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1.  INTRODUCTION

Small pelagic fish (SPF) play a central role in struc-
turing marine food webs, where they can exert top-
down control of mesozooplankton and bottom-up
control on their predators (this double role is known
as wasp-waist control, Cury et al. 2000). Thus, SPF
species, such as sardines and anchovies, play a criti-
cal role in transferring energy from plankton to large
vertebrate predators in marine ecosystems.

In the Mediterranean Sea, the Bay of Málaga in the
central part of the north Alboran Sea is the most
important nursery site for the European sardine Sar-

dina pilchardus and anchovy Engraulis encrasicolus
(García et al. 1988, García 2010, Giannoulaki et al.
2013). The bay is an essential habitat for these SPF
species as it fulfills the Bakun triad, a set of condi-
tions needed for larvae survival (Agostini & Bakun
2002), including high abundances of phytoplankton
and zooplankton (Mercado et al. 2007, Yebra et al.
2017). These conditions are promoted by mesoscale
hydrographic structures such as fronts and gyres
caused by the influx of Atlantic water through the
Strait of Gibraltar (Parrilla & Kinder 1987) and up -
welling events induced by westerly winds (Sarhan et
al. 2000, Mercado et al. 2012). Sardines display an
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extended spawning season in this region (Rodríguez
1990, Tendero 2016) where their larvae are often
dominant members of the ichthyoplankton (Palomera
et al. 2007). Despite this numerical abundance of
 sardine larvae, no previous studies have reported on
their diet and feeding habits in the Alboran Sea.

Although the diet of a fish larva depends on the
abundance and diversity of prey encountered (Gar-
cía et al. 2003), the larvae of most marine fish selec-
tively feed on specific prey species (Peck et al. 2012).
To date, studies on the diet of various life stages of
European sardine have shown that mesozooplankton
(>200 µm, mostly copepods and cladocerans) com-
prises the major food source for larvae (e.g. Conway
et al. 1994, Morote et al. 2010, Costalago & Palomera
2014). In the NW Mediterranean Sea, tintinnids and
copepod nauplii form the largest proportion of the
gut contents of the smallest pre-flexion larvae, while
larger larvae preferentially consume nauplii and
cope podites of calanoid copepods (Morote et al.
2010). However, important regional differences in
diet and/or omnivorous foraging may exist, as Rasoa-
narivo et al. (1991) found sardine larvae consuming
exclusively phytoplankton, from 5 µm (Chlorella
spp.) to 130 µm (Synedra acus) in the Gulf of Lions
(NW Mediterranean). Small microzooplankton (i.e.
protozoans) might be important prey for ichthyo-
plankton (Bils et al. 2017); however, the protozoo-
plankton−ichthyoplankton link remains largely un -
explored, as most field studies employ microscopic
analysis of gut contents of larvae preserved in forma-
lin (Peck et al. 2012). This traditional approach pres-
ents several limitations, which include the difficulty
of identifying early developmental stages (e.g. nau-
plii), soft-bodied organisms or partly digested items.
Stable isotope analysis provides another tool to infer
larval feeding habits (Bode et al. 2004, Laiz-Carrión
et al. 2011, Costalago et al. 2012) but this techni -
que provides no information on prey species or prey
preference.

To overcome the limitations of using microscopic
identification of gut contents to identify the diets of
marine fish larvae, molecular tools have been devel-
oped in recent years. These new techniques not only
complement traditional microscopy counts, but are
also useful tools that improve the accuracy of identi-
fication of organisms at the species level (even cryp-
tic ones or partly digested remains) and increase the
volume of samples that can be analysed in a cost-
effective manner. Due to their precision and sen -
sitivity, both PCR and quantitative PCR (qPCR) have
been applied to detect and quantify species from
water samples (Vadopalas et al. 2006, Miyaguchi et

al. 2008, Pan et al. 2008), and have been success-
fully applied to examine the diet of zooplankton
(Nejstgaard et al. 2003, 2008, Troedsson et al. 2007,
Simonelli et al. 2009). Moreover, metabarcoding as -
says employed on gut contents of adult European sar-
dine (Albaina et al. 2016) and larval European eel
Anguilla anguilla (Ayala et al. 2018) identified the
main taxonomic groups, including protists and soft-
bodied organisms, not identifiable by microscopic
examination.

