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INTRODUCTION

Coastal areas are dynamic and complex environ-
ments that support valuable fisheries around the
world (FAO 2016). Occurring at the interface of land
and sea, they are naturally affected by both terrestrial
and marine processes that together play a fundamen-
tal role in driving variation in abiotic conditions
(Alongi 1998). Coastal waters are, however, heavily
affected by human activity (Halpern et al. 2008) and
climate change (Harley et al. 2006). The growth infor-
mation naturally archived in fish otoliths provides a
unique opportunity to recreate multi-decadal time se-
ries in regions where monitoring data does not exist

(Morrongiello et al. 2012, Poloczanska et al. 2016).
This valuable longer-term perspective is vital to un-
derstanding and managing the impacts of natural and
anthropogenic change on fisheries productivity.

Habitat forming species such as seagrass play a
fundamental role in underpinning the productivity of
coastal fisheries (Butler & Jernakoff 1999, Ellison et
al. 2005). For example, seagrass provides protection
and resources for newly settled larvae and juvenile
fishes (Jenkins et al. 1997, Ford et al. 2010), as well as
feeding and spawning opportunities for adults
(Klumpp & Nichols 1983). The health and productiv-
ity of seagrass itself is driven by both terrestrial and
marine processes that are increasingly being modi-
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ABSTRACT: Human-driven climate change and habitat modification are negatively impacting
coastal ecosystems and the species that reside within them. Uncovering how individuals of key
species respond to environmental influences is crucial for effective and responsive coastal
resource and fisheries management. Here, using an otolith based analysis, we recreated the
growth history of rock flathead Platycephalus laevigatus from Corner Inlet, Victoria, Australia,
over a 32 yr timeframe and related growth variation to changes in key environmental variables.
Growth increased with higher temperatures during the fish growing season (December−May) and
also increased with higher freshwater flow during the period important for seagrass growth (July−
February). We hypothesise that fish are responding to enhanced productivity in the seagrass food
web, driven by increased nutrient input from freshwater flows. Fish also appear to be responding
to higher temperatures via a direct physiological pathway. We then predicted fish growth under 3
plausible climate change scenarios. Growth is predicted to increase across all our projections,
because any predicted decrease in river flow will likely be offset by rapid predicted increases in
temperature. Our results highlight the value of understanding the drivers of long-term growth
variation in harvested fishes as this allows for the prediction of future productivity under a range
of environmental and management scenarios.
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fied by humans (Orth et al. 2006). Terrestrial runoff,
marine currents, and wind-driven mixing provide
nutrients that fertilise seagrass beds. However, in
urbanised and agricultural catchments, nutrient
loads can exceed natural levels and result in phyto-
plankton blooms and excessive algal growth that
reduce light penetration or smother seagrass (Thom-
sen et al. 2012). Likewise, catchment erosion in -
creases water turbidity which can also retard sea-
grass growth. Globally, seagrasses are declining at
an accelerating rate (Waycott et al. 2009) with conse-
quent detrimental impacts to many species that
depend on them.

Coastal fishery productivity is also directly affected
by freshwater inflows. For example, Morrongiello et
al. (2014) found that recruitment success and growth
rate of an estuarine fish was strongly related to high
freshwater flows during the spawning season and
during the growing year. These results suggest that
flows play an important role in providing both a
spawning cue and favourable conditions for larval
survival and juvenile and adult growth. Increased
recruitment success and somatic growth subsequent -
ly impacts the biomass of adults, and therefore fish-
ery productivity (Bardos et al. 2006, Whitten et al.
2013). While increased nutrients often positively
influence ecosystem productivity, excessive nutrient
inputs can promote harmful algal blooms (McComb
et al. 1995). Further, sediment and phytoplankton-
related increases in turbidity can negatively affect
the foraging success of visual predators (Abrahams &
Kattenfeld 1997, Sohel et al. 2017). Reduced prey
encounter rates and food acquisition can subse-
quently affect individual growth and fitness. River
flow can therefore affect the primary productivity of
the foundation species, and drive the abundances
and reproductive success of all trophic levels, includ-
ing key fisheries species.

