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INTRODUCTION

The classic approach towards spatial ecological
patterns is the community concept as introduced by
Möbius (1877), who was the first to designate benthic
species associations as biocoenoses, which are char-
acterized by ‘typical’ species. However, in ecological

theory there is an ongoing debate about the nature of
species associations. One school of thought holds the
view that species associations represent communi-
ties, i.e. entities highly structured by interactions and
dependencies between the participating species
(e.g. Paine 1980, Richardson 1980, Gotelli & McCabe
2002, Chase & Leibold 2003). The opposite position

© The authors 2017. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un -
restricted. Authors and original publication must be credited. 

Publisher: Inter-Research · www.int-res.com

*Corresponding author: dario.fiorentino@awi.de

ABSTRACT: The concept of the marine ecological community has recently experienced renewed
attention, mainly owing to a shift in conservation policies from targeting single and specific objec-
tives (e.g. species) towards more integrated approaches. Despite the value of communities as dis-
tinct entities, e.g. for conservation purposes, there is still an ongoing debate on the nature of spe-
cies associations. They are seen either as communities, cohesive units of non-randomly associated
and interacting members, or as assemblages, groups of species that are randomly associated. We
investigated such dualism using fuzzy logic applied to a large dataset in the German Bight (south-
eastern North Sea). Fuzzy logic provides the flexibility needed to describe complex patterns of
natural systems. Assigning objects to more than one class, it enables the depiction of transitions,
avoiding the rigid division into communities or assemblages. Therefore we identified areas with
either structured or random species associations and mapped boundaries between communities or
assemblages in this more natural way. We then described the impact of the chosen sampling
design on the community identification. Four  communities, their core areas and probability of
occurrence were identified in the German Bight: AMPHIURA-FILIFORMIS, BATHYPOREIA-TELLINA,
GONIADELLA-SPISULA, and PHORONIS. They were assessed by estimating overlap and compactness
and supported by analysis of beta-diversity. Overall, 62% of the study area was characterized by
high species turnover and instability. These areas are very relevant for conservation issues, but
become undetectable when studies choose sampling designs with little information or at small
spatial scales.
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sees assemblages, i.e. species associated by random
processes, with interactions playing a minor role
(Whittaker 1952, Mills 1969, McCann et al. 1998,
Berlow 1999). There is empirical evidence in support
of both views. However, much of the corresponding
research may suffer from methodological shortcom-
ings. Many studies have been carried out on com -
paratively small, local scales and thus may have cap-
tured just a part of the association’s regional species
pool (Somerfield et al. 2009). Studies at scales below
the spatial extent of the association may yield a
biased or compromised view of the nature of the
association (Ricklefs 2008). Accordingly, there is an
in creasing need for regional, large-scale approaches.

Consequently, most statistical methods used for
community classifications are based on the simplified
community concept, i.e. highly structured units
based on functionality, phylogenetic similarity, spe-
cies characteristics or species−environment interac-
tions (e.g. Picard et al. 2012, Jackson et al. 2012, Dun-
stan et al. 2013, Leaper et al. 2014) which all aim at
classifying samples according to their similarity in a
multidimensional space (Dunn 1974, Pakhira et al.
2005, Everitt et al. 2011). Thus, traditional clustering
methods (e.g. hierarchical clustering, k-means, parti-
tion around medoids) only provide hard classifica-
tion — that is, classes with discrete and sharp bound-
aries. In marine science, defining boundaries is a
widely recognized problem that stems from supply
side ecology theory (Lewin 1986), e.g. in fields such
as habitat, sediment and biotope mapping. Quite
often, sharp boundaries are preferred, as maps are
easier to read and thus more useful for stakeholders.
But in nature, sharp ecological boundaries only occur
in very specific (and rare) cases. Often we deal either
with gradual transitions (i.e. ecotones) or with areas
that are difficult to assign to one class because a little
bit of everything is occurring (e.g. mixed sediments).
The identification of boundaries may depend on how
classes are defined, on the method used for achieving
the classification and on the act of classifying (which
is organizing objects into classes that are limited by
sharp boundaries per definition). This prevents pro -
per description of systems shaped by gradual varia-
tion from cluster to cluster and leads to a loss of
important ecological information by the setting of
inappropriate and artificial boundaries (Burrough et
al. 2000). In contrast, fuzzy clustering (Zadeh 1965,
Bezdek 1974, Kaufman & Rousseeuw 2008, Everitt et
al. 2011) allows for partial truth rather than the con-
cept of true/false, which makes this concept more
suitable to test for uncertainty in the community con-
cept which is typical of natural systems.