The present study is the first to examine the diet of
sardine larvae in the Alboran Sea and is one of only a
handful of studies to apply molecular markers to
 larval fish gut contents. We tested 2 hypotheses: (1)
sardine larvae feed on the most abundant prey at the
beginning of the spawning season to maximize rates
of growth and development and (2) diel differences
in the diet of sardine larvae explain day/night differ-
ences in the nutritional condition of the larvae (Con-
way et al. 1994, D. Cortés unpubl. data). We quanti-
fied the taxonomic composition of the Alboran Sea
plankton community and designed and applied spe-
cies-specific molecular markers to detect the pres-
ence of selected target organisms within sardine lar-
val guts (A. Hernández de Rojas et al. unpubl. data).

Based on (1) the dominant phyto- and zooplankton
in the Bay of Málaga during autumn (e.g. small flag-
ellates, Mercado et al. 2005, 2007; copepods, Rod -
ríguez 1983, Sampaio de Souza et al. 2005) and (2)
gut contents of sardine larvae in other areas of the
NW Mediterranean (Rasoanarivo et al. 1991, Morote
et al. 2010), molecular markers were developed for 5
mesozooplankton copepod genera (Oncaea, Acartia,
Temora, Clausocalanus and Paracalanus), a micro -
planktonic dinoflagellate genus (Gymnodinium) and
the picoeukaryote algae family Prasinophyceae, as a
representative of the Chlorophyta.

2.  MATERIALS AND METHODS

2.1.  Sampling

Sampling took place onboard the RV ‘Francisco de
Paula Navarro’, on 8−9 November 2014, during a
26 h diel cycle within the Bay of Málaga (Fig. 1).
Every 2 h (T1 to T13, Table 1), bongo nets (60 cm dia -
meter, 500 µm mesh) were deployed to collect sar-
dine larvae by means of oblique hauls down to 5 m
above the seafloor. Sampling started at midday in
shallow shelf waters (70−80 m depth) where adult sar -
dine are known to spawn, and we gradually moved
towards nursery shallow inshore waters (18−22 m
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depth), where larvae concentrate at nighttime (Gar-
cía et al. 1988). On board, a subset of 351 ind. were
sorted, identified, visually examined for gut contents
and photographed with a Leica EZ4HD, for later
measurement of standard length (SL),
and immediately preserved in un -
denatured ethanol (96%) for mol ecular
assays. Larvae handling time between
collection and preservation did not
exceed 5 min.

After each ichthyoplankton sampling,
a CTD SBE-25 was used to obtain ver-
tical profiles of temperature and sal -
inity at each sampling site. Niskin
bottles were then used to collect sea-
water at the surface and close to the
seafloor. Samples to determine the
abundance and taxonomic composi-
tion of phytoplankton >5 µm were
fixed in dark glass bottles with Lugol’s
solution (2% final concentration).
Samples for determination of eukary-
otic pico- and nanoplankton abun-
dance were fixed with glutaraldehyde

(1% final concentration) and immediately frozen in
liquid nitrogen (Vaulot et al. 1989). Finally, a WP2-
double net (200 µm mesh) was deployed vertically to
collect mesozooplankton, from 3 m above the bottom
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Fig. 1. (Top panel) Alboran Sea
surface circulation and (bot-
tom panel) locations of sam-
pling stations. WAG: West
 Anticyclonic Gyre, EAG: East 