Fishes have physiological tolerances that allow
them to live within a specific range of variation in
environmental factors (Barton et al. 2002). Changes
in environmental conditions, such as temperature,
beyond this range can influence abundances and dis-
tributions, and can be stressful or even fatal to fish
(Roessig et al. 2004). In many species, a slight tem-
perature increase may be initially beneficial as it
results in increased energy and therefore increased
growth (Takasuka & Aoki 2006). However, if temper-
ature exceeds the optimal range for a particular spe-
cies, it can be deleterious to growth (Wang & Over-
gaard 2007). In coastal environments many fishes
may also be completely dependent on specific habi-
tat, so their persistence in that ecosystem will depend

on the response of that habitat to fluctuations in tem-
perature. Rainfall, nutrient upwelling and tempera-
ture will all vary with wind patterns and ocean circu-
lation, so average wind direction and oceanic indices
can also be important predictors of these 3 key envi-
ronmental parameters affecting fish growth.

The effects of environmental change on coastal
ecosystem productivity, and in particular the growth
rates and production of commercial resources in
coastal ecosystems, have seldom been examined at
longer time-scales, probably due to the lack of good
long-term monitoring in most such systems. Simi-
larly, the importance of juvenile growth rates for fish-
eries dynamics is increasingly understood (Cowan et
al. 2000, Whitten et al. 2013), but the factors control-
ling it have seldom been investigated at the time
scales relevant to both fishery management and pre-
dicting future climate change effects. A novel way to
overcome the lack of longer term monitoring is to use
fish otoliths as records of growth rates (Thresher et
al. 2007, Black 2009, Matta et al. 2010, Morrongiello
& Thresher 2015), and then relate these to available
environmental data records.

This study investigates the influence of 4 environ-
mental factors — freshwater flows, temperature, wind,
and the Southern Oscillation Index (SOI) — on the
growth of the commercially important fish, rock flat-
head Platycephalus laevigatus, in Corner Inlet, Vic-
toria, Australia. We explore the environmental driv-
ers of growth variation in this species using mixed
effects models to analyse otolith samples from 1982
to 2014. We recreate a 32 yr growth biochronology
and partition growth into its intrinsic and extrinsic
components (Weisberg et al. 2010 Morrongiello &
Thresher 2015). We then use these models to predict
fish growth under a range of plausible future climate
scenarios.

We expect that the growth of flathead will reflect a
complex integration of different physical processes
and causal pathways (Fig. 1). We predict that fresh-
water flow can affect growth via 2 distinct and oppos-
ing mechanisms: increased flow during the period
July−February will provide critical nutrients for sea-
grass and thus result in habitat expansion, which in
turn will promote flathead growth. Conversely,
higher flows during the period December−May (the
fish growing period) will increase turbidity and limit
the efficacy of feeding, as flathead are ambush pred-
ators. We expect that increased temperatures during
the growing season will promote fish growth via a
direct physio logical pathway (this population is
approximately in the middle of its range, so should be
favoured by warming), or via an indirect promotion
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of primary productivity that has a positive cascading
effect through the food web. This effect would be
consistent with a previous growth study on rock flat-
head from Western Australia (Coulson et al. 2014).
We hypothesise that zonal westerly winds
will increase nutrient upwelling and thus
promote system productivity, whilst we
also expect that fish growth will be posi-
tively correlated with positive SOI values
(La Niña events), which affects local rain-
fall and thus stream flows.

