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SUPPLEMENT 1. ADDITIONAL INFORMATION 

S1. Reliability of temperature data from the Mérignac/Bordeaux Airport 
weather station 

Weather stations located within highly urbanized areas may be affected by the so-called Urban 
Heat Island effect (UHI, Arnfield 2003, Kalnay & Cai 2003). That is, a metropolitan area is 
usually significantly warmer than the surrounding rural areas because of human activities. 
Although the global temperature bias introduced by the UHI effect is of just 0.05 oC (IPCC 
2013), some individual weather stations may suffer from this effect more severely. Given that 
the Mérignac/Bordeaux Airport weather station used in the present study is located within the 
Bordeaux city area, the UHI may be significantly biasing the growing season temperatures 
estimated in the present study. To assess the reliability of this station as representative of the 
weather for the whole Bordeaux area, three sets of alternative temperature time series were 
explored (See Fig. S1): 

1) Following Jones et al. (2005), data from a 0.5o x 0.5o gridded monthly temperature time 
series centered in the Mérignac/Bordeaux Airport weather station were downloaded from 
the Global Historical Climatological Network (GHCN v3). It should be noted, however, 
that at this level of spatial resolution the only publicly available station data is precisely 
that from the Mérignac/Bordeaux Airport weather station (MÉRIGNAC GHCN v3, ID: 
61507510000; See also the gridded Monthly station data in the KNMI webpage). In 
contrast to the GHCN v2 used by Jones et al. (2005), the version 3 is highly suitable 
because it was homogenized using the pairwise correlation method of Menne & Williams 
(2009). This method effectively removes undocumented shifts in time series by pair-wise 
correlating the focal series with a network of observing stations. These shifts are induced 
mainly by local land-use changes and the UHI effect. The available homogenized time 
series starts in 1951. Fig. S2 shows the time series of growing season temperatures from the 
uncorrected (non-homogenized) Mérignac/Bordeaux Airport weather station (daily data 
downloaded from the KNMI) and the available growing season temperature data from the 
same station downloaded from the GHCN v3 webpage. Both series are highly correlated (r 
= 0.973, Pboot < 0.001), and the average bias in growing season temperatures of the non-
homogenized data relative to the homogenized series is small (0.17 ± 0.33 oC). Moreover, 
conducting the analysis with either of both series produce virtually the same results, 
although the optimum average growing season temperature is upward biased by a 6% when 
the non-homogenized KNMI series is used. Therefore, it is safe to merge both time series 
(KNMI, 1920-1950; GHCN v3, 1951-2009); this dataset will be named hereafter “merged 
dataset”. 



2) The merged dataset was compared to the time series of growing season temperatures from 
Chevet et al. (2011), which span the same period of the present study. The weather station 
used by Chevet et al. (2011) is located within the Pauillac Apéllation, 40 Kms. to the North 
West of the Mérignac weather station. Both time series are highly correlated (r = 0.90, Pboot 
< 0.001). Interestingly however, although this weather station should not be significantly 
affected by the UHI effect, its average growing season temperature is slightly larger (17.40 
± 0.93 oC) than the average temperature of the homogenized Mérignac station data (17.17 ± 
0.89 oC), and even larger than the non-homogenized data (17.27 ± 1.04 oC). In any case, 
both time series show the same cyclic structure across time (Fig. S3b-d), and only during 
the first half of the 1980s was there a short, transient loss in the covariation among both 
(Fig. S3d). 

3) The merged dataset was also compared to the temperature data used by Lecocq & Visser 
(2006). These authors regressed Bordeaux wine prices on temperature data from ten local 
weather stations spread within the Bordeaux wine area (See Fig. S1). These data consist on 
June-July and August-September average temperatures for the period 1993-2002. The data 
from these stations, along with the data from the merged dataset, is shown in Fig. S4. 
Interestingly, the average temperature of the merged dataset for this period is virtually 
identical to the temperature averaged across the ten weather stations (excluding that of 
Mérignac). Moreover, many of the weather stations studied by Lecocq & Visser (2006) 
show consistently larger temperature than the merged dataset, even though these stations 
should not be significantly affected by the UHI effect. 

Overall, these analyses suggest that the merged temperature dataset from the 
Mérignac/Bordeaux Airport weather station used in the present study is highly reliable as 
representative of the temperature within the whole Bordeaux wine area. Indeed, although 
Lecocq & Visser (2006) found slight spatial variations in climate within this area, these authors 
show that using the temperature data from the Mérignac/Bordeaux Airport weather station 
instead of the data from the local weather stations produce essentially the same results. 

