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1.  INTRODUCTION

Global climate change is impacting marine organ-
isms and ecosystems worldwide (Hoegh-Guldberg &
Bruno 2010, Hazen et al. 2013, Poloczanska et al. 2013,

Sydeman et al. 2015). As mobile predators, the distri-
bution patterns of marine mammals often reflect
dynamic ecological processes by integrating multiple
trophic levels (Croll et al. 1998, Nicol et al. 2000,
Cotte et al. 2011). Therefore, the response of marine

© The authors 2020. Open Access under Creative Commons by
Attribution Licence. Use, distribution and reproduction are un -
restricted. Authors and original publication must be credited. 

Publisher: Inter-Research · www.int-res.com

*Corresponding author: dawn.barlow@oregonstate.edu

Links in the trophic chain: modeling functional
relationships between in situ oceanography, krill,

and blue whale distribution under different
oceanographic regimes

Dawn R. Barlow1,*, Kim S. Bernard2, Pablo Escobar-Flores3, Daniel M. Palacios4, 
Leigh G. Torres1

1Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, and Department of Fisheries and Wildlife, 
Oregon State University, Newport, Oregon 97365, USA

2College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA
3National Institute of Water and Atmospheric Sciences, Ltd., Wellington 6021, New Zealand

4Marine Mammal Institute, and Department of Fisheries and Wildlife, Oregon State University, Newport, Oregon 97365, USA

ABSTRACT: The response of marine predators to global climate change and shifting ocean condi-
tions is tightly linked with their environment and prey. Environmental data are frequently used as
proxies for prey availability in marine predator distribution models, as the ephemeral nature of
prey makes sampling difficult. For this reason, the functional, ecological links between environ-
ment, prey, and predator are rarely described or explicitly tested. We used 3 years of vessel-based
whale survey data paired with oceanographic sampling and hydroacoustic backscatter to model
trophic relationships between water column structure, krill availability, and blue whale Balaen -
optera musculus brevicauda distribution in New Zealand’s South Taranaki Bight region under
typical (2014 and 2017) and warm (2016) austral summer oceanographic regimes. The warm
regime was characterized by a shallower mixed layer, and a stronger, thicker, and warmer ther-
mocline. Boosted regression tree models showed that krill metrics predicted blue whale distribu-
tion (typical regime = 36% versus warm regime = 64% cross-validated deviance explained) better
than oceanography (typical regime = 19% versus warm regime = 31% cross-validated deviance
explained). However, oceanographic features that predicted more krill aggregations (typical
regime) and higher krill density (warm regime) aligned closely with the features that predicted
higher probability of blue whale presence in each regime. Therefore, this study confirms that
environmental drivers of prey availability can serve as suitable proxies for blue whale distribution.
Considering changing ocean conditions that may influence the distribution of marine predators,
these findings emphasize the need for models based on functional relationships, and calibrated
across a broad range of conditions, to inform effective conservation management.
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mammals to changing ocean conditions is tightly
linked to shifts in their environment and prey (Silber
et al. 2017). The effective conservation of marine
mammal populations challenged by climate change
requires an ability to describe and predict their distri-
bution patterns under changing oceanographic re -
gimes. For such predictions to be informed and accu-
rate, they should be founded on an understanding of
the functional relationships between the physical and
biological components of marine ecosystems, which
can be accomplished in part through process-based
models rooted in ecological understanding (Palacios
et al. 2013, Silber et al. 2017).

Species distribution models (SDMs) are powerful
analytical tools used to understand ecological rela-
tionships between species and their environment,
and to predict spatial distributions of a species (Red-
fern et al. 2006, Elith & Leathwick 2009, Derville et
al. 2018). Prey are notoriously patchy and dynamic in
the marine environment (Hyrenbach et al. 2000), and
therefore difficult to sample. Hence, SDMs often rely
on environmental features that can be relatively eas-
ily measured as predictor variables to describe the
marine environment, such as remotely sensed tem-
perature and primary productivity, with the assump-
tion that these metrics serve as proxies for prey avail-
ability (Escobar-Flores et al. 2013, Becker et al. 2016,
Hazen et al. 2017, Abrahms et al. 2019, Palacios et al.
2019). Although prey are acknowledged to be a pri-
mary driver of marine mammal distribution, the func-
tional relationships between environmental features,
prey availability, and predator distribution are rarely
explicitly tested (Torres et al. 2008).

Blue whales Balaenoptera musculus are marine
predators that forage in temperate ecosystems and
selectively feed on krill (Croll et al. 2005, Hazen et al.
2015, Nickels et al. 2018). Foraging blue whales asso-
ciate with areas characterized by cooler, productive
waters as they often track upwelling areas and the
distribution of their krill prey (Croll et al. 1998, 2005,
Fiedler et al. 1998, Rennie et al. 2009, Pirotta et al.
2018, Abrahms et al. 2019, Palacios et al. 2019). In the
California Current Ecosystem off the US west coast,
the trophic pathway that leads to favorable foraging
conditions for blue whales begins with longshore
winds that drive upwelling of cold, nutrient-rich wa-
ter, which drives primary productivity that sustains
dense krill aggregations (Croll et al. 2005). The rela-
tively short chain of events between oceanographic
patterns, krill, and blue whales in such a system pro-
vides a suitable framework for investigating the
functional trophic linkages between environment,
prey, and predators in the marine environment.

A population of blue whales B. m. brevicauda was
recently described that is genetically distinct, present
in New Zealand waters year-round, and forages in
the South Taranaki Bight region (STB, Fig. 1), which
lies between the country’s North and South Islands
(Torres 2013, Barlow et al. 2018). The STB sustains
New Zealand’s most industrially active marine region,
with ongoing oil and gas drilling and extraction, seis-
mic exploration for petroleum reserves, and heavy
shipping traffic (Torres 2013, Barlow et al. 2018).
Information on the drivers of blue whale distribution
and habitat use are needed to inform conservation
management of the STB region and mitigate anthro-
pogenic pressures on this newly described blue whale
population and the ecosystem it inhabits.