Anticyclonic Gyre

Station Latitude Longitude Depth SST SSS Sampling time (h)
(N) (W) (m) (°C) Larvae Zoo-

plankton

T1 36° 38.37’ 4° 21.18’ 80 15.78 37.01 11:30 12:38
T2 36° 39.47’ 4° 22.00’ 64 16.44 36.93 13:30 14:51
T3 36° 38.79’ 4° 20.71’ 73 15.90 36.93 16:00 17:07
T4 36° 40.74’ 4° 23.32’ 47 16.24 36.97 18:00 18:36
T5 36° 42.60’ 4° 24.14’ 20 15.67 37.22 19:50 20:26
T6 36° 42.76’ 4° 24.16’ 18 16.13 37.10 22:10 22:34
T7 36° 42.52’ 4° 24.28’ 21 15.74 37.20 24:10 00:34
T8 36° 42.53’ 4° 24.19’ 22 15.90 37.13 02:15 02:44
T9 36° 42.47’ 4° 23.75’ 22 16.04 37.07 04:15 04:39
T10 36° 42.33’ 4° 24.11’ 22 15.75 37.20 06:10 06:40
T11 36° 40.88’ 4° 22.89’ 48 15.84 36.92 08:30 09:08
T12 36° 40.76’ 4° 22.94’ 46 15.58 37.18 10:30 10:58
T13 36° 40.54’ 4° 22.93’ 47 15.70 37.20 12:15 12:49

Table 1. Details of sampling stations in the Alboran Sea: location (position of
the zooplankton vertical haul), bottom depth (m), sea surface (5 m depth) tem-
perature (SST, °C) and salinity (SSS), and larvae and zooplankton sampling 

+time (local time: GMT+1). Bold font indicates the night period
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to the surface, at a speed of 0.5 m s−1. Zooplankton
was carefully rinsed and preserved with 96% non-
denatured ethanol for taxonomic analyses.

2.2.  Plankton community composition

In the laboratory, 100 ml of each phytoplankton
>5 µm sample were sedimented in a composite
chamber for 24 h, following the technique developed
by Utermöhl (1958). Cells were counted at 200× and
400× magnification with a Leica DMIL inverted
microscope. The species nomenclature was validated
using Tomas (1997). Pico- and nanoplankton samples
for determination of eukaryotic pico- and nanoplank-
ton abundance were fixed with glutaraldehyde (1%
final concentration) and immediately frozen in liquid
nitrogen (Vaulot et al. 1989). Samples were analysed
with a Becton Dickinson FACScan flow cytometer.
Cell counting was performed based on the forward-
light scatter and the orange and red fluorescence sig-
nals. BD TrueCOUNT Tubes were used to determine
absolute counts. Copepod abundance and tax onomic
composition were determined using a stereomicro-
scope (Leica M165C). Taxonomic identification was
made to the lowest possible level according to Rose
(1933), Trégouboff & Rose (1957) and Razouls et al.
(2005). Copepod identification to species level was
not always feasible, as some genera include cryptic
species in the study area (e.g. Kasapidis et al. 2018).
Thus, we report field copepod abundance data at the
genus level.

2.3.  Molecular analyses of larval gut content

In the laboratory, sardine larvae were dissected for
gut DNA extraction. Prior to extraction, individuals
were washed 3 times with sterilized water, and all
the material, forceps and scalpels were flame steril-
ized before and after each dissection. From each
sampling, the gut contents of 10 larvae were pooled

together and total DNA was extracted using a
DNeasy Blood & Tissue kit (Qiagen), following the
manufacturer’s instructions, except for the Proteinase
K incubation, which was done overnight at 37°C.
DNA pools were stored at −20°C until their assay,
and DNA purity and concentrations were assessed
using NanoDrop 1000 (Thermo Scientific) in 1 µl of
sample (for DNA in each pool, see Table 3). In order
to assess the presence/absence of potential prey
within the larval guts, 5 µl of total DNA from each
pool were assayed in triplicate by means of a species-
specific multiplex PCR designed ad hoc for this
 purpose (A. Hernández de Rojas et al. unpubl. data).
In brief, a multiplex PCR was designed to detect, in a
single assay, the DNA of the 5 most abundant cope-
pod species found in the study area, by targeting
short fragments (100−200 bp) of their mitochondrial
cytochrome c oxidase subunit I (mtCOI) gene. The
potential prey targeted were Clausocala nus para -
pergens, Acartia clausi, Paracalanus indicus, Temora
stylifera and Oncaea waldemari. PCR melting tem-
peratures (Tm) ranged from 42 to 50°C, and amplicon
lengths varied from 104 to 193 bp. PCR products
were separated and analysed with Bioanalyzer 2100
(Agilent), using the DNA 1000 kit (Agilent). Electro-
pherograms were analysed with 2100 Expert Soft-
ware (Agilent), and fragments of the expected length
which also yielded ≥1 fluorescent unit (FU) were
counted as positive.