Instead of following the traditional community
 concept and its spatial distribution, we used the
approach of fuzzy clustering. We believe that a fuzzy
modelling approach is the most flexible and most
suitable approach to classify communities in the most
realistic way without assuming any particular associ-
ation rule or constraint (e.g. environmental). As a
result, we could define community core areas as
those areas in which a community has high probabil-
ity of occurring (e.g. p > 0.8). Thus, our approach
allows for the analysis of core communities and areas
of mixed communities (transition zones and unde-
fined zones) at the same time. We think that this
approach reflects the natural occurrence of associa-
tions in the most realistic way.

As local sampling might impair our analysis of the
distribution of associations (see above, e.g. Ricklefs
2008, Somerfield et al. 2009), we further explored the
effect of different spatial scales and sampling effort
on the corresponding loss of information on species
occurrence. For future analysis, this might enable an
estimate of how much data are generally needed to
fulfil the requirements of a holistic view on the asso-
ciation concept.

In this study, we applied this flexible approach for
the first time to the benthic associations in the Ger-
man Bight, in the North Sea — one of the most inten-
sively studied marine areas of the planet. Here, first
studies on benthos were already carried out at the
beginning of the last century (Petersen 1918, Blegvad
1922, Hagmeier 1925). Small-scale studies are very
numerous (e.g. Armonies 2000, Wieking & Kröncke
2003), with only a few surveys covering the whole
German Bight (e.g. Salzwedel et al. 1985, Rachor &
Nehmer 2003) or even larger areas (e.g. Duineveld et
al. 1991, Heip et al. 1992, Künitzer et al. 1992, Heip &
Craeymeersch 1995, Rees et al. 2007). Furthermore,
temporal dynamics (e.g. Kröncke et al. 2011), the
influence of environmental variables (e.g. van Hoey
et al. 2004, Kröncke 2006, Reiss et al. 2010) and
anthropogenic effects (e.g. Rachor 1990, Jennings et
al. 1999, van Dalfsen et al. 2000, Witt et al. 2004) on
the benthos have been studied intensely over recent
decades. Therefore, sound knowledge of benthic
spatial (and temporal) variability is still missing,
although essential for an understanding of ecological
processes as well as for sustainable management and
conservation of benthic systems. Such detailed infor-
mation is required, e.g. in the context of nature pro-
tection policies in Europe (e.g. European Parliament
and Council 2008), the convention on habitat classifi-
cation (e.g. Davies & Moss 2004, HELCOM 2013), the
Habitats Directive (Council of the European Union
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1992), the Marine Strategy Framework Directive
(European Parliament and Council 2008) and the
German Federal Nature Conservation Act (1998). In
fact, agencies and directives use the concept of com-
munity under the assumptions that it can act as a
proxy for biodiversity, and underpin specific func-
tions and ecosystem services, although some of these
assumptions still require scientific support. However,
besides conservation and protection (Gonzalez-
Mirelis et al. 2011), the concepts of community and
assemblages have mainly been devoted to studying
the association’s properties (e.g. Guillemot et al.
2011), environmental relationships (e.g. Leaper et al.
2014; Gogina et al. 2016) and assembly rules (e.g.
Spasojevic & Suding 2012, Ricklefs 2015).

In the present study, we firstly aimed at describing
the spatial distribution of benthic species associa-
tions. Regardless of community and assemblage con-
cepts, we drew maps of both types of associations.
Simulating different experimental designs, we sec-
ondly aimed at evaluating which sampling design
was more likely to detect one association type or the
other.

MATERIALS AND METHODS

To aid the explanation of the logic
we pursued, we provide the workflow
of the steps we followed in Fig. 1. To
achieve the first aim (Fig. 1A), we clas-
sified the samples into groups accord-
ing to their species composition. Those
groups were the species associations.
Thus, samples had a probability of
belonging to each association. This
allowed the determination of whether
samples belonged exclusively to one
association or to more than one. The
probability of belonging to more than
one association was used to calculate
an index of equitability. This was used
to map transitional zones and zones
with random species associations.
Samples exclusively belonging to one
association made the spatial distri -
bution of communities. Communities
were named according to their char-
acteristic species and mapped in terms
of their probability of occurring.

To achieve the second aim (Fig. 1B),
we bootstrapped the dataset in 2
ways: (1) keeping the amount of infor-

mation constant, increasing the distance among sam-
ples and (2) keeping the distance between samples
constant and reducing the amount of in formation.
Each bootstrap resulted in a subsample that was sub-
mitted to fuzzy clustering, and results were evalu-
ated in terms of the distribution of the probability of
samples belonging to each association.