MATERIALS AND METHODS

Study site

Corner Inlet Marine and Coastal Park
(38°45’ 57”S, 146° 20’ 21”E) is a large em -
bayment (18 500 ha) in Victoria, approxi-
mately 180 km southeast of Melbourne
(Fig. 2). The inlet comprises extensive
shallow sand and mudflats at <2 m depth
fragmented by deeper tidal channels.
Subtidal seagrass beds are abundant on
the shallow areas and composed mainly
of Posidonia australis and Zostera nigra-
caulis. These seagrass beds are vital habi-
tat for many fish and invertebrate species
within Corner Inlet, including a number
of  commercially important fish species

(Kemp et al. 2013). The main growth
window for both seagrass species is the
late winter to early summer period
(July−February), when epiphyte growth
is de pressed due to low water tempera-
tures (Ford et al. 2016). Seagrass cover
in Corner Inlet has declined 23% in the
past 48 yr, at a rate of 0.5 km2 yr−1 (Ford
2014, Ford et al. 2016). This seagrass
decline, at tributed to algal blooms and
turbidity, may have affected the pro-
ductivity of the ecosystem and its re -
liant species.

Study species

Rock flathead Platycephalus laevi -
gatus is a seagrass-associated fish in -
habiting shallow water throughout south-
ern Australia (Koopman et al. 2004). The
Corner Inlet population is approxi-

mately in the middle of this species’ distribution, and
contains both spawning and recruited individuals;
however, linkages with other populations are cur-
rently unknown (Koop man et al. 2004, Kemp et al.
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Fig. 1. Conceptual model of the predicted effects of environmental factors on
rock flathead Platycephalus laevigatus growth. Plus (+) and minus (−) signs in-
dicate that there could be a positive or negative influence of the environmen-
tal factor on the subsequent effect or habitat. For example, higher river flow in
July− February could increase seagrass cover, and subsequently increase rock 

flathead growth

Fig. 2. Corner Inlet, Victoria, Australia (from Ford et al. 2016)
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2013). Newly settled P. laevigatus spend the first part
of their life on bare sand flats before moving into the
seagrass beds as older juveniles and remaining there
as adults (Jenkins et al. 1993). In Corner Inlet, rock
flathead constitutes approximately 23% by weight of
the total fishery, and is one of the most valuable spe-
cies along with King George whiting Sillaginodes
punctatus and southern calamari Sepioteuthis aus-
tralis (Kemp et al. 2013). Rock flathead, King George
whiting and southern calamari together contribute
over AU$1.6 million of the total ‘off the boat’ value of
the fishery, and are also important recreationally tar-
geted species (Department of Primary Industries 2012).

Sample collection and estimation of age
and growth

Otoliths from 526 fish were collected from the com-
mercial fishery over the period 1994−2014. One oto -
lith from each fish was embedded in clear epoxy
resin (EpoFix) in embedding moulds (14 × 5 × 6 mm).
Using a low speed diamond saw (South Bay Technol-
ogy Model 650) we cut a transverse section (~0.3 mm)
through the core of the otolith (previously marked
with pencil under a microscope). The sections were
ground and polished (using a South Bay Technology
Model 920 lapping and polishing machine), then
mounted on a microscope slide. Digital images of
each section were captured using a Canon EOS 60D
digital camera attached to a compound microscope at
×40 magnification.

Coulson et al. (2014) used marginal increment ana -
lysis to show that a single opaque zone is laid down
annually in otoliths of P. laevigatus throughout its
life. Therefore, opaque zones can be used to deter-
mine the age of fish from this species. Using the
same method, Koopman et al. (2004) established that
opaque zones are laid down in December in Corner

Inlet rock flathead. We counted the opaque zones on
the dorsal side of the otolith to determine the age of
each fish, taking into consideration the date that the
fish were caught and the birth date of the species. De-
spite individuals being found in spawning condition
in most months throughout the year, the main spawn-
ing period of P. laevigatus in Victoria is be tween Sep-
tember and February (Koopman et al. 2004). Therefore
an arbitrary birthdate of December 1 was chosen to
correspond with the middle of the spawning period
and the period of new increment formation.