The oceanography of the STB region is dominated
by an upwelling system driven by winds off Kahu-
rangi Point on the northwest coast of the South Island
(Fig. 1), which generates a plume of cold water that
moves to the northeast and into the STB (Shirtcliffe et
al. 1990, Chiswell et al. 2017). The high primary pro-
ductivity resulting from the cold water plume leads to
the presence of large aggregations of the krill species
Nyctiphanes australis (Bradford & Chapman 1988,
Bradford-Grieve et al. 1993), a known blue whale
prey item in the Australasian region (Gill 2002). Blue
whales use the STB region for multiple critical life-
history functions including foraging (Barlow et al.
2018), which provides energetic sustenance for indi-
vidual needs and population growth. The STB region
harbors the largest and most consistent wind-driven
upwelling system within New Zealand’s coastal waters
(Stevens et al. 2019), making it oceanographically
unique, and providing an important foraging habitat
for blue whales.

With multiple anthropogenic threats in the STB
and increasing impacts of climate change across the
New Zealand region, including recurring warm
water anomalies (Sutton & Bowen 2019), managers
need reliable information on blue whale ecology and
distribution patterns to balance species protection
with industrial activities. The habitat and distribution
of marine predators is predicted to shift with climate
change, including range contraction and reduction
in potential habitat for blue whales (Hazen et al.
2013, Schumann et al. 2013). A critical first step
toward successful management is understanding the
functional relationships between oceanography,
prey, and predators. As spatial distribution patterns
will likely shift under changing ocean conditions, it
is important to examine ecological relationships
under different climatic regimes and investigate
how distribution models can be improved to more
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accurately capture future climate
change scenarios. Therefore, man-
agement strategies that are spatially
and temporally dynamic, including
regulatory bound aries that are not
static but rather adaptable, will be
better suited to protect marine eco-
systems under changing oceanogra -
phic conditions (Hyren bach et al.
2000, Maxwell et al. 2014).

Here we used 3 summer field sea-
sons (2014, 2016, and 2017) of blue
whale, oceanography, and prey field
data collected within the STB region
to conduct an in-depth analysis of the
functional links between water col-
umn structure, prey availability, and
blue whale distribution. We hypothe-
sized that (1) oceanographic features
of the water column define krill avail-
ability, (2) blue whale distribution pat-
terns reflect this variation in prey
availability and habitat quality, and
thus (3) oceanographic patterns can
be used as reliable proxies of prey
availability in models of blue whale
distribution. The STB region experi-
enced an extremely warm sea surface
temperature anomaly and a regional
marine heatwave during our data col-
lection in 2016 (Oliver et al. 2017,
Sutton & Bowen 2019), which allows
us to closely examine and compare
functional relationships between envi-
ronment, prey, and predator during
dramatically different oceanographic
regimes. Our findings demonstrate the
need to establish functional relation-
ships as the foundation of manage-
ment decisions regarding the conser-
vation of marine predators given
rapidly changing ocean conditions,
which can be validated and adapted
as more data become available.

2.  MATERIALS AND METHODS

2.1.  Survey methods

Vessel-based visual surveys for blue
whales were conducted in the austral
summers of 2014, 2016, and 2017 in
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Fig. 1. Survey effort in the South Taranaki Bight (STB) region of New Zealand
in each of the 3 study years. Black lines represent vessel tracklines during sur-
vey effort. Yellow circles represent blue whale sighting locations, scaled by
number of blue whales recorded. CTD casts are shown as red crosses. Inset
map of New Zealand in the 2014 panel indicates the location of the STB region 

within the white box
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the STB region (Fig. 1). A 14 m jet-propelled cata -
maran equipped with a flying bridge (4.0 m above the
water line) for observational work was used as the
 research platform for the 2014 and 2016 field seasons.
In 2017, the research platform was a 19.2 m vessel
outfitted with a comparable height flying bridge
(3.8 m above the water line). The research goals re -
quired maximization of encounter rates with blue
whales. Therefore, prior to each survey day, daily im-
ages of remotely sensed sea surface temperature and
chlorophyll a concentration were assessed to locate
areas of upwelled water and high surface productivity.
Sur veys did not use a randomized design but were
rather directed toward productive or previously un-
surveyed areas. Visual search effort for blue whales
was conducted at vessel speeds of 8 to 12 knots in
 acceptable weather conditions (Beaufort Sea State
<5). During the surveys, a minimum of 2 observers
were stationed on the flying bridge, with the port
 observer covering 5° to −90° from the bow, and the
starboard observer covering −5° to 90°. Additional
observers surveyed the entire area (−90° to 90°).
Whenever a whale was sighted, visual search effort
was paused, and the date, time, location, and number
of blue whales were recorded. At each sighting,
whales were approached for photo-identification,
biopsy sample collection, and behavioral observation
via unmanned aerial systems (Barlow et al. 2018, Tor-
res et al. 2020). After data collection at each sighting,
search effort was directed to previously unsurveyed
areas to minimize repeated encounters of the same
individual whales and to maximize spatial coverage.

Survey effort was not continuous throughout each
field season due to intermittent strong wind and
weather events that resulted in interruptions. These

weather events also potentially influenced oceanog-
raphy in the study region. Therefore, an identifier of
‘period’ was applied for each segment of consecutive
survey days. Over the 3 summer survey seasons,
there were a total of 12 periods of sampling effort,
ranging in length from 1−4 days (Table 1).

2.2.  Oceanographic data

Temperature, salinity, and fluorescence data were
recorded using a conductivity, temperature, and
depth (CTD) sensor (Sea-Bird SBE 911plus) that was
lowered from the vessel at a rate of 1 m s−1 until
approximately 10 m off the bottom. At the start of
each cast, the CTD was soaked for 1 min to adjust to
the water conditions. CTD casts were performed at
the start and end of visual search effort on each day,
approximately every hour during visual search effort,
and at all blue whale sightings (Fig. 1). The CTD was
equipped with a fluorometer during the 2014 and
2017 seasons, but no fluorescence data were col-
lected during 2016.