Methods used to achieve those aims are further
detailed in the workflow in Fig. 2. Fig. 2A shows the
steps followed to prepare the dataset, and Fig. 2B,C
outlines the steps followed to achieve the first and
 second aims.

Data preparation

The primary database for this study comprised
infaunal grab samples collected at 1146 stations,
mostly within the German Exclusive Economic Zone
(EEZ) between 2000 and 2013 (Fig. 3). These samples
were taken during various surveys carried out by the
following organisations: Bundesamt für Naturschutz,
Landesamt für Landwirtschaft Umwelt und ländliche
Räume, Bundesministerium für Um welt Naturschutz
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Fig. 1. Workflow outlining the logic followed to address the aims of the pres-
ent study. Blue rectangles (A and B) represent the 2 different aims. Grey 

rhombi: conducted analyses; grey rectangles: results
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Bau und Reaktor sicherheit, Arbeits -
gemeinschaft Bund/ Länder-Messpro -
gramm für die Meeresumwelt, Main-
stream Renewable Energy, TenneT
Off shore GmbH, Energienet dk, and
Institut für Angewandte Öko system -
forschung GmbH. Samples were
collec ted and processed according to a
 standard protocol, i.e. 3 van Veen grab
samples of 0.1 m2 per station, sieved
through a 1 mm mesh. The sampling
method allowed retrieving data on soft
bottom macrofauna. No information on
hard bottom fauna is currently avail-
able, as hard substrates constitute only
1% of the German EEZ area (Laurer et
al. 2012).

As shown in Fig. 2A, animals were
identified to the lowest taxonomic le vel
possible, and abundance was stan-
dardized to number of individuals m−2

station−1. Taxonomic nomenclature
was harmonized among surveys using
the World Register of Marine Spe cies
(WoRMS; Boxshall et al. 2014).

For the purpose of the present study,
to reduce the potential bias induced by
such non-homogeneous distributions,
we averaged species abundance ac -
cor ding to the stratification of sampling
designs adopted by different data
sources onto a grid with 2 × 2 km2 cells.
Rare species (<3% relative abun dance
at each station) were excluded from
the ana lysis following Mirza & Gray
(1981). The 3% threshold was chosen
to remove no more than the 70% of
rare species from the dataset (Gray &
Elliott 2009).

Community identification

Fuzzy clustering

We used fuzzy clustering for commu-
nity classification. In particular, we
applied the ‘fanny’ method (Kaufman
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Fig. 2. Workflow outlining the methods followed by the present study showing
3 main groups of analyses that were achieved. (A) Steps followed to prepare
the data; (B) steps followed to identify the associations; and (C) steps followed 

to evaluate the sampling design

Fig. 3. Study area in the German Bight,
southeastern North Sea; points indicate sta-
tions. Data courtesy of organisations listed 

in the text. Grey line: German EEZ 
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& Rousseeuw 2008), in which the algorithm first allo-
cates the samples randomly into a set of a priori given
clusters and uses their attribute values to calculate an
objective function. This is repeated iteratively until
the function is minimized and a stable solution is
found (details on how to minimize the objective are
described by Kaufman & Rousseeuw 2008, chapter 4,
sections 4 and 5). The method only depends on the
similarity between samples and is robust to outliers
and non-spherical clusters (Kaufman & Rousseeuw
2008, Everitt et al. 2011). Furthermore, it reduces the
bias introduced by zero-inflation because it uses an
association measure (Clarke et al. 2006, Legendre &
Legendre 2012). The minimized objective function
allows for calculating the membership distribution of
the samples. Sample membership may be interpreted
as the distance of each sample to each cluster cen-
troid. It describes the affinity of objects to each clus-
ter and enables estimation of the uncertainty of an
object’s assignment (Pouw & Kwiatkowska 2013). In
ecological terms, this procedure reproduces a spe-
cies’ feature of being related to more than one group
of species (Jackson et al. 2010). The sample’s mem-
bership distribution de pends on the membership
exponent, which sets the clustering degree of fuzzi-
ness. A membership exponent value close to 1 indi-
cates hard clustering, whereas values tending to +∞
indicate complete fuzziness (Kaufman & Rousseeuw
2008). Fuzzy clustering was performed on Bray-Cur-
tis distance (Clarke & Warwick 2001) of fourth-root
transformed data to prevent very abundant species
from masking the responses of those with low abun-
dances (Clarke & Warwick 2001). Clusters were
assigned to communities named according to charac-
teristic species (see below for details) sensu Rachor et
al. (2007). For visualization purposes, we interpolated
the membership values to each cluster at each sam-
pling station by means of kriging (Matheron 1963).
We selected the best method among ordinary krig-
ing, universal kriging or co-kriging according to the
lowest root mean square error.