We used Image Pro Plus software (v.6.3, Media -
cybernetics) to measure growth increments on the
sectioned otoliths. Measurements were taken of the
distances between the outer edges of each opaque
zone, to determine the width of each consecutive
growth increment (Fig. 3). We also measured the dis-
tance between the otolith core and the periphery
(outermost edge of the otolith). We used this meas-
urement to compare otolith size and total fish length,
ensuring that otolith growth is an appropriate proxy
for fish somatic growth (Fig. S1 in the Supplement
at www.int-res. com/ articles/ suppl/ m12234_ supp. pdf).
Measurements were restricted to increments after
the second growth ring because the location of the
first growth ring can reflect 8−14 mo of growth
depending on when an individual was spawned.

Statistical analyses

We investigated the sources of variation in annual
growth of rock flathead (increment width in mm)
using a mixed effects modelling framework. Models
contained different combinations of fixed intrinsic
predictors (within-individual), fixed extrinsic predic-
tors (environmental), and their interactions. Each
increment width was treated as a separate response
sample, which resulted in 2145 total increment meas-
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Fig. 3. Sectioned Platy-
cephalus laevigatus oto -
lith with 7 opaque zones,
taken with transmitted
light. The white line
identifies the axis along
which the age of the
otolith was estimated,
and the circles identify
where measurements be -
tween opaque zones were 

taken

http://www.int-res.com/articles/suppl/m12234_supp.pdf


Barrow et al: Environmental drivers of Platycephalus laevigatus growth

urements. The issue of non-independence of incre-
ments from the same fish was dealt with in the model
structure as described below.

Intrinsic predictors

Fixed intrinsic predictors were sex, age of the fish
at the time the growth increment was formed
(AOG), and age at capture (AAC) (Table 1). Age at
capture was included in the data to test for any bias
associated with age selectivity in the samples
(Morron giello et al. 2012). We introduced a random
intercept for FishID to induce a correlation among
increment measurements and allow each fish to
have higher or lower growth than the model’s
intercept, and to account for non-independence of
the response data (Morrongiello & Thresher 2015).
Similarly, increments formed by different fish in a
given year are also non-independent as the sam-
pled fish were exposed to the same environmental
conditions. We included a random intercept for
Year to induce a correlation among increments at
this level. We also investigated whether including a
random age slope for FishID (AOG|FishID) and
Year (AOG|Year), would improve the fit of the
model (Table 2). These random slopes allow for
individual-specific differences in the growth−age
relationship, and year-dependent differences in
age-specific growth.

Extrinsic predictors

We developed 4 environmental variables to test our
hypotheses about the drivers of variation in fish
growth (Fig. 1). These fixed extrinsic factors included
the temperature in that year (Temperature), nutrient
input from freshwater flows in the corresponding year
and the months leading up to that year (Flow), wind
strength and direction in that year (Wind), and the
southern oscillation index for that year (SOI) (Table 1;
Figs. S2 & S3 in the Supplement). Mean maximum
temperature was available from a nearby weather sta-
tion for the period between December and May, from
1982−2014 (Bureau of Meteorology 2017). Air temper-
ature was used as a proxy for sea temperature as the
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Parameter Description Range Mean

Intrinsic factors
AOG Age at which the year of growth occurred 2−17 yr 4.5 yr
AAC Age at which the fish was captured 2−17 yr 6.9 yr
Sex Male or female

Extrinsic factors
Temperature Average maximum temperature during the main  20.9−25.3°C 23.2°C

growth period (Dec−May)
Flow River flow from the Agnes and Franklin rivers 

during seagrass growth (Jul−Feb) and flathead July−Feb highest 10%: 100.8−1912.3 Ml 646.9 Ml
growth (Dec−May) of the previous year. July−Feb median: 18.8−125.1 Ml 74.8 Ml
Calculated as mean of highest 10% of flows Dec−May highest 10%: 44.7−1173.5 Ml 341.94 Ml
per year, and median flow. Dec−May median: 8.1−29.7 Ml 29.7 Ml

Wind Zonal westerly wind index, based on direction −70.4−465.4 184.7
and strength of winds

SOI Monthly Southern Oscillation Index −1.2−19.7 −1.2

Random factors
1|Year Year that the increment was formed
1|FishID Unique code which identifies each fish
AOG|X Random age slope for X (FishID and Year random intercepts)