Readings from CTD profiles were binned into 0.5 m
increments. Fourteen different oceanographic met-
rics were calculated from each CTD cast, describing
the vertical structure of the water column (Table 2).
Surface measurements were taken at 2 m below the
surface for all metrics except salinity in 2016, which
was taken at 4 m depth as shallower readings were
erroneous. The mixed layer was defined as the depth
at which temperature was 0.5° lower than the surface
temperature. The thermocline was defined as portion
of the water column extending from the base of the
mixed layer to the depth at which the temperature
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Year Period Start date End date Blue whale Background CTD Echosounder 
(d-mo-yr) (d-mo-yr) sightings points casts hours

2014 1 24-01-2014 25-01-2014 1 82 4 4.61
2 28-01-2014 29-01-2014 7 39 10 8.55
3 02-02-2014 03-02-2014 2 46 11 9.53

2016 4 23-01-2016 26-01-2016 6 98 34 19.13
5 29-01-2016 29-01-2016 0 15 10 7.05
6 01-02-2016 03-02-2016 7 72 27 12.33
7 05-02-2016 05-02-2016 9 9 5 3.31
8 08-02-2016 08-02-2016 0 16 6 7.03

2017 9 05-02-2017 05-02-2017 0 15 9 6.51
10 08-02-2017 11-02-2017 15 100 32 28.53
11 16-02-2017 16-02-2017 4 19 11 5.91
12 18-02-2017 20-02-2017 13 73 29 37.41

Total 64 584 188 149.95

Table 1. Summary of data collection effort in the South Taranaki Bight region of New Zealand during each survey period in
2014, 2016, and 2017
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decreased halfway toward the deep-water tempera-
ture at the bottom of the cast (Fiedler 2010). The pyc-
nocline was defined based on density (calculated
from temperature and salinity), where the pycnocline
depth was calculated as the depth with the maximum
difference in density over a 10 m vertical window in
the water column (Fiedler et al. 2013). Integrals of
temperature and fluorescence were computed for
depths up to 60 m to standardize among casts, and
casts shallower than 60 m (n = 6) were not given a
value for integral of temperature or fluorescence.

For each survey period, oceanographic metrics
were spatially interpolated using an inverse distance
weighting technique, which preserves local variation
between sample points. Each metric was interpolated
using all CTD casts within each period and a 25 km
search radius, to the extent of a 50 km buffer around
the ship’s survey tracks for that period. Each interpo-
lation produced a raster grid of 4 km resolution. All
interpolations of oceanographic metrics were con-
ducted in ArcMap v. 10.7.1.

2.3.  Prey data

During visual search effort and at 53 blue whale
sighting locations, hydroacoustic backscatter data
were collected using a single frequency (120 kHz)
Simrad split-beam ES-60 echosounder. The trans-
ceiver settings used for data collection were 250 W
power, 1.024 ms pulse length, and 0.5 s ping rate.
The transducer was lowered 1.26 m below the sur-
face in 2014 and 2016, and 1.45 m below the surface
in 2017. It was not always possible to run the trans-

ducer during the surveys due to logistical constraints
such as rough weather and swell conditions; there-
fore, the spatial coverage of prey data was more lim-
ited than that of oceanography or whale distribution
data.

Raw acoustic backscatter data were processed using
the opensource software ESP3 (https:// sourceforge. net/
projects/ esp3/), developed for fisheries hydroacoustic
analysis. Volume backscattering strength (Sv) was
echo-integrated in 1 m depth by 5-ping horizontal
bins. The upper 2 m of the water column were ex-
cluded from the analysis to exclude the transducer
near-field and surface noise. Likewise, sections with
recognizable interference from CTD casts or missed
pings were excluded. Following complete visual in-
spection of the echograms for quality control, meas-
urements made at 2 m or deeper were retained for
analysis.

Backscatter from zooplankton-like schools was iden-
tified by excluding ping data with Sv below −90 dB at
120 kHz. The threshold value applied is more conser-
vative than those used in similar analyses for larger
krill species with established cutoff frequencies (e.g.
Euphausia superba, Bernard & Steinberg 2013). This
threshold reliably identified and captured aggrega-
tions visible on the echosounder, thereby effectively
characterizing schools within this ecosystem. Recog-
nizing the inability to definitively exclude other en -
sonified species (i.e. fish) with a single frequency, and
in the absence of a known target strength for the
krill species of interest (Nyctiphanes australis), it was
assumed that the acoustically identified aggregations
using the selected threshold value were predominately
comprised of krill. Krill aggregations were defined
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Metric derived from CTD cast         Abbreviation      Definition (units)

Difference in salinity                        diffs                     Maximum salinity reading − minimum salinity reading (ppt)
Depth of maximum fluorescence     dmaxf                  Depth of maximum measured fluorescence (m)
Integral of fluorescence                    intf                       Sum of fluorescence readings along cast down to 60 m depth
Integral of temperature                    intt                       Sum of temperature readings along cast down to 60 m depth
Minimum salinity                              minsal                  Minimum recorded salinity value (ppt)
Mixed layer depth                            mld                      Depth where temperature is 0.5°C lower than at surface (m)
Mixed layer depth temperature      mldt                     Temperature at mixed layer depth (°C)
Pycnocline depth                              pd                        Depth of maximum difference in density over a 10 m vertical window
Surface fluorescence                        surff                     Fluorescence at 2 m depth (RFU)
Surface temperature                         surft                     Temperature at 2 m depth (°C)
Thermocline depth                           tz                          Depth at midpoint of thermocline layer (m)
Thermocline strength                       ths                        Mixed layer depth temp − thermocline bottom temp (°C)
Thermocline thickness                     tht                        Thermocline bottom depth − mixed layer depth (m)
Thermocline temperature                tt                          Temperature at midpoint of thermocline layer (°C)

Table 2. Oceanographic metrics derived from CTD casts, with definitions and units of measurement for each calculation. Defi-
nitions of the mixed layer and the thermocline were adapted from Fiedler (2010), and pycnocline depth was calculated using 

the definition of Fiedler et al. (2013). RFU: relative fluorescence unit
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following the methods described by Bernard et al.
(2017). Each element in the acoustic matrix that qual-
ified as krill was considered to be part of an ‘aggre-
gation’ if 1 of its 8 neighboring elements also quali-
fied as krill (Lawson et al. 2008, Bernard & Steinberg
2013, Bernard et al. 2017).

