences were
found be tween null models and ‘regu-
lar’ models in any temporal scenario. In
the case of the sperm whale, differ-

ences were present for the independent dataset (null
models performed poorly). However, significant dif-
ferences were found between the 2 temporal grain
sizes for baleen whales and small delphinid species.
For 5 species highly influenced by dynamic variables
(striped dolphin, Atlantic spotted dolphin, sei whale,
fin whale and blue whale) the 8 d scale produced
better results. In the case of the striped dolphin, dif-
ferences in AUC were smaller (ΔAUC = 0.02); how-
ever, for the other species differences on AUC values
were important (ΔAUC between 0.1 and 0.15). Like-
wise for those species, significant differences were
found between null models and ‘regular’ models in
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8 d Month
Target Non-target Null Target Non-target Null

Cross-validation
Sperm whale 0.84 (±0.01) 0.81 (±0.02) 0.83 (±0.02) 0.84 (±0.01) 0.81 (±0.02) 0.83 (±0.02)
Pilot whale 0.91 (±0.02) 0.86 (±0.02) 0.87 (±0.06) 0.9 (±0.02) 0.85 (±0.02) 0.86 (±0.06)
Risso’s dolphin 0.73 (±0.04) 0.69 (±0.04) 0.75 (±0.02) 0.73 (±0.04) 0.69 (±0.03) 0.76 (±0.03)
Striped dolphin 0.86 (±0.01) 0.79 (±0.01) 0.81 (±0.02) 0.84 (±0.01) 0.76 (±0.01) 0.81 (±0.02)
Atlantic spotted dolphin 0.85 (±0.04) 0.81 (±0.01) 0.75 (±0.07) 0.72 (±0.08) 0.64 (±0.07) 0.75 (±0.07)
Sei whale 0.81 (±0.04) 0.80 (±0.04) 0.73 (±0.08) 0.72 (±0.04) 0.69 (±0.04) 0.73 (±0.08)
Fin whale 0.89 (±0.02) 0.87 (±0.02) 0.75 (±0.07) 0.73 (±0.08) 0.67 (±0.09) 0.75 (±0.07)
Blue whale 0.92 (±0.08) 0.93 (±0.03) 0.81 (±0.07) 0.8 (±0.05) 0.75 (±0.05) 0.81 (±0.07)
Short-beaked common dolphin 0.58 (±0.04) 0.59 (±0.02) 0.57 (±0.02) 0.59 (±0.04) 0.59 (±0.02) 0.57 (±0.02)
Bottlenose dolphin 0.55 (±0.04) 0.53 (±0.03) 0.58 (±0.04) 0.55 (±0.03) 0.52 (±0.03) 0.58 (±0.04)

Independent dataset
Sperm whale 0.81 (±0.01) 0.82 (±0.01) 0.66 (±0.01) 0.79 (±0.01) 0.82 (±0.02) 0.61 (±0.02)
Risso’s dolphin 0.71 (±0.01) 0.63 (±0.01) 0.7 (±0.01) 0.65 (±0.02) 0.63 (±0.01) 0.67 (±0.02)
Striped dolphin 0.56 (±0.01) 0.63 (±0.01) 0.58 (±0.08) 0.59 (±0.01) 0.67 (±0.01) 0.6 (±0.10)
Atlantic spotted dolphin 0.64 (±0.01) 0.66 (±0.01) 0.51 (±0.01) 0.58 (±0.01) 0.6 (±0.01) 0.54 (±0.01)
Short-beaked common dolphin 0.51 (±0.01) 0.64 (±0.01) 0.52 (±0.02) 0.45 (±0.01) 0.63 (±0.01) 0.52 (±0.02)
Bottlenose dolphin 0.37 (±0.01) 0.68 (±0.01) 0.29 (±0.01) 0.39 (±0.01) 0.66 (±0.02) 0.31 (±0.01)

Table 2. Test values for the area under the curve (AUC) obtained when testing predictive capacity of models (targeted back-
ground, non-targeted background and null) at 2 km spatial resolution with no chlorophyll variables. AUC was obtained using
a spatio-temporal masked cross-validation approach and an independent dataset. Results show the means (±SD) of all AUC
runs. For the cross-validation scenario, SD was calculated from 10 runs and 5 folds (50 AUC values). For the independent data-
set, it was calculated from the AUC values obtained from 10 runs of the model (10 AUC values). Values in bold represent the

best results obtained

8 d Month
Target Non-target Null Target Non-target Null

Sei whale 0.82 0.81 0.72 0.67 0.64 0.70 
(±0.05) (±0.05) (±0.05) (±0.09) (±0.09) (±0.08)