S2. Fitting of the TVCs model accounting for within-season temperature 
variability 

Statistical regression theory predicts that sampling error, or any type of uncertainty in a 
predictor variable, will cause an attenuation of the regression coefficient for that variable 
(Carroll et al. 2006). To account for this effect, and to assess the sensitivity of the results of the 
present study to the uncertainty in the estimation of growing season temperatures, an 
alternative TVCs model will be fitted that incorporates an observation model analogous to the 
model for wine rating uncertainty. This model has the form: 

2
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were Tobs, t is the observed growing season temperature for year t, and Tt is the latent growing 
season temperature for year t. An estimate for the time-varying uncertainty in growing season 
temperature at year t is encapsulated in µ2

t. In the absence of other information, the best 
estimate for this uncertainty is simply the within-season variance in temperature during the 
growing season. For example, a year with a high average temperature and a low within-season 
variance will have a stronger relative impact on model estimation than a year of similar 
temperature but with higher within-season variance. The net effect will be a reduction in the 
variance of the estimated effect of temperature on wine quality in the former case, and an 
increase in estimation variance in the later. Therefore, the fitted model will be fully stochastic 
(West & Harrison 1997), since both the predictor and the response variable are measured with 
uncertainty. 



The results of this alternative fitting are shown in Fig. S5. The profile of the time-varying 
effect of temperature on wine quality is virtually the same, but the proportion of variance in 
wine quality explained by temperature increased when the within-season variance is taken into 
account. This is due to the attenuation effect mentioned above. Indeed, the fitting of this model 
was even better than the model ignoring within-season variance in temperature estimation 
(WAIC: 166.635 ± 10.703; see Table 1 in the accompanying paper). It is also interesting to 
note that the uncertainty in the estimation of the optimum growing season temperature is now 
also larger: this is expected, since the within-season variance propagates to the estimated 
optimum during simulation. Overall, these results reinforce the findings of the accompanying 
paper that ignores within-season variance, since they suggest that uncertainty in the estimation 
of growing season temperatures does not qualitatively modify the results. 

S3. Estimating uncertainty in wine quality ratings from independent raters 

Table S1 shows the database used in the present study. Table S3 shows the Spearman’s rank-
order correlations among 10 series of Bordeaux wine quality ratings obtained from the 
literature, plus the correlation among these time series and the variables Year and Growing 
season temperature. As shown, the correlation among the wine quality ratings is very large, 
even though some of them refer to different apéllations within the Bordeaux wine area. While 8 
out of 10 display temporal trends, only 6 out of 10 show a significant correlation with 
temperature. 

To obtain an empirical approximation for wine quality rating uncertainty, three of the gathered 
time series were selected: Robert Parker (http://www.erobertparker.com; data averaged for the 
whole Bordeaux region); Jeff Leve (http://www.thewinecellarinsider.com) and Tom Stevenson 
(2001; data averaged for the whole Bordeaux region). These are highly reputed and critically 
exposed wine experts, so the effects of their evaluations on wine prices and customer choices 
should be large (Robert & Reagans 2007). After re-scaling these ratings to a 0-20 scale, to 
make them comparable to the Tastet & Lawton rating system, a large concordance was found 
among the four raters (Intraclass correlation coefficient: 0.93; 95% Confidence Interval: 0.87-
0.96). The value of τt2 obtained from the yearly inter-rater variability averaged from 1970 to 
2000 was relatively low, but somewhat larger than previous estimations for recent vintages 
(Cardebat & Figuet 2013). Indeed, a negative exponential relationship was found between the 
coefficients of variation of yearly inter-rater judgments and the averaged vintage quality of the 
rescaled ratings (Fig. 1b in the accompanying paper). This means that inter-rating uncertainty 
decreases with wine quality for the datasets studied. Therefore, a negative exponential function 
was implemented in the observation model (eqn. 1.5) to predict the value of rating variance, τt2, 
from the observed vintage rating. 