Table 1. Descriptions of intrinsic (within-individual), extrinsic (environmental) and random factors used in rock flathead Platy-
cephalus laevigatus growth analysis, with ranges and means of measured values (where applicable)

Random effects models df ΔAIC AIC LL
weight

AOG|FishID + AOG|Year 11 0 1 753.49
AOG|FishID + 1|Year 9 82.16 0 710.39
1|FishID + 1|Year 9 127.23 0 687.86
1|FishID + AOG|Year 7 199.76 0 649.58

Table 2. Model selection results for random effects struc-
tures of rock flathead Platycephalus laevigatus annual
growth. Models included the maximal fixed effect structure
of AOG × Sex. Columns are: degrees of freedom (df), differ-
ence in Akaike’s information criterion (AIC) value (ΔAIC), 

AIC weight, and restricted log likelihood (LL)
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latter data were not available (correlation between air
temperature and sea surface temperature in nearby
Port Phillip Bay; r = 0.71) (NOAA 2015). Daily temper-
ature data were then averaged over the fish growing
season (December−May).

Daily river flows (Ml) were available for the
Franklin River and Agnes River, the main tributaries
into Corner Inlet (Department of Environment, Land,
Water and Planning 2015). Higher freshwater flows
deliver nutrients to estuaries and coastal waters used
by seagrasses, encouraging frond rejuvenation. Sea-
grass growth typically occurs when the temperature
begins to warm in spring (Ford et al. 2016). The mean
of the top 10% of river flows per year (representing
the quantity of water during large flow events), and
the median flows (representing annual variation in
average flow conditions) were calculated for 2 time
periods: from July when the seagrass has declined
over the winter until the end of February when the
seagrass is typically rejuvenated, and also over the
main fish growing period (December−May). We used
the mean of the top 10% as an arbitrary high per-
centage of flows instead of a Q10 value (flow which is
exceeded 10% of the time), as it was a more accurate
representation of the extent of large flow events that
were not as well captured by the Q10 value.

Wind can have an important influence on ocean
current patterns off the Victorian coast, and therefore
the ocean input into bays and inlets along the south-
ern coast (Hamer et al. 2010). The methods for devel-
oping a zonal westerly wind (ZWW) index are out-
lined in Hamer et al. (2010). In this study, we used
average ZWW from the main fish growing period
(December−May) as the environmental indicator.

The Southern Oscillation Index (SOI) is a measure
of El Niño Southern Oscillation events that repre-
sents regional climate variability by quantifying El
Niño and La Niña events in the Pacific Ocean (Bu -
reau of Meteorology 2017). Negative values (El Niño
events) are typically associated with warmer sea sur-
face temperatures and drier regional conditions. Pos-
itive values (La Niña events) are typically associated
with cooler sea surface temperatures and higher
probability of rainfall (Bureau of Meteorology 2017).

Model comparisons

To satisfy model assumptions, we log-transformed
the growth (increment width), AOG and AAC data.
The predictor variables were centered to facilitate
model convergence and interpretation of interaction
and polynomial terms (Morrongiello & Thresher

2015). Firstly, we created a base model including
AOG and AAC and explored different random effect
structures (using restricted maximum likelihood esti-
mation, REML). We then compared models with and
without AAC using maximum likelihood (ML). Com-
peting random effect and then intrinsic effect models
were then ranked using Akaike’s information crite-
rion corrected for small sample size (AICc), and the
difference between the best model (lowest AICc) and
each other model (ΔAIC) (Morrongiello & Thresher
2015). The best fitting of these models would become
the base model for introducing the fixed extrinsic fac-
tors (Morrongiello et al. 2014).