For each krill aggregation, date, time, and geo-
graphic location were extracted and mean Sv, depth,
and width (vertical thickness) were calculated. The
aggregations were subsequently plotted in ArcMap
by period, and overlaid with a 4 km grid consistent
with the oceanographic interpolation raster grids.
The number of krill aggregations (count), mean Sv,
median depth, maximum depth, and mean width
were calculated for all aggregations within each 4
km grid cell to generate a raster layer for each krill
metric in each period. The raster describing the num-
ber of krill aggregations was standardized by the
amount of echosounder survey time spent in each
grid cell to compensate for uneven survey effort
across the region, such as while at blue whale sight-
ing locations when the echosounder continued to col-
lect data. This standardization was accomplished by
dividing the number of krill aggregations by log
(number of pings) for each 4 km grid cell. The log-
transformation was applied because the number of
pings per cell was highly skewed by the length of
time spent in certain cells during blue whale sight-
ings. To test for the presence of spatial autocorrela-
tion among the krill metrics when summarized over a
4 km spatial scale, Moran’s I-tests were run for each
krill metric in each year using the ‘ape’ package in R
(Paradis & Schliep 2019).

2.4.  Species distribution modeling

Based on the observed marine heatwave with broad-
scale sea surface temperature anomalies in 2016
(Oliver et al. 2017, Sutton & Bowen 2019), the fre-
quency distributions of all krill and oceanographic
metrics were examined prior to modeling to assess
variation between the 3 survey years. This a priori
knowledge was used to inform model generation, fit
robust and relevant models, and compare outputs.

SDMs are multivariate algorithms that combine
species occurrence data with environmental condi-
tions to gain ecological insight and predict spatial
distributions of a species (Redfern et al. 2006, Elith &
Leathwick 2009). Boosted regression trees (BRTs) are
a machine learning SDM framework that combines
decision tree methods (models that partition predic-
tor space by recursive binary splits) with a boosting

algorithm that iteratively optimizes model perform-
ance by combining a large number of decision trees
(Elith et al. 2008). The boosting algorithm minimizes
model overfitting by introducing stochasticity through
withholding a random selection of the data at each
step during model fitting (Elith et al. 2008). The BRT
approach is well-suited for modeling non-linear eco-
logical relationships and detecting complex inter-
actions between predictor variables (Elith et al.
2008), and was therefore implemented in this study
rather than linear or additive regression modeling
approaches.

Three suites of models were tested in this study
(Table 3). First, relationships between krill metrics
and whale distribution were assessed to determine
the most influential metrics (whales ~ krill models).
Subsequently, relationships between oceanographic
metrics and the significant krill metrics from the
whales ~ krill models were assessed to identify and
describe influential patterns (krill ~ oceanography
models). Lastly, to examine how oceanographic fea-
tures influence whale distribution, and determine if
the patterns reflect oceanographic drivers of krill, the
relationships between blue whales and oceanogra-
phy were explored in a third set of models (whales ~
oceanography models). It should be clarified that
these models are not mechanistic models of trophic
interactions, but rather models of distinct steps in the
food chain for comparison of influential predictor
variables and functional response curves.

For the whales ~ krill and whales ~ oceanography
models, blue whale habitat use was modeled with
presence/background data as the binomial response
variable. Presence locations were the points where
blue whales were sighted. Absence data were col-
lected continuously during visual search effort and
are therefore represented by the areas surveyed by
the vessel. Background points for locations without
whales (also called ‘pseudo-absences’) were gener-
ated by creating a buffer around the research ves-
sel’s track and generating point locations within
that buffer (Torres et al. 2008, Derville et al. 2018).
Buffer width was determined by Beaufort Sea State
(BSS; Kinsman 1969) to account for the visual
detection range of the observers in variable survey
conditions (Barlow et al. 2001) (BSS0 = 10 km,
BSS1 = 8 km, BSS2 = 6 km, BSS3 = 4 km, BSS4 = 2
km, BSS5 = 1 km; buffer width applied to both
sides of the vessel track). Background points were
pseudo-randomly generated within the vessel track
buffer for each period at a minimum distance of 5
km apart to avoid serial correlation between back-
ground points, and their distribution within the
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buffer was irrespective of the location of presence
points (Derville et al. 2018). The number of back-
ground points generated was proportional to the
amount of time spent on survey effort within each
period (no. background points = no. minutes survey
effort in period); to evenly reduce the number of
background points to a useful size, this number
was divided by 20 (Derville et al. 2018). Ultimately,
the resulting binomial dataset for all 3 survey years
was comprised of 64 presence points and 584 back-
ground points (Table 1). During BRT model fitting,
presence points were weighted by the number of
blue whales at each sighting. Background points

were down-weighted so that the sum of all back-
ground points was equal to the sum of all groups of
whales encountered during survey effort, as equally
weighting presence and background data has been
demonstrated to increase accuracy of species distri-
bution models (Barbet-Massin et al. 2012)

For the krill ~ oceanography models, the response
variable was continuous (Gaussian). The krill metrics
with the greatest contribution to the whales ~ krill
models were modeled as a function of the oceano-
graphic predictor variables, and to do so, all oceano-
graphic variables were sampled within all grid cells
with krill data, for each survey period. Using the
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Model Regime                               Predictors (% contribution)              CV % deviance explained   AUC