Likewise, phytoplankton content of the gut was
studied by means of a second multiplex PCR. In this
case, group-specific primers were designed (Table 2)
to detect the dinoflagellate genus Gymnodinium
(105 bp amplicon) and the picoeukaryote family Pra -
sinophyceae (155 bp amplicon). The large subunit
ribo somal DNA (LSU rDNA) marker is preferentially
used for dinoflagellate species identification due to its
high variability in some domains (Gomez et al. 2011).
Thus, for Gymnodinium primer design, sequence
alignment of available (GenBank, October 2015) G.
catenatum mitochondrial LSU rDNA gene sequences
was performed. To ensure the detection of partially
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Taxon Target gene Primer name Primer sequence (5’-3’) Amplicon Tm
size (bp)

Gymnodinium catenatum LSU rDNA Gymno-F TGT GAA ACC GAT AGC AAA CAA GT 105 51.7
Gymno-R ATC CTT CGC TTC CAG TTC AGC 54.3

Prasinophyceae rbcL Chloro-F CCA GCT CTA GTT GAG ATC TTC G 155 55.3
Chloro-R CGA AGC TAA GTC ACG TCC TTC 56.5

Table 2. Sequences of the phytoplankton primers designed for this study. Tm: primer melting temperature (°C)
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digested dinoflagellate DNA, primers were designed
for the amplification of a small fragment (between
100 and 200 bp) according to the recommendations
of King et al. (2008). For the Prasinophyceae, primers
were designed for PCR amplification of the ribulose-
1,5-diphosphate carboxylase (rbcL) gene fragment, a
core plant DNA barcode (Worden & Not 2008). All
Prasinophyceae sp. sequences available in GenBank
(October 2015) were aligned to design a  family-
specific primer following the same procedure as for
Gymnodinium. For sequence alignment, we used
Unigene software (Okonechnikov et al. 2012), and
primers were designed with Oligo 7 software (Mole-
cular Biology Insights). In the same way as for cope-
pods, 3 total DNA aliquots (5 µl) of each pool were as -
sayed. Amplicons were analysed as explained above.

2.4.  Prey size estimations

In order to estimate which copepod developmental
stages could be potentially consumed by sardine lar-
vae within the size range collected in our study, we
used the relationship given by Morote et al. (2010)
between sardine larval SL and prey width:

Prey width (µm) = (1)

10.028 × Larval SL (mm) + 5.747 (r2 = 0.137, p < 0.001)

3.  RESULTS

3.1.  Hydrography

The mean ± SD sea surface temperature was 15.9 ±
0.2°C, varying between 15.6 and 16.4°C during the
diel cycle. Sea surface salinity was 37.08 ± 0.12, rang-
ing from 36.92 to 37.22 (Table 1). The water column
was not stratified, and temperatures in bottom to sur-
face waters were similar by day (13.6−16.5°C) and
night (14.5−16.3°C), as was salinity (36.9−38.2 by day
and 37.1−37.7 at night).

3.2.  Plankton community composition

Mesozooplankton was dominated by copepods,
which accounted for 74.1 ± 16.2% (45−94% range) of
the total abundance, followed by cladocerans (12.8 ±
12.6%) and appendicularians (4.1 ± 3.7%). The most
abundant copepod genus in the field was Oncaea
(25.2 ± 18.3%), with up to 2880 ind. m−3 at T5, while
Paracalanus, Temora, Acartia and Clausocalanus
adults represented from 7.9 ± 4.9 to 5.0 ± 3.5% of