Building on this base model, we fitted a series of
models with different combinations of extrinsic fac-
tors and their interactions with AOG. These inter -
action terms allow for age-dependent growth res -
ponses to environmental variables. Competing
models were fit using ML and ranked using AICc and
ΔAICc values. The best model was then refitted with
REML to produce unbiased parameter estimates
(Zuur et al. 2009). In addition, we calculated condi-
tional (all factors) R2 values for the best models. This
R2 value describes the proportion of variation in
growth described by all factors in the model (Naka-
gawa & Schielzeth 2013). Models were fit using the
lme4 package (Bates et al. 2015) in the program R
(v. 0.98.977) (R Core Team 2014). Models were com-
pared using the AICcmodavg package (Mazerolle
2015), and predictions and confidence intervals gen-
erated using the arm and Effects packages (Fox 2003,
Gelman & Hill 2006).

Climate change scenarios

We predicted rock flathead growth, using the best
fitting model under 3 possible climate change scenar-
ios: 2030, 2055/70 (high emissions), 2055/70 (low
emissions) (Stocker 2014). Projections were esti-
mated as a change relative to the baseline period
1986−2005. We used the median values of predicted
temperature change for Gippsland, Victoria, for
2030, 2070 (high emissions) and 2070 (low emis-
sions). The ranges exclude the upper and lower 10%
of results (CSIRO & Bureau of Meteorology 2015).
Changes to river flow were estimated using the mean
of our flow parameter values (top 10% July−Febru-
ary) from between 1986−2005 as a baseline. We used
the flow estimation model for South Gippsland, Vic-
toria, from Jones & Durack (2005) to estimate the
median percentage change to mean flows for 2030
and 2055. We used the third lowest and third highest
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values of 10 climate model predic-
tions for 2030 and 2055 to indicate the
range of values (Jones & Durack
2005). We converted the percentage
change in flows predicted by the
model to estimate actual changes to
flow relative to our 1986−2005 base-
line flow.

RESULTS

Intrinsic and random factors

The increment widths on a total of
526 otoliths were measured, resulting
in 2145 individual increment meas-
urements, dating from 1982 to 2014.
The best intrinsic effect model in -
cluded an AOG × Sex interaction,
with random AOG slopes for Year
and FishID (Table 2). Growth de -
clined with age, with females having
faster growth later in life than males
(>5 yr old) (Fig. 4). We plotted the
Year random intercepts from the best
model to visualise temporal patterns
in growth (Fig. 5). Rock flathead dis-
played a high variation in growth
over time. There was a period of
strong growth from 1995 to 2001, then
a poor growth period between 2002
and 2006. 2010 was a strong growth
year, but it was immediately followed
by a poor growing year in 2011.

Extrinsic factors

The best extrinsic effects model
included additive effects of tempera-
ture in the fish growing seasons
(December−May) and high flow dur-
ing the seagrass growing season
(highest 10% flows in July−February)
(Table 3). This model had an AIC
weight of 0.41, compared to weights
of 0.11, 0.06 and 0.05 of the next best
fitting models (Table 4). The best fit-
ting model reflects that rock flathead
growth increased as freshwater in -
flows increased in the months that the
seagrass rejuvenates with rising tem-
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Parameter Estimate SE 5% CI 95% CI t

Intrinsic factors
Intercept −2.672 0.0129 −2.694 −2.651 −206.28
Age −1.004 0.0286 −1.051 −0.958 −35.07
Sex (F) 0.0889 0.0127 0.068 0.110 6.99
Age × Sex 0.124 0.0225 0.086 0.163 5.51

Extrinsic factors
Temperature 0.0298 0.0111 0.011 0.049 2.68
Flow (Highest 10% Jul−Feb) 0.00008 0.00003 0.00003 0.0001 2.83

Table 3. Parameter estimates (with SE), 95% confidence intervals and test
 statistic (t ) from the best-fit model of rock flathead Platycephalus laevigatus

annual growth

Fig. 4. Predicted growth of male (dark grey) and female (light grey) rock flat-
head Platycephalus laevigatus otolith increments (mm) at each age of growth 

(years). Shaded areas are 95% confidence intervals

Fig. 5. Variation in predicted annual growth (accounting for intrinsic effects)
of rock flathead Platycephalus laevigatus, represented by year random effect
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peratures (July− February) (Fig. 6). Rock flathead
growth also in creased in warmer fish growing sea-
sons (December−May) (Fig. 7). Temperature and
river flow were negatively correlated (r = −0.63), yet
growth appears to be enhanced by increases in both
factors, which suggests that any correlation has not
obscured the influence of either factor.