Whales ~ krill Typical                               Number of aggregations (50.4)                           31.3                       0.71
                                           Aggregation density (24.8)
                                           Maximum aggregation depth (14.2)
                                           Aggregation width (10.6)

Warm                                 Aggregation density (48.7)                                 60.2                       0.87
                                           Aggregation width (29.6)
                                           Median aggregation depth (22.5)

Krill ~ oceanography Typical                               Mixed layer depth (29.9)                                     16.7                       N/A
(standardized number      Thermocline strength (20.9)
of aggregations)                Thermocline thickness (13.0)
                                           Difference in salinity (12.9)
                                           Thermocline temperature (12.1)
                                           Integral of temperature (7.0)
                                           Pycnocline depth (4.0)

Warm                                 Thermocline strength (25.2)                               14.4                       N/A
(aggregation density         Thermocline temperature (16.4)
(Sv))                                     Thermocline thickness (13.9)
                                           Pycnocline depth (12.9)
                                           Difference in salinity (11.0)
                                           Integral of temperature (10.4)
                                           Mixed layer depth (10.1)

Whales ~ oceanography Typical                               Thermocline strength (27.7)                               26.6                       0.69
                                           Thermocline thickness (22.8)
                                           Thermocline temperature (14.6)
                                           Mixed layer depth (11.7)
                                           Pycnocline depth (9.7)
                                           Integral of temperature (7.4)
                                           Difference in salinity (6.2)

Warm                                 Difference in salinity (47.0)                                 36.5                       0.87
                                           Water depth (23.2)
                                           Thermocline thickness (7.4)
                                           Mixed layer depth (5.7)
                                           Integral of temperature (5.2)
                                           Pycnocline depth (4.8)
                                           Thermocline strength (3.5)
                                           Thermocline temperature (3.1)

Table 3. Final boosted regression tree results for the 3 trophically linked models in each regime, relative contribution of each
predictor variable, and model performance evaluated using cross-validated percent deviance explained (CV deviance ex-
plained) and area under the receiver operating curve (AUC). Note that for the krill ~ oceanography models, the response vari-
able in the typical regime model is the number of krill aggregations, whereas in the warm regime model, the response variable 

is aggregation density (Sv)
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raster grid layers of each krill metric, the oceano-
graphic metrics were sampled at the centroid of each
grid cell for each period.

BRT models were fit using the ‘gbm’ v.2.1.5
(Greenwell et al. 2019) and ‘dismo’ v.1.1-4 (Hijmans
et al. 2017) packages and visualized using the ‘pdp’
(Greenwell 2017) package implemented in the R
statistical software v.3.6.1 (R Core Team 2019). The
bag fraction (proportion of data that are drawn at
random at each step) was set to 0.75. The tree com-
plexity (TC; number of interactions allowed) was
tested using values ranging between 1 and 3.
Low values for TC were chosen as ecological inter-
pretation of multiple interactions becomes increas-
ingly difficult. Final TC was 1 for the whales ~ krill
models and 2 for the krill ~ oceanography and
whales ~ oceanography models, and these values
were selected based on model performance metrics.
Learning rate (contribution of each tree to the
model) was started at 0.01 and allowed to increase
until the optimal number of trees was reached
(>1000; Elith et al. 2008). BRT outputs include an
estimate of the relative influence of each predictor
variable, based on the number of times the variable
is selected for splitting, and weighted by the im -
provement to the model as a result of each split
(Friedman & Meulman 2003). As it has been de -
monstrated that the inclusion of predictor variables
with <3% contribution has negligible impact on
overall model performance (Elith et al. 2008), vari-
ables with relative contribution below this threshold
were removed from the model.

All models were evaluated using the cross-validated
percent deviance explained by the model (CV de-
viance explained). Using a cross-validation proce-
dure run during the BRT modeling process, CV de-
viance explained indicates how well a model predicts
the subsets of withheld data (Buston & Elith 2011).
Therefore, CV deviance explained is a useful metric
for evaluating SDMs, as it balances model fit and
complexity through cross-validation during the mod-
eling process (Torres et al. 2013). For the binomial
models (whales ~ krill and whales ~ oceanography),
model performance was also evaluated using the
area under the receiver operating characteristic curve
(AUC). The receiver operating characteristic curve
measures the true negative rate against the true posi-
tive rate at various discrimination thresholds. AUC
represents the ability of models to classify between
presence and background points, by measuring dis-
crimination across all possible thresholds between
0 and 1, with AUC > 0.7 considered a ‘useful’ model
(Swets 1988).

While BRTs can theoretically handle correlated pre -
dictor variables (Elith et al. 2008), manually removing
redundant variables is desirable, particularly when
working with small datasets (Elith et al. 2008,
Derville et al. 2016). A correlation analysis was con-
ducted to examine pairwise relationships between all
krill metrics and, separately, all oceanographic met-
rics to remove highly correlated predictor variables
in the models. For pairs of variables with a Pearson’s
correlation coefficient ≥0.7, only 1 of the 2 was in -
cluded in the model at a time. All models were run
with all possible combinations of non-correlated pre-
dictor variables, and validation metrics (CV deviance
explained and AUC) were evaluated to select the
combination of predictors that produced the best
model performance.

Since fluorescence profiles were measured in 2014
and 2017, but not 2016, all models were initially run
without any fluorescence metrics to allow for com-
parison across years. Subsequently, fluorescence
metrics were included in the krill ~ oceanography
and whales ~ oceanography models using only 2014
and 2017 data to investigate whether the inclusion
of fluorescence data improved model performance
based on evaluation metrics.