Fin whale 0.88 0.87 0.77 0.7 0.64 0.75 
(±0.05) (±0.06) (±0.06) (±0.06) (±0.07) (±0.08)

Blue whale 0.94 0.93 0.82 0.77 0.72 0.81 
(±0.02) (±0.06) (±0.05) (±0.08) (±0.09) (±0.07)

Table 3. Test values for the area under the curve (AUC) obtained when test-
ing predictive capacity of models (targeted background, non-targeted back-
ground and null) at 4 km spatial resolution with chlorophyll variables
 included. AUC was obtained using a spatio-temporal masked cross-vali -
dation approach. Results show mean (±SD) AUC. Values in bold represent 

the best results obtained
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the 8 d scenarios (ΔAUC between 0.05 and 0.12), yet
these differences were not present for the monthly
scenario. For some species (such as baleen whales),
the null model, when using monthly resolution, had
better predictive capabilities.

To summarize, no (or relatively small) differences
were found for all species when modelling their
niches using different spatial resolution for the envi-
ronmental variables or number of background
points. On the other hand, the temporal grain of the
environmental variables and the method of selection
of the background points had different effects de -
pending on the species modelled (Table 4).

Species patterns

Depth was selected as an important variable for
almost all species studied (see Supplement 3 for
tables and figures), but especially for 2 deep-diving
species (sperm and pilot whales) and a small
 delphinid (striped dolphin). Together with Risso’s
dolphins, they showed a preference toward areas
closer to canyon-like features (Fig. S3.1−S3.4 in Sup-
plement 3). Moreover, they were strongly influenced
by the 1000 m depth contour. Striped dolphins also
preferred deep-water environments and moderate
SST values (16−26°C, peaking at 21°C; Fig. S3.4).
Atlantic spotted dolphins showed a preference for
warm (18−26°C, peaking at 24°C) and relatively
deep wa ters around the 1000 m bathymetric line
(Table S3.2 & Fig. S3.5). Common dolphins showed a
preference for relatively shallow waters closer to the
200 m bathymetric lines (Fig. S3.6). Bottlenose dol-

phins had similar results, although this species seems
to be less restricted to those areas (Fig. S3.7).

Chlorophyll was only relevant as an explanatory
variable for baleen whales. The models for blue
whales showed better performances when including
chl a measured 2 wk before the sightings; for sei
whales, the best results were obtained when using
chl a at the time of sighting. No model showed
improved performance using chl a measured 4 wk
prior to sighting. Response curves for blue whales
(Fig. S3.8) showed a very restricted niche strongly
influenced by SST (14−20°C, peaking at 17°C), with
a preference for deeper and off-shore waters. Sei
whale response curves indicated a wide range of SST
values (14−24°C, peaking at 16°C), but with a strong
preference for colder waters (Fig. S3.10). Both spe-
cies preferred moderate to high chlorophyll values
(blue whales from 1 to 4 mg m−3 and sei whales from
2 to 6 mg m−3). Chlorophyll did not influence models
for fin whales, which showed a wider range of suit-
able SST values (14−25°C, peaking at 18−19°C) rela-
tive to other Balaenopteridae (Fig. S3.9).

Seasonal variability in suitable habitat depended
on the species (Supplement 4). While some deep-
 diving species showed fewer differences through
time (sperm whales and Risso’s dolphins), some small
odontocetes seem to be more influenced by environ-
mental changes (Atlantic spotted dolphins and
striped dolphins). For all baleen whales, differences
in habitat suitability were found between seasons. In
general, species highly influenced by dynamic vari-
ables followed this pattern, with high variability of
suitability values in some months (Fig. 4 and suitabil-
ity maps in Supplement 4).
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Spatial scale Temporal scale Selection background points No. background points
2 km   4 km 8 d   Month Targeted Random 10000   50000

Sperm whale ≅ ≅ ↑≅ ↓≅ =
Pilot whale ≅ ↑     ↓ ↑     ↓ =
Risso’s dolphin ≅ ≅ ↑     ↓ =
Striped dolphin ≅ ↑     ↓ ↑     ↓ =
Atlantic spotted dolphin ≅ ↑     ↓ ↑     ↓ =
Sei whale ≅ ↑     ↓ ↑≅ ↓≅ =
Fin whale ≅ ↑     ↓ ↑≅ ↓≅ =
Blue whale ≅ ↑     ↓ ↑≅ ↓≅ =
Short-beaked common dolphin ≅ ↑     ↓ ↑≅ ↓≅ =
Bottlenose dolphin ≅ ≅ ↓≅ ↑≅ =