Climate change scenarios

We predict that mean annual growth of
2 yr old rock flathead in 2030 will in -
crease by 2.46% as temperature in -
creases and river flow decreases. In 2070
under a low emissions scenario, we pre-
dict that growth will increase by 3.58%.
In 2070 under a high emissions scenario,
we predict that growth will in crease by
6.67% (Fig. 8).

DISCUSSION

Annual growth of rock flathead in Corner Inlet
was significantly influenced by environmental fac-
tors. Growth was higher in periods following larger
river flows and likely represents a response to
nutrient-rich river flow stimulating productivity
through the seagrass food web. High temperatures
during summer and autumn also increased the
growth of all individuals in the population. Our
model explicitly incorporates both intrinsic and ex -
trinsic sources of growth variation and allows man-
agers to identify whether changes in fish stocks
are likely to be related to environmental or fishing
factors.

Intrinsic factors

Age (AOG) explained a substantial amount of the
variation in growth and reflects the commonly ob -
served pattern of fish growth decreasing when indi-
viduals get older. The significant interaction
between age and sex was also expected. There was
no effect of sex on growth in young individuals
(<5 yr), but in older fish (>5 yr) females exhibited
significantly larger growth than males. This is con-
sistent with previous studies on P. laevigatus and
tiger flathead P. richardsoni (Koopman et al. 2004,
Morrongiello & Thresher 2015). It is beneficial for
female fish to grow faster and larger than male fish
so that they can accommodate more eggs during the
spawning period (Koopman et al. 2004). In most fish
the growth of males and their growth efficiency
declines more than females after maturity, perhaps
because they are more active in finding and dis-
playing to mates (Henderson et al. 2003, Pauly
2010). These behaviours have been observed in
other related species in the Platycephalidae family
(Shinomiya et al. 2003).
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Model’s extrinsic factors df ΔAIC AIC LL R2

weight

Temperature + Flow 13 0 0.41 770.39 0.938
(highest 10% Jul−Feb)

Flow (highest 10% Jul−Feb) + Wind 13 2.70 0.11 769.04 0.938
Wind 12 3.89 0.06 767.44 0.938
Flow (highest 10% Jul−Feb) 12 4.07 0.05 767.34 0.938

Table 4. Overall best fitting models of rock flathead Platycephalus laevigatus
annual growth including intrinsic, random and extrinsic factors, after a com-
parison of AICc values. Columns are degrees of freedom (df), difference in
AIC value (ΔAIC), AIC weight, maximised log likelihood (LL) and the R2 value
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Fig. 6. Predicted otolith incremental growth (mm) and con -
fidence intervals of rock flathead Platycephalus laevigatus

with fresh-water river flows

Fig. 7. Predicted otolith incremental growth (mm) and confi-
dence intervals of rock flathead Platycephalus laevigatus

in increasing temperatures (°C)
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Environmental influences on fish growth

Rock flathead growth was positively influenced
by increased river flow which we hypothesise stim-
ulates productivity in the seagrass ecosystem. It is
well understood that estuarine and coastal ecosys-
tems are more productive than areas distant from
the coast (Whitfield 1996). This productivity is often
driven by the availability of nutrients from nutrient-
rich river flows (Caddy & Bakun 1994) and subse-
quently cascades up the food web to predators such
as rock  flathead (Edgar & Shaw 1995). Corner Inlet
is a seagrass dominated environment. This seagrass
predominantly grows during spring and summer, so
increased nutrient input from the rivers at this time
may especially enhance productivity of the seagrass
ecosystem and increase abundances of prey. Exces-
sive nutrient input from river inflows, however, is
suspected to lead to algal blooms and thus seagrass
decline (Ford et al. 2016). In spite of this, we found
no evidence of a negative impact of higher flow lev-
els on rock flathead growth, and thus a hump-
shaped relation of growth to flow. One possibility is
that the fishery catches were focused on areas that

retained good seagrass habitat. The impacts of high
nutrients on the health of seagrass and consequently
on species inhabiting the seagrass deserve further
investigation.