3.  RESULTS

3.1.  Inter-annual differences

Oceanographic metrics derived from CTD data were
dramatically different in 2016 compared to 2014 and
2017 (Fig. S1 in the Supplement at www. int-res. com/
articles/ suppl/ m642 p207 _ supp .pdf), reflecting 2 very
different oceanographic regimes. During 2016, the
oceanography was characterized by a much shal-
lower mixed layer depth, higher integral of tempera-
ture, stronger thermocline, and higher thermocline
temperature than in 2014 or 2017 (Fig. 2). The Moran’s
I-tests revealed no significant spatial autocorrelation
among the krill metrics summarized per 4 km grid
cell in any year, with the exception of aggregation
density in 2016 (Table S1). Like the oceanographic
metrics, the krill metrics were also different between
2016 and 2014/17 (Fig. S2), with 2016 having fewer
krill aggregations that were less dense and were
found deeper in the water column than in 2014 or 2017
(Fig. 3). Additionally, while the differences amongst
the krill metrics were not as striking between years
as the oceanographic metrics, the spatial distribution
of krill was different between the 2 oceanographic
regimes of 2016 and 2014/17 (Fig. 4). The region of

https://www.int-res.com/articles/suppl/m642p207_supp.pdf
https://www.int-res.com/articles/suppl/m642p207_supp.pdf
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the STB north of Cape Farewell had
more dense krill aggregations and
high numbers of krill aggregations in
both 2014 and 2017, which were rare
or absent during the 2016 survey. The
spatial distribution of blue whale
sightings also differed between years.
In 2014 and 2017, many sightings took
place north of Cape Farewell, whereas
very few sightings were made in that
area in 2016 and the whales were dis-
tributed more offshore in the western
STB region (Fig. 1). Therefore, 2 sets of
BRTs were generated based on oceano -
gra phic regime to isolate and compare
drivers of distribution patterns under
different conditions: typical (2014 and
2017 data grouped together) and warm
(2016).

3.2.  Species distribution modeling

The correlation analysis revealed
no or very weak correlations among
krill metrics (Pearson’s correlation
coefficient = 0.02−0.43), and several
strong correlations among oceano-
graphic metrics (Fig. S3). A total of 12
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Fig. 2. Probability density plots comparing the distribution of oceanographic
metrics calculated from CTD profiles in the South Taranaki Bight region (STB) in
the typical (2014 and 2017, blue) and warm (2016, red) oceanographic regimes

Fig. 3. Probability density plots comparing the distribution of
krill metrics derived from echosounder data collected in the
South Taranaki Bight region (STB) in the typical (2014 and
2017, blue) and warm (2016, red) oceanographic regimes
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possible combinations of oceanographic predictors
were tested for all 3 suites of models, for both the
typical and warm regimes. Overall, the combina-
tion of predictor variables that yielded the best
model performance and most consistent results
across all models was diffs, intt, mld, pd, ths, tht,
tt, and water depth (see Table 2 for definitions);
however, not all of these metrics were included in

the final models, as predictors were removed if
their contribution was <3% (Table 3).

For the whales ~ krill model in the typical regime,
31.3% of the CV deviance could be explained by
4 krill metrics: number of aggregations, aggregation
density (Sv), maximum aggregation depth, and
aggregation width (Fig. 5). In the warm regime,
60.2% of the CV deviance was explained by Sv,
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Fig. 4. Spatial distribution of the standardized number of krill aggregations (left column) and krill aggregation density (right
column) in each of the 3 survey years in the South Taranaki Bight region (STB). For number of aggregations, the total number
of aggregations was counted within each 4 km grid cell and standardized by the amount of echosounder survey time spent in
each grid cell to compensate for uneven sampling effort. For krill density (Sv), the mean was calculated for all aggregations in 

each grid cell. A minimum−maximum stretch type with a gamma stretch of 1.5 was applied for visualization
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aggregation width, and median ag -
gregation depth (Fig. 5). AUC scores
were 0.71 in the typical regime, and
0.87 in the warm regime. While
number of aggregations had by far
the greatest contribution to the mod -
el in the typical regime (50.4%;
Fig. 5, Fig. S4), number of aggrega-
tions was not retained in the whales
~ krill model under the warm re -
gime. Instead, Sv had the greatest
contribution to the model in the
warm regime (48.7%; Fig. 5).

For the krill ~ oceanography mod-
els, different krill metrics were mod-
eled as the response variable in the
2 different regimes because results
of the whales ~ krill models indi-
cated that 2 different krill metrics
were the primary drivers of blue
whale distribution under the differ-
ent regimes. In the typical regime,
number of aggregations was mod-
eled relative to oceanography and
had a CV deviance explained of
16.7%. The number of aggregations
was highest where mixed layer
depth was either very shallow
(<5 m) or deeper than 30 m, where
the thermocline was stronger and
thicker, where the difference in
salinity was greater (i.e. greater
range in salinity values, indicating
a stronger pycnocline), where the
pyc no cline was deeper, and where
thermocline temperature was lower
(Fig. 6). Sv was modeled to de -
scribe the oceanographic drivers
of blue whale prey distribution
during the warm regime, and pro-
duced a CV deviance explained of
14.4%. In comparison to the func-
tional relationships of number of
aggregations during the typical
regime, krill density in the warm
year was also highest where the
thermocline was stronger, differ-
ence in salinity was moderate, and
thermocline temperature was lower,
but in contrast decreased with in -
creasing thermocline thickness and
pycnocline depth (Fig. 6). However,
it is im portant to highlight the dif-
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Fig. 5. Boosted regression tree par-
tial dependency plots for predictor
variables of blue whale presence
from the whales ~ krill models un-
der typical (blue) and warm (red)
oceanographic regimes. Each plot
shows the effect of a predictor vari-
able on the probability of presence
while fixing other variables to their
mean value; parentheses: contribu-
tion to the model; dotted lines:
smoothed fitted function for each re-
lationship; rug plots: distribution of
values for each predictor in deciles
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ferent ranges of the oceanographic metrics measured
under the different regimes, particularly the ther-
mocline strength, thickness, and temperature (Figs.
2 & 6).