General ≅ ≅ ↓≅ ↑≅ =

Table 4. Effects of the 4 scenarios tested on the modelling processes using all results: (1) spatial coverage of environmental
predictors (2 vs. 4 km); (2) temporal coverage of environmental predictors (8 d vs. monthly); (3) spatio-temporal generation of
background points (targeted vs. random selection) and (4) total number of background points generated (10 000 vs. 50 000).
Results are presented for each species and as a general overview. Arrows and mathematical symbols indicate the performance 

of each method when compared to the alternative (=: equal, ≅: almost equal, ↑: better, ↓: worse).
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Fig. 4. Example of suitability maps (together with SD) for Atlantic spotted dolphins on a 20 km radius around São Miguel island
(Azores) for 4 months (February, May, July, November), representing 4 seasons (winter, spring, summer, autumn). Left column
refers to the monthly averaged suitability; right column refers to suitability SD for all weeks corresponding to that month.
Maps are presented in 2 × 2 km grid. Maps for all species and months are presented in Supplement 4. Warmer colors represent 

high suitability values in the left column and high SD values in the right column
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DISCUSSION

This study elucidates the effects of using different
temporal scales for the environmental variables
when modelling mobile species with different eco-
logical characteristics. From the 4 scenarios tested,
the use of different spatial scales and the number of
background points had little or no influence on the
results. Similar results of the spatial grain effects
were found by other studies focussing on cetaceans
(Redfern et al. 2008, Becker et al. 2010, Scales et al.
2017). Opinions are divided on the number of back-
ground points to be used in a presence/background
model. Phillips & Dudík (2008) found that 10 000
background points is optimal for Maxent, whereas
Renner et al. (2015) suggested that a greater number
of background points is preferred. Therefore in the
present study we used 2 approaches: 10 000 and
50 000 background points. No differences were
found between the 2 methods, in agreement with the
findings of Phillips & Dudík (2008). Differences in
model performance were found for the 2 other
 scenarios tested: targeted sampling of background
points and temporal resolution of environmental
variables. The targeted sampling approach to select
the background points proved to be effective, as bet-
ter results were obtained when applying a targeted
background approach. In general, the use of a finer
temporal grain provided better results, particularly
for species highly influenced by dynamic variables.

Our results also demonstrate the significant value
of an opportunistic dataset for niche modelling pro-
cedures. The availability of observations with a high
sampling rate allowed the use of a finer grain for
environmental variables (8 d), which is relevant par-
ticularly for species with a distribution that is highly
influenced by dynamic variables. Occurrence data -
sets with high temporal resolution are therefore
important to provide accurate estimates of the tem-
poral dimension of the niche.

Sampling background corrections

The use of a sampling background approach based
on a minimum sampled area and a detectability
index proved to be useful. Sample bias corrections
can lead to a strong improvement in model perform-
ance (Phillips et al. 2009). However, for some species,
especially when using an independent dataset for
evaluation, better results were obtained with a non-
targeted background approach (such as bottlenose
dolphins). The target background (or background

selection) method used in this study has the potential
to impact model prediction and performance (Van-
DerWal et al. 2009). Previous studies generally pre-
ferred a random selection of background points (e.g.
Warton & Shepherd 2010, Barbet-Massin et al. 2012),
yet recent studies suggested that targeted back-
ground points can improve the results in some cases
(Stolar & Nielsen 2015, Ranc et al. 2017). An exces-
sive reduction or increase of the spatial (or temporal)
range of the background data can lead to inaccurate
results (Thuiller et al. 2004, VanDerWal et al. 2009).
Ranc et al. (2017) suggested that the usefulness of
target-group bias correction is highly dependent on
the system investigated. The selection of background
data can be extremely useful, yet it should be under-
taken with a good knowledge of the dataset, associa -
ted biases and species ecology (Fourcade et al. 2014).