The following formulas detail the dependency (~)
of the target membership from the independent vari-
ables (x, y and d) used by kriging. Membership in
clusters 1 to 4 is indicated by M1, M2, M3 and M4;
water depth is abbreviated d and coordinates as x
and y: M1 ~ x + y; M2 ~ 1; M3 ~ x2 + y2 + x · y + x + y;
M4 ~ d

Bathymetry was retrieved from the General Bathy-
metric Chart of the Oceans (www.gebco.net; the
GEBCO_2014 SID Grid, version 20141103). Overlay-
ing the 4 maps of cluster memberships we assigned
each 1 × 1 km2 cell to the cluster with highest mem-

bership; that is, turning the fuzzy classification into a
hard one.

Clustering evaluation

Clustering was evaluated by estimating cluster
compactness and separation (Wu & Yang 2005).
These features were assessed using the normalized
Dunn’s partition coefficient (Dunn 1974), the silhou-
ette averaged width (Kaufman & Rousseeuw 2008)
and by visual examination of the principal coordinate
ordination plot run on Bray-Curtis distance of species
abundance (Borcard et al. 2011, Everitt et al. 2011).
The normalized Dunn’s partition coefficient (Dunn
1974) estimates the degree of fuzziness: it ranges
from 0 (= total fuzziness), to 1 (= completely distinct
clusters). The silhouette averaged width (Kaufman &
Rousseeuw 2008) is the averaged ratio of the separa-
tion of each object from its cluster to the heterogene-
ity of the cluster. The closer the silhouette averaged
width is to 1, the better the object was classified
(Kaufman & Rous seeuw 2008, Everitt et al. 2011). For
a more robust validation, we permuted the samples
(i.e. resampled data without replacement) 1000 times
and let the ‘fanny’ algorithm re-calculate the mem-
bership distribution and associated Dunn’s partition
coefficient and silhouette averaged width. We com-
pared results among different partitions, letting the
number of clusters vary between 2 and 10. Finally,
we investigated the optimal clustering solution by
statistically testing for differences of beta-diversity
distribution within and between clusters (Anderson
et al. 2006). We tested the null hypothesis that beta
diversity did not change across the different clusters
by using a test of homogeneity of variance (Anderson
et al. 2006) on the ‘Jaccard’ association measure (Jac-
card 1900) of species presence−absence data.

Characteristic species

For the optimal clustering solution, we identified
characteristic species of clusters. We used a multi-
 criteria approach in which for the i th species we calcu-
lated fidelity in abundance FAi, numerical dominance
NDi, presence Pi, and fidelity in presence FPi as:

(1)

where Aic is the abundance of the i th species within
the c th cluster, Ai is the abundance of the i th species
in the dataset, Ac is the abundance of all species
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within the c th cluster, Pic is the presence of the i th spe-
cies in the c th cluster, Nstc is the number of stations in
the c th cluster and Nsti is the number of stations in the
dataset where the i th species was present.

A species was accepted as characteristic if at least
3 of these indices exceeded a given threshold value
(FA > 0.5, ND > 0.01, p > 0.6, FP > 0.5) as described by
Salzwedel et al. (1985) and Rachor et al. (2007). We
named communities according to the nomenclature
provided by Salzwedel et al. (1985) and Rachor et al.
(2007). We used the same names where characteristic
species in our list matched those provided by
Salzwedel et al. (1985) and Rachor et al. (2007). Com-
munity names are written in uppercase and not italic
to differentiate their names from species names.

Cluster overlap

Interpolated memberships to clusters were used to
calculate the Pielou (1975) equitability index at each
1 × 1 km2 cell. This provided estimates of the degree
of overlap among clusters in a scale from 0 (no over-
lap) to 1 (all communities share same probability of
occurring). For each cluster separately, we investi-
gated the variation of beta diversity according to the
degree of equitability. We tested the null hypothesis
that beta diversity did not change across different
degrees of equitability. A test of homogeneity of vari-
ance (Anderson et al. 2006) on the Jaccard associa-
tion measure (Jaccard 1900) of species presence−
absence data was used. To extract the data required
to test each cluster, we selected those stations with
membership to the selected cluster higher than 0.1.
Furthermore, we explored whether the degree of
equitability was related to a significant increase or
decrease of the number of taxa within 4 taxonomic
ranks: species, genus, family and order.