S4. Parameter estimation method and model comparison 

Through Markov Chain Monte Carlo, posterior distributions for parameter and latent wine 
quality ratings are derived from the product of the likelihood and prior distributions of 
parameters through stochastic simulation (Gelman et al. 2013a). In environmental sciences the 
most common strategy is to use the Gibbs sampler to sample from the posterior distribution 
(e.g., Clark 2007). However, this algorithm uses a random walk to propose future states for the 
iterative Markov chain (Gelman et al. 2013a), which makes the convergence to a stationary 
posterior distribution highly inefficient. The relatively complex structure of the TVCs model 
may induce large cross-correlations among parameters during simulation from the posterior 
distribution, with further increases in sampling inefficiency. Therefore, a Hamiltonian/Hybrid 
Monte Carlo approach (HMC; Neal 2011) will be followed here. HMC was originally 
proposed for simulation in quantum chromodynamics (Duane et al. 1987) and provides the 



advantage of merging MCMC simulation with molecular dynamics, so that the future states in 
the Markov Chain are now proposed by physical system (Hamiltonian) dynamics and not by a 
random process. In brief, Hamiltonian dynamics regards the motion of an object as the sum of 
its potential and kinetic energies, with the assumption that the total energy (the Hamiltonian) is 
conserved. This perspective is exploited to implement a Hamiltonian scheme as a proposal 
function for the joint posterior distribution, so that sampling is performed through simulation 
of the location and momentum of states in the Markov Chain constrained to the Hamiltonian 
condition (see Neal 2011 for technical details). 

Priors were set to improper uniform distributions defined in the entire real line for the location 
parameters, I, α·, β·, l· ~ U(-∞, +∞), and uniform distributions with a lower truncation at 0 for 
the standard deviations of the scale (variance) parameters: σt, ρ· ~ U(0, +∞). Given that the 
quadratic coefficients of the TVCs model were sometimes very close to 0 (see Results) the 
estimated time-varying optimum temperature was truncated between 10 and 35 0C during 
posterior simulations. Three Markov chains with diffuse random initial values were run during 
4000 iterations for both models, and statistical summaries of parameters and latent vintage 
ratings were constructed from the posterior distributions after discarding the first 3000 
iterations as a warmup; 68% posterior credible intervals, equivalent to 1 standard deviation, 
were constructed for the time-varying coefficients. 

The Watanabe/Akaike, or Widely Applicable, Information Criterion, WAIC, was calculated as 
(Gelman et al. 2013b): 
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The first summation in the right-hand side of Eqn. S2.1 is the log pointwise predictive density 
of the posterior simulations, p(yi|θs), drawn from S Monte Carlo iterations and summed across 
the n observations (90 years in this case). The second summation is the effective number of 
parameters, calculated as the sum of the posterior sample variances of the log predictive 
densities for each data point. It can be seen that the WAIC is asymptotically equivalent to 
leave-one-out cross-validation (Gelman et al. 2013b) but, in contrast to alternative model 
selection tools, it is fully Bayesian because it is not based on point estimation, as all the 
observations are used to compute the log predictive density and its variance. This increases the 
stability of the WAIC (Gelman et al. 2013b). The original WAIC is multiplied by -2 to use the 
deviance scale of the DIC and AIC, and thus allow similar inference: a model minimizing the 
WAIC in Eqn. S2.1 is better at out-of-sample predictive fit; that is, if a model should be used to 
predict unobserved values, that minimizing the WAIC should be selected. 



Table S1 Raw data used to conduct the analyses of the accompanying paper 
Wine Quality Expert Ratings 

Year Growing season 
temperature (oC) 

Tastet & 
Lawton 

Jeff 
Leve 

Robert 
Parker 

Tom 
Stevenson 

1920 16.51 16 
1921 17.42 18 
1922 16.69 15 
1923 16.67 15 
1924 16.55 17 
1925 16.49 13 
1926 16.94 18 
1927 16.42 13 
1928 17.16 19 
1929 16.86 20 
1930 16.29 11 
1931 15.74 4 
1932 16.27 10 
1933 17.57 11 
1934 17.63 17 
1935 16.82 9 
1936 15.84 5 
1937 16.93 17 
1938 15.88 12 
1939 15.91 12 
1940 16.79 13 
1941 16.09 2 
1942 17.54 11 
1943 18.36 17 
1944 17.87 10 
1945 18.61 19 
1946 16.41 10 
1947 18.58 18 
1948 16.64 15 
1949 18.34 18 
1950 17.38 16 
1951 16.32 8 
1952 17.37 17 
1953 16.98 18 
1954 15.63 9 
1955 17.40 18 
1956 15.92 9 
1957 16.38 12 
1958 16.67 12 
1959 17.73 19 95 
1960 16.67 12 60 
1961 17.52 20 96 
1962 16.50 17 87 
1963 15.92 3 60 