Spatial and temporal scale

Significant differences were found between tem-
poral scales, but not spatial scales. Temporal scales
have been suggested to be a key element to test
when building niche models in the marine environ-
ment (Fernandez et al. 2017, Mannocci et al. 2017,
Scales et al. 2017). As expected, the use of different
temporal scales of the environmental variables
strongly affected the results of the models built. Dif-
ferences between monthly means and 8 d means
were not important for species mostly influenced by
topographic variables (sperm whale, pilot whale,
Risso’s dolphin and striped dolphin). No differences
between null models and models using environmen-
tal variables were found for 2 of these species (Risso’s
dolphins and sperm whales) in the cross-validation
tests. Those species are extremely dependent on
bathymetric features (e.g. canyon-like features, high-
slope areas), and therefore will prefer some specific
geographic areas where those features are present.
Due to the small study area used in this study, when
species use the same regions regularly, models based
solely on spatial coordinates might be able to predict
those areas (as they remain constant through time).
Nevertheless, for sperm whales, when validating
the models with the independent dataset (which in -
cludes geographic areas not used for the training),
null models performed poorly compared to the other
approaches. For species specifically influenced by
variables with higher dynamism (blue whale, fin
whale, sei whale and Atlantic spotted dolphin), tem-
poral scale differences were important. Incorporating
8 d environmental data can produce better models
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for some species. In general, models for migratory, or
seasonal species, may benefit from fine-scale tempo-
ral resolutions, while for resident species, the use of
broader temporal grain might be appropriate. Never-
theless, we recommend treating each species indi-
vidually when investigating the appropriate scale to
obtain accurate distributional estimates.

Caveats and bias

Data collected by highly opportunistic sources have
some obvious limitations. Our data, for instance,
were confined to coastal areas around the islands
where whale watching operations are performed.
Using data from a fisheries observer programme,
Silva et al. (2014) found many offshore sightings
around the Azores, which might represent a different
set of environmental relationships. The inshore bias
of our data leads to an environmental and spatial
truncation which affects the predictive capabilities of
our models outside the study area (Peterson et al.
2007, 2011, Owens et al. 2013). Nevertheless, for
some species (such as the sperm whale), our models
proved to have a good predictive capability in coastal
areas, even for unsampled locations such as the north
coast of São Miguel Island.

Despite this spatial bias, the models produced
accurate estimates able to characterize the temporal
dimension of the niche. Although touristic operations
peak during the summer months, there are trips all
year around, which allow detection of interesting
temporal patterns and the use of a finer temporal
grain. In this case, the use of a high-resolution tem-
poral occurrence dataset allowed us to obtain a clear
picture of the effects of dynamic oceanographic vari-
ables (such as SST, chlorophyll or frontal areas).

Of the 10 species evaluated in this study, 2 were
consistently difficult to model: common and bottle-
nose dolphins. This could be due to a number of
 factors. Firstly, both species are widely distributed
and present throughout the year in high numbers
(Silva et al. 2014). Obtaining accurate models for
generalist/ common species can be challenging (Mc -
Pherson & Jetz 2007), and the models can be particu-
larly sensitive to the data used (Jiménez-Valverde et
al. 2008). Silva et al. (2008) hypothesized that bottle-
nose dolphins living in the Azores carry out extensive
movements and have large home ranges. These
characteristics can also be challenging for modelling
procedures (Peterson et al. 2011). However, even if
our models failed to predict the temporal niche of
bottlenose dolphins (AUC < 0.55), results for the

independent dataset were fairly good (AUC = 0.68).
Furthermore, it is possible that there are other envi-
ronmental drivers for these species, occurring at a
finer temporal and/or spatial scale, which we were
not able to include in the modelling process. Influen-
tial variables that might improve the models are
those related to behavioural events (e.g. foraging,
migration, reproduction; Bailey et al. 2009, Roever et
al. 2014), interspecific relationships (Ehrlén & Morris
2015) or even anthropogenic factors (e.g fisheries
interactions, whale watching disturbance; Stone et
al. 1997, Lusseau 2005).

Implications for cetacean species ecology

Sperm whales showed an important relationship
with depth, associated with canyon-like features and
with higher suitability values in summer (warmer
SST). Skov et al. (2008) found an influence of bottom
complexity on the presence of sperm whales, which
may be similar to the influence we found with
canyons. Recent studies have shown how sperm
whales use submarine canyons in different ways for
feeding purposes (Fais et al. 2015, Guerra et al. 2017).
For the Azores area, Tobeña et al. (2016) found an in-
fluence of chlorophyll for this species, which was not
detec ted in our study. Whitehead et al. (2010) also
noted that the addition of satellite-derived measures
of productivity did not improve predictive capacity of
ex planatory models for deep-water cetacean diversity.