Evaluation of sampling designs

In order to explore the effects of (1) distance
between samples and (2) amount of information (i.e.
number of stations) on the clustering results, we
selected subsets of the main dataset in 2 ways. We
either let the minimum distance among sampling sta-
tions change (minimum distance = 2, 3, 5, 6, 10 and
12 km), keeping the amount of information constant
(number of stations = 110), or we let the amount of
stations change (number of stations = 832, 600, 330,
250, 150, 110), regardless of the distance among sam-
pling stations. For this subset, the stations were

selected to be equal in number in case of confused
design, that is, when stations would be selected by
letting the distance change without keeping the
number of stations constant (i.e. d > 2, 3, 5, 6, 10 and
12 km would generate sets with 832, 600, 330, 250,
150, 110 stations, respectively).

There were many combinations of stations that
would have satisfied each condition. Therefore, we
performed the fuzzy clustering on 500 possible com-
binations of stations for each condition and let the
algorithm run with the previously selected optimal
number of clusters. For each combination, the mem-
bership values were used to calculate the degree of
confusion (CI) as defined by Burrough et al. (1997):

(2)

where μmax and μmax−1 are the maximum and second
largest membership values given for the same pixel.
The index ranges from 0 (lowest confusion) to 1
(highest confusion). This allowed calculating a confu-
sion index distribution for each condition. We tested
the null hypothesis that the confusion index did not
change across the different conditions.

All analyses were conducted using R v.3.2.3 (R De-
velopment Core Team 2015); the R script as well as all
georeferenced maps and graphs are available in the
Sup plements at www.int-res.com/articles/suppl/ m584
p017_ supp/. Fuzzy clustering was performed using
the function ‘Fanny’ as described by Kaufman & Rous -
seeuw (2008) and implemented in R package ‘cluster’
(Maechler et al. 2015). Package ‘gstat’ (Pe besma
2004) was used for interpolation of the communities’
distributions and ‘vegan’ for analysis of beta-diversity
(Oksanen et al. 2015). Maps used the WGS84 (EPGS
4326) projection. On the maps, the coastline was pro-
vided by Global Self-consistent Hierarchical High-
resolution Geography (version 2.3.4 Jan 1, 2015;
https:// www. ngdc. noaa. gov/mgg/shorelines/ gshhs.
html; Wessel & Smith 1996), and the grey line indi-
cates the border of the German EEZ.

RESULTS

Communities in the German Bight

Our analysis identified 4 core benthic communities
in the southern North Sea: The AMPHIURA-FILIFORMIS

community, which occupies areas towards the cen-
tral North Sea and along the borders of the paleo
Elbe river valley (Fig. 4A); the BATHYPOREIA-TELLINA

community, which is situated mostly on sand banks

CI max 1

max
= μ

μ
−
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(Fig. 4B); the GONIADELLA-SPISULA community
(Fig. 4C) in shallower areas and the PHORONIS com-
munity on the fringe of the Sylt Outer Reef (Fig. 4D).
Georeferenced raster data for each community are
available in Supplement 3.

Clustering evaluation

The normalized Dunn’s partition coefficient
(Fig. 5A) and the silhouette averaged width (Fig. 5B)
similarly revealed that the classification with 4 clus-
ters had the lowest degree of fuzziness (0.764 ±
0.024) and the highest compactness (0.17 ± 0.01).

Beta diversity analysis showed significant differ-
ences both between and within groups (see Table S1
in Supplement 1). Since beta-diversity provides an
estimate of species turnover, the detection of signifi-
cant differences between groups supports the claim
that communities differ in their species composition
(Fig. 6).

Differences within groups (Fig. 6) were mostly
driven by the PHORONIS and GONIADELLA-SPISULA

com munities, which displayed the shortest and high-
est distances to the centroid respectively (Fig. 6).

Principal coordinate ordination plots confirmed
these findings (see Fig. S1 in Supplement 1). In fact,
visual examination of sample distribution and the
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Fig. 4. Probability of occurrence of the 4 groups: (A) AMPHIURA-FILIFORMIS, (B) BATHYPOREIA-TELLINA, (C) GONIADELLA-SPISULA, 
and (D) PHORONIS. Maps were created by interpolation of probability of occurrence estimated with fuzzy clustering
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related cluster hulls showed that a 4-cluster arrange-
ment provided the least overlap and the highest com-
pactness (Fig. S1). Hard classification of the commu-
nities’ distributions is provided in Fig. S2A. A
com parison with previous hard classification of com-
munity distributions (Fig. S2B, modified from Rachor
& Nehmer 2003) provided a further evaluation.