Increased temperatures during the main growth
period (December−May) resulted in increased fish
growth. As fish are ectothermic, their metabolic rate
varies with the external water temperature. Within
the range of temperatures that fish are exposed to,
species will have an optimal range in which their
metabolism is enhanced (Christie & Regier 1988).
Increases in temperature (within the optimal range)
can result in a direct increase in growth, through
allocation of enhanced energy (Fry 1971). Our results
are consistent with those from a previous growth
study on rock flathead (Coulson et al. 2014). As Cor-
ner Inlet is in the middle of rock flathead’s distribu-
tion, we expect that warming water will promote fish
growth. Similar patterns have been observed in a
multi-population analysis of the related tiger flathead
P. richarsoni (Morrongiello & Thresher 2015). In -
reased temperatures can also improve the productiv-
ity of the seagrass ecosystem (Masini et al. 1995), and
thus indirectly promote rock flathead growth via
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increases in food. It is possible that increases in rock
flathead growth with warming water represents a
combination of both direct metabolic and indirect
food web mechanisms.

Climate change scenarios

We predict that rock flathead growth rates will
increase in the future. Warmer temperatures associ-
ated with climate change may be slightly offset by a
simultaneous decrease in flow, though in general the
magnitude of the temperature effect is greater and
would be expected to have a stronger impact on
growth (Fig. 8) (Jones & Durack 2005, CSIRO &
Bureau of Meteorology 2015). While the future pro-
ductivity of the fishery may be enhanced by in -
creased fish growth, it is important to remember that
rock flathead are reliant on the seagrass ecosystem
for both habitat and nutrition. Future seagrass de -
clines that occur due to changes in flow or even inde-
pendently of climate (Ford et al. 2016), will likely
have strong impact on fish growth. Further study is
required to understand the cumulative impacts that
anthropogenic and climate driven environmental
change have on the seagrass ecosystem.

Whilst we think our predictions of enhanced
growth with warming are robust, they do not account
for changed frequency and intensity of extreme
events (e.g. marine heatwaves and unpredictable
flooding events; Hobday et al. 2016) that can impact
biological systems (Wernberg et al. 2013). Predicted
changes in mean temperature for 2030 and 2070 (low
emissions) are both within the observed temperature
range of the study, while the predicted temperature
for 2070 (high emissions) exceeds the highest yearly
mean temperature by 0.82°C. Nonetheless, daily
temperatures often exceed this value, so that we are
confident that predicted temperatures will not ex -
ceed physiological tolerances for rock flathead. The
values for predicted changes in river flow, and there-
fore nutrient input into Corner Inlet, are well within
the observed range of river flows. Rock flathead have
therefore already been exposed to all of the pre-
dicted temperatures and river flow scenarios.

Implications for the fishery and ecosystem
 management

Our study indicates that freshwater flows that
enhance the productivity of the seagrass ecosystem
stimulate the growth of rock flathead. This informa-

tion is important for fisheries and ecosystem man-
agers because it provides clear empirical evidence
for the need to appropriately manage catchment
proces ses and water extraction to ensure fisheries
production is maintained. Such an ecosystem-based
management approach is increasingly being em -
ployed to ensure the ongoing sustainable manage-
ment of fisheries worldwide. Future work needs to
focus on understanding the drivers of poor water
quality, seagrass declines and how seagrass-inhabit-
ing species are impacted, so that practical strategies
can be put in place to promote recovery (e.g. manag-
ing the terrestrial impacts on the content of fresh
water flows, seagrass transplantation). We also need
to understand the mechanisms driving growth and
successful recruitment of other commercially impor-
tant species in Corner Inlet, to make informed deci-
sions that will benefit all major species within the
fishery.
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