the total copepod abundance. The dominant species
within these genera were: A. clausi (99.93% of Acar-
tia counts), T. stylifera (96.92% of Temora) and P. cf.
parvus (88.37% of Paracalanus). Clausocalanus and
Oncaea individuals were identified to genus, so com-
parison between field abundances and gut content
contributions were also made at the genus level. Un -
identified copepodites and nauplii accounted for
20.1 ± 15.1% and 4.0 ± 3.3%, respectively, and the
remaining copepod species identified comprised
25.5 ± 10.9%. Copepods were most abundant at
night (T5−T7), when the community was dominated
by Oncaea and Acartia. A diurnal increase was also
seen, at T12−T13, except for Acartia whose abun-
dance was very low by day (Fig. 2a). The most abun-
dant microplankton group was flagellates, followed
by diatoms. Dinoflagellate abundance was domi-
nated by <20 µm cells, followed by Gymnodinium
catenatum, which represented up to 58% of dino -
flagellate counts. Abundance of cells <5 µm was dom -
inated by picoeukaryotes. Maximum abundances
were observed at T10−T13 for microplankton, at T6
for picoplankton and at T3−T4 for nanoplankton. All
of these fractions presented minimum abundances at
T5 (Fig. 2b), the beginning of the night period, coin-
ciding with the highest copepod abundance.

3.3.  Sardine larval SL

The SL of sardine larvae ranged from 5.9 to 20.8 mm,
with a mean ± SD of 10.64 ± 2.15 mm (Fig. 3). There
were no significant differences in the size distribu-
tion of the larvae among sampling stations (Kol-
mogorov-Smirnov tests, p > 0.05), indicating that we
were sampling the same population. Only T5 distri-
bution differed from some day and night stations,
probably due to a larger contribution of larvae with
SL >13 mm. The subset of sardine larvae selected for
molecular analyses had a mean of 10.80 ± 0.73 mm.
Of these, 71% ranged between 9 and 13 mm (47%:
9−11 mm, 24%: 11−13 mm), 14% were <9 mm and
13% were >13 mm.

3.4.  Sardine larval gut contents

We visually observed the presence of gut contents
in sardine larvae collected from mid-day (11:30 h)
until dusk (18:00 h). Feeding incidence estimated
from photographs was 46% by day. However, during
the night and early morning hours, guts seemed
empty (Fig. A1 in the Appendix). Larvae with visible
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gut contents were selected for molecular assays
when available. Multiplex PCR results also showed
day−night differences in the presence/ absence of the
target copepod species in the guts of the sardine lar-
vae. T. stylifera and O. waldemari were detected dur-
ing nearly the whole cycle, whereas A. clausi was
intermittently and poorly de tected during the diel
cycle (Table 3). P. indicus and C. parapergens were
not found at night (T5−T9), despite their night abun-
dances in the field accounting for up to 17.7 and
10.1% of total copepods, respectively. Phytoplankton
taxa were found during the entire cycle, although
Prasinophyceae were not detected at the end of
the night (T9−T10). The relative contribution (ng
DNA) of each prey in the sardine  larval guts also var-
ied. T. stylifera, P. indicus and O. waldemari showed
the highest average contribution (42.1, 27.9 and
25.7% of copepod DNA detected, respectively),
whereas the percentage of A. clausi and C. paraper-
gens was low (2.6 and 1.7% of copepod DNA
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Station Oncaea Temora Paracalanus Acartia Clausocalanus Gymnodinium Prasinophyceae [DNA]

T2 +++ +++ +++ + − +++ +++ 200.95
T3 − +++ +++ − + +++ +++ 134.35
T4 − +++ +++ + ++ +++ +++ 185.60
T5 ++ +++ − ++ + +++ +++ 287.65
T6 + +++ − − − +++ +++ 257.10
T7 + + − − − +++ +++ 247.00
T8 ++ +++ − + − +++ ++ 303.75
T9 + − − − − +++ − 137.55
T10 + +++ ++ ++ ++ +++ − 398.45
T11 ++ +++ + + + +++ +++ 188.10
T12 +++ +++ +++ − − +++ +++ 175.45
T13 − +++ +++ − + +++ +++ 184.90