Characteristic species

The characteristic species of the community areas
are listed in Table 1. As these are almost identical
to those reported by Salzwedel et al. (1985) and
Rachor et al. (2007), we chose similar community
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Fig. 6. Boxplot of beta diversity distance from stations to
group centroids. AMPHIURA-FILIFORMIS, BATHYPOREIA-TELLINA,
GONIADELLA-SPISULA, and PHORONIS is on the x-axis indicated 

by letters from ‘a’ to ‘d’ respectively

Group 1                                        Group 2                                                Group 3                                                   Group 4
(APHIURA-FILIFORMIS)                     (BATHYPOREIA-TELLINA)                         (GONIADELLA-SPISULA)                             (PHORONIS)

Abra nitida                                   Bathyporeia elegans                           Aonides paucibranchiata                      Phoronis spp.
Amphictene auricoma                 Bathyporeia guilliamsoniana              Branchiostoma lanceolatum                  
Amphiura filiformis                     Echiurus echiurus                                Echinocyamus pusillus                          
Corbula gibba                              Lanice conchilega                               Ophelia borealis                                     
Kurtiella bidentata                      Magelona johnstoni                             Ophelia limacina                                    
Lagis koreni                                 Scoloplos Scoloplos armiger               Pisione remota                                        
Nucula nitidosa                           Spiophanes bombyx                            Protodorvillea kefersteini                      
Phaxas pellucidus                        Tellina fabula                                       Spio filicornis                                          
Pholoe baltica                              Urothoe poseidonis                             Spio goniocephala                                  

Table 1. Characteristic species for the 4 groups AMPHIURA-FILIFORMIS, BATHYPOREIA-TELLINA, GONIADELLA-SPISULA, and PHORONIS

according to the criteria of Rachor et al. (2007). For group 4, only Phoronis spp. satisfied the given criteria. Groups were named 
following Rachor et al. (2007)
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names accordingly: AMPHIURA-FILIFORMIS, BATHYPOR-
EIA- TEL LINA, GONIADELLA-SPISULA and PHORONIS.

Characteristic species of each community are ex -
clusive to each community. The AMPHIURA- FILIFORMIS

and BATHYPOREIA-TELLINA communities are character-
ized by 9 species, GONIADELLA-SPISULA by 8 species,
and the PHORONIS community is characterized by the
species Phoronis spp. only.

Overlap in communities

We used interpolated memberships to each of the
4 clusters to set up a map of community equitability
(Fig. 7). Equitability ranged between 0 (a location
can be assigned to one community with high proba-
bility) and 1 (a location could be assigned to each of
the 4 communities with equal probability). Georefer-
enced rasters of community equitability are available
in Supplement 3. An equitability threshold value of
0.4 was used to separate areas in which one commu-
nity clearly dominated (blue areas in Fig. 7). Those
areas covered about the 38% of the study area (i.e.
the region actually covered by data), while the
remaining 62% could be assigned to more than one
community (red areas in Fig. 7). Each community’s
species composition changed signifi-
cantly according to the degree of equi-
tability (Fig. 8, Table S2). Maps in
Fig. S3 show the subsets used to con-
duct the tests. Beta diversity showed a
significant increase from areas char-
acterized by low equitability to areas
with high equitability (Table S2). Pat-
terns of change of taxa with increasing
equitability were not consistent across
communities (Table S3). Significant
taxonomic simplification was ob ser -
ved for AMPHIURA-FILIFORMIS and GONI-
ADELLA-SPISULA, whereas an increase
of the number of taxa was observed
for BATHYPOREIA- TELLINA and PHORONIS

(Table S3).

Experimental design assessment

The experimental design assess-
ment exercise, with the 12 settings
shown in the examples provided in
Figs. S4 & S5, indicates that the confu-
sion index  significantly increased with
increasing number of stations (Fig. 9a,

Table S4) and with increasing distance between sta-
tions (Fig. 9b, Table S4). Accordingly, both low
amounts of information and small spatial scale gener-
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Fig. 7. Map of community equitability. Blue shading indi-
cates areas where only one group occurs or dominates over
the other 3 (low equitability); red shading indicates areas
where all defined communities have similar probability of 
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ate low overlap (= low confusion), while a high
amount of information and samples distributed
evenly over large scales generate high overlap
(= high confusion index).

DISCUSSION

The classification of marine communities consti-
tutes one of those cases where multiple causes ham-
per the development of a rather realistic picture of
spatial patterns. Firstly, the community concept is
sometimes used to indicate structured units, and
other times to indicate random species association
(i.e. assemblages). Secondly, standard classification
methods are designed to interpret communities as
structured units and therefore emphasize sharp
boun daries. Inappropriate data design may further
emphasize this trend. Thirdly, due to relatively
recent regulations (such as European Habitats Direc-
tive and European Marine Strategy Framework
Directive), decision makers are in need of ‘clear and
distinct’ data and information they can work with,
and sharp community boundaries greatly simplify
spatial management.