The predictor variables and response curves of the
whales ~ oceanography models differed between
regimes (Fig. 6). The typical regime model had a
lower CV deviance explained (26.6%) and AUC score
(0.69) than the warm regime model (CV deviance
explained = 36.5% and AUC = 0.87). Although the
contribution of the oceanographic predictors was dif-
ferent between regimes, the functional response
curves of the whales ~ oceanography models re -
flected the patterns of the krill ~ oceanography mod-
els within each regime. Those oceanographic fea-
tures driving more krill aggregations (typical model)
or higher-density aggregations (warm model) also
influenced blue whale presence with similar rela-
tionships (Fig. 6). In the typical regime, both krill
aggregations and whale presence increased where
the thermocline was thicker, where the mixed layer
depth was <10 m or between 20 and 40 m, and where
the pycnocline was deeper, and both decreased with
thermocline temperatures >15°C. Likewise, in the
warm regime, both krill density and blue whale
presence increased where difference in salinity was
~0.25−0.5 and where the mixed layer depth was
10−20 m, and both decreased with increasing ther-
mocline thickness, warmer thermocline temperature,
higher integral of temperature, and deeper pycno-
cline. The notable exception in both the whales ~
krill and whales ~ oceanography models was that
krill and whales had opposite distribution patterns
relative to thermocline strength in both regimes;
while krill aggregations were more numerous and
more dense where the thermocline was stronger,
blue whale presence decreased with increasing ther-
mocline strength (Fig. 6).

The inclusion of 2 fluorescence metrics (i.e. inte-
gral of fluorescence and surface fluorescence) in
the krill ~ oceanography and whales ~ oceanogra-
phy models in the typical regime only marginally
changed the model performance, and decreased
the deviance explained slightly in both cases. For
number of aggregations, the CV deviance ex -
plained was 15.6% (compared to 16.7% without
fluorescence). For blue whale presence, the CV
deviance explained was 23.7% with fluorescence
included among the oceano graphic predictor met-
rics (compared to 26.6% without). The lack of
 fluorescence data in 2016 prohibited conducting
similar model comparisons with and without fluo-
rescence metrics in the warm regime.

4.  DISCUSSION

Our models effectively describe the relationships
between oceanography, krill, and blue whales and
demonstrate the similarities and differences of
functional relationships across trophic levels and
during variable oceanographic regimes. With climate
change, spatial distributions of marine top predators
are predicted to shift in response to altered oceanog-
raphy (Hazen et al. 2013, Schumann et al. 2013,
Silber et al. 2017). Understanding the stepwise,
func tional relationships between environment, prey,
and predator provides insight into how predator
distribution may change across space and time. This
knowledge can be used to inform effective conser-
vation measures and protected area design that re -
flects the ecology of marine predators rather than
only geographic location.

While blue whale distribution has previously been
related to in situ physical oceanography and prey
(Schoenherr 1991, Croll et al. 1998, 2005, Fiedler et
al. 1998, Rennie et al. 2009, Buchan & Quiñones
2016), this study presents a first quantitative exami-
nation of individual functional relationships between
physical features of the water column, krill avail-
ability, and blue whale distribution. At the founda-
tion of this trophic pathway, the structure of the
water column in the STB region differed substan-
tially between the typical oceanographic regimes of
2014 and 2017 relative to the warm regime during
2016 that was characterized by minimal water col-
umn mixing. The highly stratified water column in
2016 may also have contributed to the higher per-
formance of the warm regime models, as the system
was temperature-dominated and relatively simpler
to characterize. Krill aggregations were structured
and distributed differently between regimes, with
fewer and less dense krill aggregations present
inside the STB (north and east of Cape Farewell)
during the warm regime. Following these differ-
ences in krill availability, blue whale distributions in
the STB region were different between regimes,
and primarily influenced by number of krill aggre-
gations in typical years but by aggregation density
in the warm year. Blue whale preference for differ-
ent krill metrics between regimes likely reflected a
difference in krill availability. In the warm regime,
both the standardized number of aggregations and
mean aggregation density were lower than in the
typical regime. Furthermore, there was more vari-
ability in aggregation density than in number of
aggregations during the warm regime, causing
whales to target areas of relatively high density,
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while the number of ag gregations had a negligible
impact on their habitat selection (Fig. 7).

The oceanographic features related to more numer-
ous krill aggregations during the typical regime and
higher krill density during the warm regime aligned
with the features that influenced blue whale pres-
ence in each regime respectively. Taken together,
these results provide evidence that blue whale distri-
bution is dictated by the availability of their prey, and
both prey and predator distribution can be described
by similar features of the oceanography. The same
oceanographic features that structured the krill influ-
enced the distribution patterns of blue whales in both
the warm and typical regimes, even though the eco-
system differed widely between regimes. Therefore,
environmental drivers of prey availability can serve
as reliable proxies for blue whale distribution, at
least at the spatial and temporal scale examined in
this study.

The whales ~ krill models produced the highest
explanatory power (typical regime CV deviance
explained = 31.3%, warm regime CV deviance
explained = 60.2%), representing the most direct
trophic link of all functional relationships modeled in
this study. The performance of the whales ~ oceanog-
raphy models was lower (typical regime CV deviance
explained = 26.6%, warm regime CV deviance ex -
plained = 36.5%). These results contrast the findings
of Torres et al. (2008), who determined that environ-
mental features produced far superior predictions of
bottlenose dolphin Tursiops truncatus distribution
than prey metrics tested through model validations.
This discrepancy between studies investigating mod-
eled relationships between predator, prey, and envi-
ronment may be due to several factors including
scale, prey type, and sampling method. Although en -
vironmental features are more stable and often eas-
ier to sample at relevant scales than prey (due to the
patchy and ephemeral nature of the latter) (Torres et
al. 2008), the ability to spatially describe a krill prey
field using hydroacoustic survey methods may be
more effective compared to fish prey sampled using
net trawls, as was the case in Torres et al. (2008).
 Furthermore, our study examines a shorter trophic
chain of events between oceanography, krill, and
blue whales than the study of Torres et al. (2008), and
thus the link between oceanography and whale distri-
bution should be tighter given fewer trophic steps
between environment and predator. Although cor-
relative in nature, the findings from our study can be
used to infer mechanistic links that drive the distribu-
tion of other krill predators such as some baleen
whale and seabird species, particularly in upwelling

systems. However, caution should be exercised when
extrapolating these findings to marine predators that
forage on higher trophic level prey such as fish, as
there may be more functional links between prey
groups not investigated in this study.