The other 2 deep-diving species (short-finned pilot
whale and Risso’s dolphin) showed a strong relation-
ship with depth, although this factor was more impor-
tant for the short-finned pilot whale. This species
seems to be restricted to deeper waters, as described
in previous studies for Globicephala spp. in the
Azores (Silva et al. 2014, Tobeña et al. 2016). Addi-
tionally, we found a strong influence of temperature,
such as Fullard et al. (2000) found for some popula-
tions of long-finned pilot whale. For Risso’s dolphins,
we found an influence of distance to the 1000 m con-
tour line, which agrees with the findings of Baum-
gartner (1997) and Olavarría et al. (2001) for different
areas (Gulf of Mexico and Chile). Another important
factor for Risso’s dolphins is the distance to canyons.
Hartman et al. (2014) hypothesized that squid distri-
bution might be a key element for their social struc-
ture and distribution in the Azores, thus the relation-
ship with canyon-like features could be related to the
presence of squid.

Striped dolphins presented a well-marked seasonal
distribution, with suitability maps reflecting strong
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variation between summer and spring, which agrees
with Tobeña et al. (2016). However, we also found
depth and distance to canyon-like features to be rel-
atively important predictors, similar to the prefer-
ence for deeper and warmer waters reported for the
species in the Mediterranean (Panigada et al. 2008).
SST was important for Atlantic spotted dolphins, with
a preference for warmer and deep waters, in line
with the findings of Hamazaki (2002) for the mid-
west North Atlantic and Tobeña et al. (2016) for the
Azores. While results of common dolphins in the
present study should be interpreted with caution
(especially on the temporal dimension), we found a
preference for shallower waters, close to the 200 m
bathymetric lines. In a deep-water environment such
as the Azores, these findings might indicate a prefer-
ence for island-like features or seamounts, as noted
by Tobeña et al. (2016) and Morato et al. (2008). The
slight preference for shallow coastal areas of bottle-
nose dolphins agrees with Tobeña et al. (2016).

All baleen whales were strongly influenced by
dynamic variables, with significantly better results
when using 8 d means. This reinforces the impor-
tance of high-resolution temporal datasets, which are
able to provide enough data to run models with finer
temporal grain. The most restricted niche found cor-
responds to the blue whale with a relatively short
window of occurrence strongly dependent on SST,
which leads to a highly seasonal occurrence for this
species. In contrast, fin whales were the most flexible
of the 3 species modelled, with a wider range of tem-
perature and no dependence on productivity. Our
models predict a higher percentage of suitable habi-
tat for fin whales during spring and autumn; how-
ever, even if more restricted, there is still a portion of
suitable area during summer months, agreeing with
previous observations of Silva et al. (2014). Sei
whales showed a more restricted habitat than fin
whales, but were more flexible than blue whales. In
contrast, Prieto et al. (2017) found a relatively similar
niche for blue and fin whales (both influenced by
chl a) and a different niche for sei whales (with no
influence of chl a). These differences might be
related to the temporal grain of the environmental
variables. The low number of presences available to
those authors (a maximum of 35 presences in an area
of 278 km around the entire archipelago, compared
to a minimum of 100 presences in an area of about
37 km around 4 islands used in the present study),
limited the use of the temporal scale to monthly
means. In our study, the results obtained with the 8 d
grouping clearly outperformed the monthly ones,
with differences in AUC values higher than 0.15.

Final remarks

This study demonstrates how the use of finer tem-
poral scales provides essential insights, especially for
cetacean species highly dependent on dynamic envi-
ronmental conditions. Opportunistic, high temporal
resolution occurrence data (such as the ones collec -
ted by whale watching operations) can be a useful
source for modelling mobile species distributions in
dynamic environments, provided the effects of the
associated biases are corrected. Dynamic distribu-
tional models, such as the ones presented here, can
be extremely valuable for dynamic ocean manage-
ment (DOM) applications. DOM approaches are
emerging in several places globally, replacing static
management, and are proving to be an effective tool
to respond to potential conflicts around ocean
resources (Lewison et al. 2015). Tools such as Whale-
Watch (Hazen et al. 2017) use these products to pro-
vide near real-time probability of occurrence, includ-
ing temporal variability, to reduce human impacts
(e.g. ship strikes or loud underwater sounds).

However, we do acknowledge the limitations of the
data used in this study due to its low spatial cover-
age. Generally, there is a trade-off between high
temporal resolution and good spatial coverage.
Therefore, we want to highlight the advantages of
data complementarity between different sampling
metho dologies to produce better distribution esti-
mates. Redfern et al. (2006) suggested that accurate
and flexible cetacean distribution estimates should
be based on different spatial and temporal resolu-
tions. While sampling programmes covering an
extended area can provide a clear image of the spa-
tial patterns, other sampling methods with high peri-
odicity in relatively small areas can help to clarify
temporal patterns (as supported in this study). Mod-
els with better predictive capacity and transferability
are needed to implement more efficient protection
and conservation measures.
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