Fuzzy logic is one attempt to overcome the
dilemma of sharp borders without creating too much
complexity. It does not rely on any specific commu-
nity concept and is flexible enough to provide both
classical classification (true/false logic) and fuzzy
classification (partially true) typical of natural sys-
tems. Furthermore, fuzzy clustering is a site-based
approach, which we prefer over others because it
implies looking at species occurrence at a specific

location without assuming any partic-
ular species−environment relation-
ship. In fact, weak relationships do not
necessarily imply that a community
structure does not exist. Many studies
have used environmental constraints
to define community distributions (e.g.
Leaper et al. 2014), but we presume
that a community definition, and
hence its related concept, might be
independent of any environmental
constraints. Indeed, other factors may
play a more important role (Ricklefs
2015) such as evolutionary processes
(Wilson 1961), historical processes
(Gotelli et al. 1997, Bloch et al. 2007),
species interactions (Peres-Neto et al.
2001, Co mita et al. 2010, Mangan et
al. 2010) and species dispersal capa-

bilities (Cook & Quinn 1998, Loo et al. 2002, Ulrich
2004, McAbendroth et al. 2005).

The size of our dataset eliminated the potential bias
of localness (as described by Ricklefs 2008) and made
us confident that all species relevant to compose the
description of the communities were included. The
saturation reached by the confusion index both ac -
cording to the changing amount of information
(Fig. 9A) and distance (Fig. 9B) suggests that no fur-
ther information (no larger dataset) and no higher
resolution (no smaller distance among samples) are
required to improve the classification and related
boundary definitions.

The actual amount of information available may be
relevant for the bias of localness as well (Ricklefs
2008). Although the concept of spatial scale is closely
related to the amount of information available (i.e.
sampling effort), we disentangled the potential
effects of spatial scale and amount of information on
the community identification process by treating
them separately.

Subsets of our main dataset, created by keeping
constant either the amount of information or the scale
(see Figs. S4 & S5 in Supplement 1), let us si mulate
different sampling designs, which were further eval-
uated in terms of the returned degree of confusion
(Fig. 9). A higher index of confusion may be expected
when there is more information, simply because the
variance contained in the data would be higher, and
vice versa. Regarding spatial designs (Fig. S4), clum -
ped designs favor the detection of the core of the
community, whereas more evenly distributed station
patterns may equally entail portions of the core of the
community and transitional areas, therefore return-
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ing higher confusion indices. Sampling design, how-
ever, is a consequence of the actual research ques-
tion, and thus the community concept might change
according to the field of its application (Mills 1969).
For instance, many monitoring programs sample few
stations in relatively small areas and thus tend to
‘see’ a community as a unit (Fig. 9; low confusion).
On the contrary, large-scale projects that aim at
obtaining representative data of large areas are
prone to find areas where species tend to associate
at random (Fig. 9; high confusion). Therefore, not
only localness but also sampling effort (i.e. amount
of information) may impair our picture of a species
 association.

Our maps of community probability of occurrence
(Fig. 4) result from interpolation. We interpreted the
gradual change in community occurrence as a gradi-
ent of species association strength. The association
becomes weaker with increasing distance from the
core area. This view coincides with the concept of
species nestedness (Patterson & Atmar 1986), i.e. the
strength of the mutualistic network structure (Bas-
tolla et al. 2009) decreases along this gradient. How-
ever, species segregation, i.e. the tendency of species
to exclude each other (see Ulrich & Gotelli 2007 for
further details), might act as an additional but oppo-
site effect. In the present study, fuzzy clustering
allowed us to handle both phenomena equally well
by emphasizing neither nestedness nor segregation.
Nested sites (those where most species were shared),
obtained a higher probability of belonging to one
cluster. Those sites showing high species segregation
(few or no species shared) obtained a lower probabil-
ity of belonging to all clusters. This is the reason why
fuzzy logic can mirror natural patterns so well by
showing the gradients of community distribution,
from structured to unstructured units.