Table 3. Presence/absence of prey detected by multiplex PCR within guts of sardine larvae during the diel cycle. +: positive
replicates, −: not detected, [DNA]: DNA concentration (ng µl−1) of each sardine gut pool, assessed using NanoDrop 1000. Bold
font indicates the night period. Image analyses of the larvae pools revealed that 2 larvae in T1 were Engraulis encrasicolus; 

thus we discarded the T1 gut content results
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detected, respectively, Fig. 4). Furthermore, we ob -
served that peaks in the relative field abundance of
Oncaea and Acartia were significantly correlated to
increases in their contribution to the DNA concentra-
tion in larval gut contents 4 h later (Fig. 4, p < 0.05).
Temora and Clausocalanus peaks showed a positive,
although not  significant, relationship between field
and gut contribution with a 2 h delay (p > 0.05). In the
case of Paracalanus, this coincidence was only
observed during daytime, and the correlation was
negative and not significant (p > 0.05) during the
diel cycle.

4.  DISCUSSION

Given that starvation is one of the main causes of
mortality in the larvae of SPF and other marine fish
species (Hjort 1914), it is crucial to understand how
plankton abundance and diversity affect the diets
of young fish larvae. In the Bay of Málaga, interac-
tions among phytoplankton, ciliates and zooplankton
appear to play a central role in regulating the pelagic
food web (Mercado et al. 2007), and the role of sar-
dine larvae as predators of these groups has not been
previously investigated. This study is the first to
 successfully combine traditional (microscopy) and
molecular (multiplex PCR) techniques to estimate the
diet of sardine larvae.

The present study identified copepods as the main
target of foraging by sardine larvae, including 4
calanoids (Acartia clausi, Paracalanus indicus, Clauso -
calanus parapergens, Temora stylifera) and 1 poecilo -
stomatoid (Oncaea waldemari). These copepods are
cosmopolitan species distributed across tropical and
temperate oceans and seas (Razouls et al. 2005). The
4 calanoids are epipelagic (Scotto di Carlo et al. 1984,
Steinberg et al. 1994, Brugnano et al. 2012) and most
frequently sampled in the upper 200 m of the water
column, while O. waldemari occurs across a wider
range of depths, from the deep-sea to the surface
(Böttger-Schnack & Schnack 2013). As hypothesized,
we found that the 3 most frequently detected cope-
pods within the guts of sardine larvae (Temora, Para-
calanus and Oncaea) were also the most abundant in
the study area. However, we cannot rule out prefer-
ential feeding on Temora, whose DNA was the most
abundant in guts (42% T. stylifera, 26−28% P. in -
dicus and O. waldemari), although it was not the
most numerically  dominant copepod in the field
(25% Oncaea, 5−8% Paracalanus, Acartia and Te -
mora). An important limitation, however, is that the
abundance of copepods in the field was based on
adults identified to the species or genus level using
microscopy. Early copepodite and naupliar stages
were not identified (20 and 4% of total copepod
counts, respectively) and the mesh of our sampling
gear (200 µm) was not fine enough (e.g. 60 µm) to
quantitatively sample these smaller life stages. Thus,
the relative abundance of the adults of a species may
not reflect the actual contribution of their nauplii and
copepodites to the suite of prey available to sardine
larvae.

In the pelagic ecosystem, there is a tight relation-
ship between the trophic position and the size of an
organism (Scharf et al. 2000). Also, the relationship
between predator and prey sizes is the main factor
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determining capture success (Hansen et al. 1994,
Neubert et al. 2000). Hence, predation has been con-
sidered opportunistic rather than taxon selective
(Lundvall et al. 1999). Laboratory and field studies on
young European sardine larvae revealed that prey
size significantly increased with increasing larval
length (Morote et al. 2010, Caldeira et al. 2014).
Based on the model by Morote et al. (2010) for sar-
dine larvae in the NW Mediterranean and widths of
potential prey estimated during our field sampling,
larvae up to 20 mm SL would be able to ingest adults
of O. waldemari and early copepodite stages and
nauplii of the larger calanoid species detected in sar-
dine gut contents (Table 4). Our results agree with
microscopic observations of the gut contents of sar-
dine larvae in the NW Mediterranean and Canta -
brian Seas, where 46−52% of the prey ingested by
<10−13 mm sardine larvae were copepod nauplii
(Mu nuera Fernández & González-Quirós 2006, Morote
et al. 2010). Furthermore, the use here of a species-
specific multiplex PCR assay has allowed, for the first
time, the identification to species level of the nauplii
ingested by sardine larvae, which otherwise would