1964 17.47 17 83 
1965 15.57 3 50 
1966 16.70 17 86 
1967 16.42 14 80 67.5 
1968 16.42 6 60 25 
1969 16.75 12 60 61 
1970 16.87 18 87 86.8 88.5 
1971 17.42 17 85 84.2 83 
1972 15.52 10 65 40 
1973 17.65 12 65 79 
1974 16.65 12 65 60 
1975 17.48 17 84 87 90 
1976 18.08 16 80 79.2 80 
1977 15.92 11 70 45 
1978 16.40 17 85 86 85 
1979 16.72 16 84 86 85 
1980 16.58 13 70 77.2 76.5 
1981 17.22 16 84 83.8 82 
1982 17.65 19 96 92.4 98 
1983 17.87 17 87 89.8 86.5 
1984 16.71 12 80 70 
1985 17.05 18 90 88.2 92 
1986 16.53 18 88 89.6 87.5 
1987 17.68 14 82 80.2 76.5 
1988 17.65 17 89 87.6 88 
1989 18.62 19 95 89.8 95 
1990 18.78 19 96 94.4 91 
1991 18.08 13 65 68 76.5 
1992 18.00 12 70 77.2 78 
1993 16.96 14 85 82.4 83.5 
1994 17.64 15 87 86.6 85 
1995 17.84 17 90 89.8 90 
1996 17.23 18 89 88.4 92.5 
1997 18.54 15 85 85 81.5 
1998 17.73 17 92 91.8 87.5 
1999 18.51 16 86 88.2 86.5 
2000 18.16 19 100 95.6 90 
2001 17.77 17 92 89 
2002 17.30 16 89 87 
2003 19.83 18 93 89 
2004 18.12 17 91 87.8 
2005 18.68 20 100 96.6 
2006 19.12 17 91 88 
2007 17.85 16 87 86.2 
2008 17.30 17 91 92 
2009 18.43 19 97 97 



Table S2. Descriptive statistics for all the time series used in the present study. Note that the wine 
quality rating time series from Robert Parker and Tom Stevenson are averages for the whole 
Bordeaux area (see Table S3). 

Time series N Mean Min Max SD

Growing season temperature (GST), oC 90 17.17 15.52 19.83 0.89

Number of days with GST > 30 oC 81 16.95 0 54 9.67

GST of days with GST > 30 oC 80 32.31 30.71 34.20 0.67

Tastet & Lawton’s Wine Quality Rating 90 14.50 2 20 4.19

Jeff Leve’s Wine Quality Rating 51 82.82 50 100 12.17

Robert Parker’s Wine Quality Rating 35 87.08 68 97 5.81

Tom Stevenson’s Wine Quality Rating 34 78.91 25 98 16.12



Table S3. Spearman’s rank-order correlations among the 10 time series of Bordeaux wine quality ratings gathered from the literature, plus the 
variables Year and Growing season temperature. Values in bold type denote significant correlations (Pboot < 0.05). 

# Time series 1 2 3 4 5 6 7 8 9 10 11

 1 Year            

 2 Growing season temperature 0.49           

 3 Tastet & Lawton 0.26 0.62          

 4 Jeff Leve 0.51 0.61 0.91         

 5 Jones & Davis (2000) 0.14 0.68 0.90 0.85        

              

R
ob

er
t 

P
ar

ke
r

6 St. Jullian / Pauillac / St. Estéphe 0.37 0.25 0.87 0.83 0.87       

7 Margaux 0.53 0.26 0.66 0.74 0.55 0.75      

8 Graves 0.32 0.18 0.72 0.78 0.76 0.73 0.72     

9 Pomerol 0.30 0.29 0.66 0.75 0.76 0.63 0.54 0.80    

10 St. Émilion 0.55 0.45 0.76 0.92 0.81 0.80 0.81 0.82 0.79   

              

T
om

 
S

te
ve

ns
on 11 Médoc & Graves 0.43 0.40 0.94 0.89 0.84 0.91 0.68 0.70 0.65 0.71  

12 St. Émilion & Pomerol 0.53 0.55 0.91 0.92 0.85 0.85 0.59 0.77 0.84 0.82 0.93 
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