A notable difference between the krill ~ oceanog-
raphy and the whales ~ oceanography models was
the different relationships with thermocline strength.
While a stronger thermocline was associated with
more and denser krill aggregations, whales were
preferentially distributed where the thermocline was
weaker. Although a stronger thermocline may act as
a physical barrier that aggregates krill near or above
it (Hampton 1985), blue whales appear to prefer a
weaker thermocline. The reason for this discrepancy
is unclear. It is also worth noting that thermocline
strengths >2.3 were only observed in the warm
regime. The influence of water depth on blue whale
distribution in the warm regime may be an effect of
spatial clumping, as the whales were distributed fur-
ther west in offshore, deeper waters in 2016 (Fig. 1)
when there was no prominent plume of cold, upwelled
water in the STB. It also must be acknowledged that
the spatial distribution of survey effort differed be -
tween years, with no effort west of Kahurangi Point
in 2014, and less effort west of Kahurangi Point in
2017 than in 2016 (Fig. 1). This discrepancy is an arti-
fact of the sampling design, as search effort was

Fig. 7. Relationship between the number of aggregations
(standardized by survey effort) and mean aggregation den-
sity (Sv) within each 4 km grid cell sampled at blue whale
presence/background points. Typical regime values are in
blue, warm regime values are in red. Triangles represent
values at blue whale sighting locations, open circles are 

values at background point locations
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directed to locations where blue whales were ex -
pected. However, given the oceanographic similari-
ties between 2014 and 2017 and their stark contrast
with 2016 despite substantial overlap in spatial cov-
erage between 2016 and 2017, we believe the impact
of lower spatial coverage in 2014 on model perform-
ance and interpretation is likely minimal.

Despite marked differences in oceanographic con-
ditions between regimes, it was still possible to suc-
cessfully model trophic links and infer ecological
relationships between blue whales, krill, and ocean -
ography. Blue whales altered their ecology in the
warm regime, by shifting their spatial distribution
further offshore and responding to different aspects
of their prey and environment. In addition to the
differences in krill availability between regimes
(Fig. 7), the warm regime was characterized by much
stronger water column stratification (Fig. 2). The off-
shore areas of the study region are deeper, and with
a deeper water column the impact of stratification
may not be as great as in the shallower areas north of
Farewell Spit (Fig. 1), since the warm surface layer
occupies proportionally less of the water column.
Hence, blue whales may target the offshore areas in
warm regimes because of a lower relative impact of
stratification on the deeper water column, as well as
greater relative krill abundance (Figs. 4 & 7). The dif-
ferences between regimes not only shed light on how
blue whale ecology may be influenced by changing
ocean conditions, but also highlight the importance
of data collection across a range of environmental
conditions to accurately capture variability in the
system. Had sampling only taken place in typical
regime conditions, predicting to a warm regime
would necessitate almost complete model extrapola-
tion beyond the range of the calibration data. For
example, both the number of krill aggregations and
aggregation density decreased with increasing ther-
mocline temperature in both regimes, but what was
considered a ‘high’ thermocline temperature in the
typical regime was among the lowest measured val-
ues for the warm regime (Figs. 2 & 6). With variable
temperature regimes between years, an overall
warming trend in New Zealand’s coastal oceans (Sut-
ton & Bowen 2019), and rising ocean temperatures
globally (Field et al. 2014), this study highlights the
importance of using relevant calibration data sam-
pled from across a broad range of environmental
conditions to allow for inferences that account for
changing ocean conditions.

Dynamic management of industrial activity in the
STB to protect blue whales could rely on predictive
models of blue whale distribution based on remotely

sensed data, as satellite imagery is far more accessible
than data collected during at-sea survey effort. Spatial
predictions using environmental data have demon-
strated utility for minimizing overlap between marine
megafauna and anthropogenic pressures (Howell et
al. 2015, Hazen et al. 2017). In addition to describing
the functional relationships between in situ oceanog-
raphy, krill, and blue whales, this study showed that
important oceanographic predictors of krill and blue
whale presence, such as thermocline strength, ther-
mocline temperature, and integral of temperature, are
highly correlated with sea surface temperature (Pear-
son’s correlation coefficient = 0.96, 0.96, 0.87, respec-
tively; Figs. S3 & S5). Hence, these correlations show
promise for future modeling efforts using sea surface
temperature data and potentially other oceanographic
metrics measured via satellite imagery to infer water
column structure, and thereby make informed predic-
tions of blue whale distribution (Becker et al. 2010).

Marine predators integrate multiple trophic lev-
els, and their distribution reflects dynamic ecological
pro cesses including physical and biological com -
ponents of marine ecosystems. As climate regimes
change, predators must still locate food to survive,
and therefore their spatial distribution is contingent
on how their prey are structured and distributed
under variable environmental conditions. The in -
creasing frequency of marine heatwaves is emerg-
ing as a disruptive pattern linked to global climate
change (Oliver et al. 2018, Holbrook et al. 2019), with
demonstrated consequences to primary productivity
around New Zealand (Chiswell & Sutton 2020) and
changes in zooplankton species composition and
abundance in the Tasman Sea (Evans et al. 2020).
Marine heatwave conditions have been linked to
habitat compression and shifting prey for baleen
whale species in upwelling systems (Santora et al.
2020), and more examples will likely emerge as the
warming climate and increasing prevalence of mar-
ine heatwaves continue to alter species distribution
patterns (Becker et al. 2019). This study demon-
strates the utility of establishing functional ecological
relationships as a foundation for the conservation
management of marine predators in changing ocean
conditions.
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