remain unidentified. However, apart from size, other
factors such as nutritional quality or prey motility can
condition prey selection (Bautista & Harris 1992,
Gragnani et al. 1999). Borme et al. (2013) observed
that post-flexion sardine larvae in the Adriatic Sea
not only fed on the most abundant copepods (T.
longicornis and Paracalanus spp.) but also T. stylif-
era, Acartia spp. and other copepod species which
were rare in plankton samples. The positive selection
of these rare species was probably related to the poor
alertness and weak escape response of these cope-
pods (Viitasalo et al. 2001). In the Bay of Málaga,
despite the fact that Oncaea adults were more abun-
dant than other species, sardine larvae (as indicated
by the DNA found in the guts) seemed to prefer to
prey on easier targets such as nauplii of Temora or
Paracalanus, suggesting that motility rather than
nutritional quality was an important factor influenc-
ing prey selection by these larvae.

DNA of both phytoplankton taxa tested, Gym -
nodinium and Prasinophyceae, was also present in
the gut contents of sardine larvae. One previous
study reported herbivory by sardine larvae in the

NW Mediterranean under a spring
bloom  situation (Rasoanarivo et al.
1991). However, several studies in
highly productive eastern boundary
current systems have categorized
larvae of SPF as passive phyto-
plankton consumers, criticizing the
assumption of phytophagy for this
and other clupeid species (Kon -
china 1991, Van der Lingen 2002).
In our study, we cannot ascertain
whether phytoplankton cells found
in the guts were eaten directly
by the sardine larvae or whether
phytoplankton DNA originated from
the copepods ingested by these
 larvae. Sardine larvae lacked the
DNA of Prasinophyceae (<2 µm
cells) at the end of the night (T9)
when the lowest amounts of cope-
pod DNA were found and when only
Oncaea was detected (Table 3).
 Preliminary tests of the phytoplank-
ton primers showed that both phy -
toplankton taxa were not only
detectable within the guts of sar-
dine larvae but also inside the cope -
pod species preyed upon by larvae
(data not shown). Of the target
copepods, all have been described
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Species Stage Sex Length Width Sardine SL Reference

Acartia clausi CI 0.48 0.14 13.39 1
CII 0.58 0.16 15.38 1
CIII 0.70 0.19 18.37 1
CIV m 0.93 0.23 22.36 1
CIV f 0.88 0.24 23.36 1
CV m 1.04 0.28 27.35 1
CV f 1.06 0.26 25.35 1
CVI m 1.16 0.28 27.35 1
CVI f 1.13 0.28 27.35 1

Clausocalanus CVI m 1.10 0.38 37.78 2
parapergens CVI fa 1.31 0.27 26.02 2

Paracalanus indicus CVI m 0.85−1.02 0.29 28.35 2, 3
CVI f 0.85−0.95 0.26 25.35 3

Temora stylifera CI 0.29 0.19 18.57 4
CII 0.41 0.24 23.36 4
CIII 0.51 0.32 31.24 4
CIV 0.59 0.34 33.23 4
CV 0.69 0.34 33.43 4
CVI m 0.88 0.42 41.51 4
CVI f 0.93 0.48 47.29 4

Oncaea waldemari CVI m 0.37−0.58 − − 2
CVI fa 0.49−0.76 0.16 15.58 2

aC. parapergens and O. waldemari female sizes were extracted from taxo-
nomical plates