The evaluation of fuzzy classification aimed at
ensuring optimal cluster configuration. The correct
choice of clusters minimizes the portion of uncer-
tainty related to algorithm error. For example, in
Fig. S1, we show that configurations different from
4 clusters have a much higher degree of between-
cluster similarity. However, we are not aware of
any method that would enable us to separate dif-
ferent sources of uncertainty. Reducing the misclas-
sification-due-to-algorithm error provides more
accurate classification and related cluster member-
ship. This lets us interpret membership values at a
given location as being mostly representative of a
natural pattern, not as a result of an algorithm mis-
take. In Fig. 7, we show that the fuzzy approach
allows us to bridge the gap between the concepts

of community (structured unit) and assemblages
(random association of species). Fig. 7 is a map of
equitability. Since low equitability is given when
one community occurs, we considered such values
as indications of structured species associations. On
the contrary, high equitability is given by an equal
probability of communities occurring. We consid-
ered such values as indications of random species
associations. Blue shaded areas (equitability < 0.4,
dominance > 80%) support the view of communities
as highly structured units (sensu Paine 1980,
Richardson 1980, Gotelli & McCabe 2002, Chase &
Leibold 2003). Those areas may be seen as the core
area of a community. Green to red shades (equi-
tability > 0.4) may indicate areas of a random,
unstructured species association (sensu Whittaker
1952, Mills 1969, McCann et al. 1998, Berlow 1999),
e.g. a transition state spatially situated between 2
or more core areas, or an unstable state with a high
degree of species turnover (caused, for example, by
non-chronic hu man disturbance). Therefore, Fig. 7
might be interpreted as a map of both stable and
dynamic areas. Beta diversity may be a reasonable
measure of species turnover in time (Anderson et
al. 2011). A significant increase in beta diversity
with increasing equitability (Fig. 8, Table S2) fur-
ther supports the idea that areas with random spe-
cies associations are actually characterized by high
species turnover. We speculate that causes of high
equitability might be driven by more local events
(e.g. fisheries), because patterns of change in taxa
with increasing equitability were not consistent
across communities (Table S3). Des pite our suppo-
sition that the pattern shown might be caused by
fishery activities, we are not aware of any studies
that could provide further comparison. To our
knowledge, the present study is unique in showing
patterns of types of associations and areas with dif-
ferent regimes of species turnover (Fig. 7).

The observed taxonomic simplification, presented
to order level for AMPHIURA-FILIFORMIS and GONI-
ADELLA-SPISULA (Table S3), suggests that high equi-
tability for those groups may also lead to an ecosys-
tem function simplification.

High values of beta diversity within the GONIA -
DELLA-SPISULA community (Fig. 6c) implies higher
within-community dynamics and a facilitation of spe-
cies colonization. On the contrary, low beta-diversity
within the PHORONIS community (Fig. 6D) indicates
low species turnover, apparently because in this
community the habitat is thoroughly modified by
Phoronis spp. (Niermann 1996), which hampers colo-
nization by other species.
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Our ‘hard’ classification confirms the overall pat-
terns identified in previous studies (e.g. Rachor &
Nehmer 2003) (Fig. S2). However, our analysis re -
duced the number of communities from 6 (Rachor &
Nehmer 2003, Pesch et al. 2016) to 4. Our analysis
found only minor differences between BATHYPOREIA-
TELLINA and the TELLINA-FABULA communities in
terms of species composition, and thus merged them
into the BATHYPOREIA-TELLINA community. The same
holds true for the NUCULA-NITIDOSA and AMPHIURA-
 FILIFORMIS communities (Rachor et al. 2007), which
were merged into the AMPHIURA-FILIFORMIS commu-
nity. Our fuzzy classification found one case of a com-
munity characterized by Phoronis spp. (Table 1). This
species occurs in very high abundances (Niermann
1996) and builds chitinous tubes that distinctly
change the characteristics of the soft bottom habitat.
Phoronis spp. displays strong annual density fluctua-
tions owing to its high reproductive rate, that com-
pensates for decimation events (Niermann 1996).

A major improvement of our approach is the capa-
bility of identifying stable and less stable/dynamic
areas. There are core areas of the distribution of all
4 communities (Fig. 4) in which they were stable, at
least for the time interval covered by our dataset
(13 yr). These pictures add up to an overall spatial
pattern of stability (Fig. 7). For example, the Dogger
Bank and sand banks were demonstrated to be stable
areas, whereas the paleo-Elbe river valley appeared
unstable. Potential causes of such stability and insta-
bility still need to be detected and assessed. If nature
protection policies, such as the Habitats Directive
(Council of the European Union 1992) and the Mar-
ine Strategy Framework Directive (European Parlia-
ment and Council 2008), move toward diversity pro-
tection through management of hard classified
communities, only stable areas (38% of studied area)
would be considered and protected, while those
being more dynamic, with higher species turnover
(62% of the studied area), would tend to be neg-
lected. Furthermore, we do not know whether these
dynamic areas result from natural or anthropogenic
processes and whether they require specific man-
agement, e.g. because of triggering species invasion.
These are open questions that need to be addressed
properly before proceeding further with the develop-
ment and implementation of conservation measures.
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