Table 4. Mean length (mm) and width (mm) of the 5 target copepod species. Cor-
responding standard length (SL, mm) of the potential predator (Sardina pilchar -
dus) was calculated as in Morote et al. (2010). Bold font indicates developmental
stages falling within the expected prey size for the sardine larvae in our study
(SL <20 mm). References: (1) Conway (2012), (2) Razouls et al. (2005), (3) Brad-

ford (1978), (4) Shmeleva (1965). –: no data available



Yebra et al.: Multiplex-PCR identification of Sardina pilchardus larval diet 

as omnivores (Ohtsuka et al. 1993, Kouwenberg
1994, Mauchline 1998, Razouls et al. 2005, Benedetti
2015, 2016). However, A. clausi, P. indicus, C. parap-
ergens and T. stylifera are predominantly herbivores
(Wickstead 1962, Kouwenberg 1994, Calbet & Saiz
2005), whereas O. waldemari is preferentially a de -
tritivore (Wickstead 1962, Razouls et al. 2005). The
co-occurrence of the DNA of phytoplankton and
 herbivorous copepods in the guts of sardine larvae,
coupled with the weakest Prasinophyceae signal
when the detritivore Oncaea dominated gut con-
tents, suggests that sardine larvae were most proba-
bly not consuming these pigmented cells, but that we
detected phytoplankton inside the guts of herbivore
copepods eaten by the larvae.

We found high day/night variability in the copepod
field community as well as in the gut contents of lar-
vae, with a marked decrease at night in the number
of species and DNA concentration detected, suggest-
ing a preferential diurnal feeding. This agrees with
previous studies reporting that the larvae of other
clupeid species are visual predators (Arthur 1976).
Also, circadian variation in the nutritional condition
of sardine larvae (assessed as RNA:DNA) was sug-
gested to be driven by diel changes in larval diets
(Conway et al. 1994, D. Cortés unpubl. data). Total
copepod DNA concentration within the guts of sar-
dine larvae did not match prey field abundance dur-
ing the diel cycle; we found higher DNA concentra-
tions by day (T12−T13, >5 ng DNA µl−1), but highest
copepod numbers at night (T5−T6, >5000 ind. m−3).
Further, O. waldemari and T. stylifera presented a
higher night signal within the guts along the diel
cycle, whereas P. indicus and C. parapergens were
only detected by day. These differences might be
explained by the diel variability of the zooplankton
community composition observed during the migra-
tion of the shoal of sardine larvae towards shallow
waters at dusk. Moreover, PCR is not quantitative,
and a high relative concentration of DNA might be
due to the presence of one entire (recently ingested)
prey or the sum of several heavily digested organ-
isms. Nevertheless, it is noteworthy that peaks of
 relative abundance of some copepod species in the
field were followed in time by increases in relative
DNA concentration of the same species within the
guts of sardine larvae, irrespective of the time of
the day (e.g. Acartia, Fig. 4), supporting the idea of
opportunistic feeding by these larvae.

The results of this molecular assessment of the
diet of sardine larvae in the field support our initial
hypothesis that sardine larvae have an opportunistic
rather than selective feeding behaviour. Neverthe-

less, among these copepods, sardine larvae (mean SL
of 10 mm) may select nauplii of large copepods (i.e.
Temora) likely because they are easier targets than
adults of small-bodied species (such as Oncaea).
Also, in this work we studied predation on copepods,
the most abundant zooplankton group in the study
area during autumn. In order to fully comprehend
the trophic ecology of sardine larvae, further molecu-
lar assays (e.g. metabarcoding) need to be conducted
to detect other potential planktonic prey, such as
microplanktonic protists and gelatinous organisms.
The development and application of further genomic
tools, such as the ad hoc designed multiplex-PCR
assays applied here, will facilitate the study of the
autecology of planktonic species and their tropho -
dynamic role in marine ecosystems. Furthermore, the
species-specific multiplex PCR used on sardine lar-
vae can be applied as a low-cost, complementary or
alternative tool to microscopy, to detect a suite of
5 common copepods within guts of other SPF which
are known to prey on nauplii. These SPF would
include species of commercial interest, such as an -
chovy Engraulis encrasicolus (Tudela et al. 2002,
Morote et al. 2010), round sardinella Sardinella
aurita (Morote et al. 2008) or European sprat Sprattus
sprattus (Conway et al. 1991), but also other fish
 larvae for which there is no information on their diet,
like the boarfish Capros caper, a new fishery species
of increasing commercial interest in the North
Atlantic (Stange 2016).
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Fig. A1. Sardina pilchardus larvae caught during a 26 h diel cycle within the Bay of Málaga. (a) Larva caught during the day 
showing gut content and (b) larva caught at night void of gut content 
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